JPH04144242A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04144242A
JPH04144242A JP26880190A JP26880190A JPH04144242A JP H04144242 A JPH04144242 A JP H04144242A JP 26880190 A JP26880190 A JP 26880190A JP 26880190 A JP26880190 A JP 26880190A JP H04144242 A JPH04144242 A JP H04144242A
Authority
JP
Japan
Prior art keywords
insulating layer
gate
semiconductor active
active layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26880190A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kasai
笠井 信之
Shinichi Sakamoto
晋一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26880190A priority Critical patent/JPH04144242A/en
Publication of JPH04144242A publication Critical patent/JPH04144242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To simultaneously reduce both gate length and gate resistance, by a method wherein the boundary between a semiconductor active layer and an insulating layer is positioned in an aperture of photo resist subjected to gate-patterning. CONSTITUTION:On a semiconductor active layer 2, an insulating layer 8 whose etching rate is different from that of the layer 2 is formed. A photo resist 9 is patterned, which is used as a mask, and the layer 8 is etched. Source.drain electrode metal 30 is stuck on the whole surface by a vacuum evaporation method or the like, and the insulating layer 8 is left between a source and a drain by a lift-off method. After photo resist 10 is patterned, the insulating film 8 is etched by using the photo resist 10 as a mask, and the photo resist 10 is eliminated. Thereby a part where the semiconductor active layer 2 is exposed and a part where the insulating layer 8 exists are formed between the source and the drain. Gate-patterning is performed by a photolithography technique. In this process, an aperture part of photo resist 5 is made to overlap with the end portion of the insulating layer 8, and the boundary between the semiconductor active layer 2 and the insulating layer 8 is positioned in the aperture.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置の製造方法に係り、特にガリウム
、ひ素電界効果トランジスク(GcAs FET)等の
ゲート電極の形成方法く関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming a gate electrode of a gallium, arsenic field effect transistor (GcAs FET), etc.

〔従来の技術〕[Conventional technology]

第11図ないし第14図は従来の半導体装置の製造方法
を工程順に示す半導体装置の断面図である。
11 to 14 are cross-sectional views of a semiconductor device showing a conventional method for manufacturing a semiconductor device in order of steps.

図において、(1)#iガリウムひ素等からなる半導体
基板、(2)は半導体基板(1)上に形成された半導体
活性層、(3)は半導体活性層(2)上に形成されたド
レイン電極、(4)は半導体活性層(2)上に形成され
九ソース電極、(5)はフォトンジス) 、 (6)は
半導体活性層(2)に形成されたリセス、(7)はリセ
ス(6)内に形成されたゲート電極、  (7o)はゲ
ート電極金属である。
In the figure, (1) a semiconductor substrate made of #i gallium arsenide, etc., (2) a semiconductor active layer formed on the semiconductor substrate (1), and (3) a drain formed on the semiconductor active layer (2). The electrode (4) is a source electrode formed on the semiconductor active layer (2), (5) is a photon resistor), (6) is a recess formed on the semiconductor active layer (2), and (7) is a recess (6). ), and (7o) is the gate electrode metal.

次に製造方法について説明する。第n図に示すように、
半導体基板(1)上に形成された半導体活性層(2)上
に所定の間隔を有してドレイン電極(3)、ソース電極
(4)が形成される。
Next, the manufacturing method will be explained. As shown in Figure n,
A drain electrode (3) and a source electrode (4) are formed at a predetermined interval on a semiconductor active layer (2) formed on a semiconductor substrate (1).

次は第戎図に示すように、ゲート電極(7)形成の為、
フォトレジスト(5)が全面塗布された後、写真製版時
により幅りの開口部を形成する。次いで、K13図に示
すように7オトレジスト(5ンをマスクに半導体活性層
(2)を所望の深さに堀り込み、リセス(6)を形成し
た後、真空蒸着法等によりゲート電極金属(7o)を全
面に被着する。リフトオフ法によりフォトレジスト(5
)およびフォトレジスト(5)上の不要のゲート電極金
属(7o)を除去して、リセス(6)内にゲートTt孫
(7)が形成され第14図の如く半導体装置が完成する
Next, as shown in Figure 1, for forming the gate electrode (7),
After the photoresist (5) is applied over the entire surface, a wider opening is formed during photolithography. Next, as shown in Figure K13, the semiconductor active layer (2) is dug to a desired depth using a 7mm photoresist (5mm) as a mask to form a recess (6), and then the gate electrode metal (6) is deposited using a vacuum evaporation method or the like. 7o) on the entire surface. Apply photoresist (5o) using the lift-off method.
) and the unnecessary gate electrode metal (7o) on the photoresist (5) are removed, a gate Tt grandchild (7) is formed in the recess (6), and the semiconductor device is completed as shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体装置の製造方法は以上のように行われてい
るので、ゲート電極形成における写真製版工程では、第
戎図く示すように7オトレジストがゲートバターニング
を行なう領域において厚くなっている上、ソース電極、
ドレイン電極上の7オトレジストに対し凹んだ状態にあ
るので、従来のコンタクト露光方式などでは開口部の幅
りの寸法は0.3μm程度が限度であった。半導体装置
の性能向上の為第14図に示すゲート長Lg短縮が必要
とされるが、従来の場合ゲート長Lgはフォトレジスト
の開口部の幅りで決定されるので、0.3μm以下のゲ
ート長Lgを得ることは固層である上、ゲート電極の断
面形状は先細りの台形状となる為にゲート長Lg  短
縮が行なえてもゲート抵抗が増加してしまうという問題
点があった。
Since the conventional semiconductor device manufacturing method is carried out as described above, in the photolithography process for forming the gate electrode, the photoresist is thicker in the region where gate buttering is performed, as shown in Fig. source electrode,
Since the opening is recessed relative to the photoresist on the drain electrode, the width of the opening is limited to about 0.3 μm in conventional contact exposure methods. In order to improve the performance of semiconductor devices, it is necessary to shorten the gate length Lg as shown in FIG. Obtaining the length Lg is a solid phase, and the cross-sectional shape of the gate electrode is tapered into a trapezoidal shape, so there is a problem that even if the gate length Lg can be shortened, the gate resistance will increase.

この発明は、上記のような問題点を解消するためになさ
れたもので、従来の写真製版技術のままでも、ゲート長
Lg!IM縮とゲート抵抗の低減が図れる半導体装置の
製造方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and even if the conventional photolithography technology is used, the gate length Lg! An object of the present invention is to obtain a method for manufacturing a semiconductor device that can reduce IM shrinkage and gate resistance.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体装置の製造方法は、半導体活性層
上にシリコン窒化膜やノンドーグの半導体等による薄い
絶縁層を形成し、ソース電極、ドレイン電極形成後のノ
ースドレイン間に薄い絶縁層を残すようにした後、ソー
スドレイン間の絶縁層をドレイン側に所望の量だけ残る
ようにエツチングし、ゲートパターニングを行なう0こ
の時、フォトレジストの開口部を絶縁層の端部にオーツ
く一ラップさせるようパターニングする0次にリセス形
成を行ない、蒸着、す7トオ7によりゲート電極を形成
するようにしたものである0〔作 用〕 この発明における半導体装置の製造方法は、ソースドレ
イン間に所望の食残された絶縁層の端部にオーバーラツ
プしてパターニングされル為、フォトレジストの開口部
の@Lが従来程度であっても、ゲート長Lg  として
は短縮される。しかも。
The method for manufacturing a semiconductor device according to the present invention includes forming a thin insulating layer made of a silicon nitride film, a non-doped semiconductor, etc. on a semiconductor active layer, and leaving a thin insulating layer between a north drain after forming a source electrode and a drain electrode. After that, the insulating layer between the source and drain is etched so that the desired amount remains on the drain side, and gate patterning is performed. A gate electrode is formed by forming a recess on the 0th order of patterning, followed by vapor deposition and step 7.0 [Function] The method for manufacturing a semiconductor device according to the present invention is to form a gate electrode between a source and a drain. Since the pattern is overlapped with the end of the remaining insulating layer, the gate length Lg is shortened even if the opening @L of the photoresist is about the same as before. Moreover.

ゲート電極形成の為に真空蒸着法等でゲート電極金属を
全面被着すると半導体活性層と接触する部分は細く上部
の断面形状が大きくなるマツシュルーム型のゲート電極
が得られるため、ゲート長ILgの短縮とゲート抵抗の
低減が図れる。
When gate electrode metal is deposited on the entire surface using a vacuum evaporation method or the like to form a gate electrode, a pine mushroom-shaped gate electrode is obtained in which the part that contacts the semiconductor active layer is thin and the cross-sectional shape of the upper part is large, which reduces the gate length ILg. The gate resistance can be reduced.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。ji
K1図ないし! 10図は、半導体装置の製造方法を工
程順に示す半導体装置の断面図であり、図において、 
(1)′(7)、 (7o)は第11図ないし第14図
の従来例に示したものと同等であるので説明は省略する
。(8)は絶縁層、 (9) 、 (K)はフォトレジ
スト、(3o)はソースドレイン電極金属である。
An embodiment of the present invention will be described below with reference to the drawings. ji
There is no K1 diagram! FIG. 10 is a cross-sectional view of a semiconductor device showing a method for manufacturing a semiconductor device in order of steps, and in the figure,
(1)'(7) and (7o) are the same as those shown in the conventional examples shown in FIGS. 11 to 14, so their explanation will be omitted. (8) is an insulating layer, (9) and (K) are photoresists, and (3o) is a source/drain electrode metal.

次に製造方法について説明する。Next, the manufacturing method will be explained.

まず、第1図において半導体基板(1)上に形成され九
半導体活性層(2)に半導体活性層(2)とエツチング
レートの異なるシリコン窒化膜(81Nx) 、シリコ
ン醸化FM (8to2) 、 シリコン酸化膜(Si
ON)やA/303の薄膜あるいはノンドープの半導体
等からなる絶縁層(8)が形成される。第2図において
、ンースドレイン電極形成の為にフォトレジスト(9)
がバターニングされ、フォトレジスト(9)をマスクに
絶縁層(8)をエツチングする。次に第3図のようにソ
ースドレイン電極金属(3o)を真空蒸着法等により全
面被着し、lJ7トオフ法VCよりフォトレジスト(9
)及びフォトレジスト(9)上のソースドレイン電極金
属(30)を除去して第4図のようにソースドレイン間
に絶縁層(8)を残すようにする。次いで、第5図のよ
うにフォトレジスト(ト)をバターニングした後。
First, in FIG. 1, nine semiconductor active layers (2) formed on a semiconductor substrate (1) are coated with a silicon nitride film (81Nx), a silicon-containing FM (8to2), and a silicon nitride film (81Nx), which has a different etching rate from the semiconductor active layer (2). Oxide film (Si
An insulating layer (8) made of a thin film of A/303 or a non-doped semiconductor is formed. In Figure 2, photoresist (9) is used to form the drain electrode.
is patterned, and the insulating layer (8) is etched using the photoresist (9) as a mask. Next, as shown in Fig. 3, a source/drain electrode metal (3o) is deposited on the entire surface by vacuum evaporation method, etc., and a photoresist (9
) and the source/drain electrode metal (30) on the photoresist (9) are removed to leave an insulating layer (8) between the source and drain as shown in FIG. Next, as shown in FIG. 5, the photoresist (G) is patterned.

iIl!6図のように7オトレジストαQをマスクに絶
縁層(8)をエツチングしてフォトレジスト(ト)を除
去する。これによりソースドレイン間においては半導体
活性層(2)の露出している部分と絶縁層(8)の存在
する部分とができる。次に$7図のように従来と同様の
写真製版技術でゲートパターニングを行なう。この時、
フォトレジスト(5)の開口部は絶縁層(8)端部にオ
ーバーラツプさせ、開口部内に半導体活性層(2)と絶
縁層(8)の境界が入るようにする。第(8)図のよう
に半導体活性層(2)を堀り込みリセス(6)を形成し
た後、1!9図に示すようにゲート電極金属(7o)を
真空蒸着法等により全面被層させた後。
iIl! As shown in FIG. 6, the insulating layer (8) is etched using the photoresist αQ as a mask to remove the photoresist (T). This creates an exposed portion of the semiconductor active layer (2) and a portion where the insulating layer (8) is present between the source and drain. Next, as shown in Figure $7, gate patterning is performed using the same conventional photolithography technique. At this time,
The opening of the photoresist (5) is made to overlap the end of the insulating layer (8) so that the boundary between the semiconductor active layer (2) and the insulating layer (8) is contained within the opening. After digging the semiconductor active layer (2) and forming a recess (6) as shown in Figure (8), gate electrode metal (7o) is coated over the entire surface by vacuum evaporation method as shown in Figures 1 to 9 After letting.

フォトレジスト(6)及びフォトレジスト(5)上の不
要のゲート電極金属(7o)をり7トオ7法により除去
してfjf! 10図のように半導体装置が完成する。
The photoresist (6) and the unnecessary gate electrode metal (7o) on the photoresist (5) are removed by the 7-to-7 method and fjf! A semiconductor device is completed as shown in FIG.

なお。In addition.

第10図では絶縁層(8)を残したままにしているが。In FIG. 10, the insulating layer (8) is left as is.

必要に応じて除去してもさしつかえない。It may be removed if necessary.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によればゲートパターニ
ングされたフォトレジストの開口部内に半導体活性層と
絶縁層の境界が入るようにしたので、開口部の幅が従来
程度であってもゲート長Lgの短縮が図れる。又、ゲー
ト電極の断面形状は上部が大きくなるマツシュルーム型
になるのでゲート抵抗の低減も同時に図ることができる
効果がある0
As explained above, according to the present invention, since the boundary between the semiconductor active layer and the insulating layer is placed within the opening of the gate-patterned photoresist, even if the width of the opening is about the conventional width, the gate length Lg can be shortened. In addition, since the cross-sectional shape of the gate electrode is a pine mushroom type in which the upper part is larger, gate resistance can be reduced at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第1O図はこの発明の一実施例による半導
体装置の製造方法を工程順に示す半導体装置の断面図、
第n図ないし第14図は従来の半導体装置の製造方法を
工程順に示す半導体装置の断面図である。 図において、(1)は半導体基板、(2)は半導体活性
層、(3)はドレイン電極、(4)はソース電極、 (
5) 、 (9)αQはフォトレジスト、(6)はリセ
ス、(7)aゲート電極、(8)は絶縁層、(3o) 
tdンースドレイン電極金属。 (7o)はゲート金属である。 なお、各図中、同一符号は同一 または相当部分を示す
1 to 1O are cross-sectional views of a semiconductor device showing a method for manufacturing a semiconductor device according to an embodiment of the present invention in the order of steps;
FIGS. n to 14 are cross-sectional views of a semiconductor device showing a conventional method for manufacturing a semiconductor device in order of steps. In the figure, (1) is a semiconductor substrate, (2) is a semiconductor active layer, (3) is a drain electrode, (4) is a source electrode, (
5), (9) αQ is photoresist, (6) is recess, (7) a gate electrode, (8) is insulating layer, (3o)
td drain electrode metal. (7o) is the gate metal. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に形成された半導体活性層上に絶縁層を
形成する工程と、ソースドレイン間に上記絶縁層を残し
ソース電極、ドレイン電極を形成する工程と、ソースド
レイン間に残つた上前絶縁層をソース電極側あるいはド
レイン電極側に所望の量だけ残しエッチング除去する工
程と、フォトレジストの開口部内に上記半導体活性層と
上記絶縁層との境界が入るようにゲートパターニングす
る工程と、上記半導体活性層にリセスを形成する工程と
、ゲート電極を真空蒸着法、リフトオフ法等により形成
する工程を含むことを特徴とする半導体装置の製造方法
A step of forming an insulating layer on a semiconductor active layer formed on a semiconductor substrate, a step of forming a source electrode and a drain electrode by leaving the above insulating layer between the source and drain, and a step of forming an upper front insulating layer remaining between the source and drain. a step of etching away the desired amount of the semiconductor active layer on the source electrode side or the drain electrode side; a step of gate patterning so that the boundary between the semiconductor active layer and the insulating layer is located within the opening of the photoresist; A method for manufacturing a semiconductor device, comprising the steps of forming a recess in a layer and forming a gate electrode by a vacuum evaporation method, a lift-off method, or the like.
JP26880190A 1990-10-05 1990-10-05 Manufacture of semiconductor device Pending JPH04144242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26880190A JPH04144242A (en) 1990-10-05 1990-10-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26880190A JPH04144242A (en) 1990-10-05 1990-10-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04144242A true JPH04144242A (en) 1992-05-18

Family

ID=17463458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26880190A Pending JPH04144242A (en) 1990-10-05 1990-10-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04144242A (en)

Similar Documents

Publication Publication Date Title
JP2778600B2 (en) Method for manufacturing semiconductor device
US4599790A (en) Process for forming a T-shaped gate structure
US4222164A (en) Method of fabrication of self-aligned metal-semiconductor field effect transistors
JPH04144242A (en) Manufacture of semiconductor device
JP3035994B2 (en) Method for manufacturing semiconductor device
JPS6242398B2 (en)
KR100304869B1 (en) Method for manufacturing field effect transistor
JP3106379B2 (en) Method for manufacturing semiconductor device
JPH0281441A (en) Manufacture of semiconductor device
JPH0228333A (en) Manufacture of semiconductor device
KR100309136B1 (en) Method for manufacturing transistor of semiconductor device
JPH03147338A (en) Manufacture of semiconductor device
JPS61163664A (en) Manufacture of semiconductor device
JP2002050757A (en) Production method for semiconductor device
JPS5852351B2 (en) Manufacturing method of semiconductor device
JP2607310B2 (en) Method for manufacturing field effect transistor
JPH0240924A (en) Manufacture of semiconductor device
JPS6215861A (en) Manufacture of semiconductor device
JP2825284B2 (en) Method for manufacturing semiconductor device
JP2591454B2 (en) Method for manufacturing field effect transistor
JPH0233939A (en) Manufacture of field-effect transistor
JPH06232173A (en) Manufacture of semiconductor device
JPH0260213B2 (en)
JPH03268334A (en) Manufacture of semiconductor device
JPH03203247A (en) Method of manufacturing semiconductor transistor