JPS6169166A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6169166A
JPS6169166A JP60072016A JP7201685A JPS6169166A JP S6169166 A JPS6169166 A JP S6169166A JP 60072016 A JP60072016 A JP 60072016A JP 7201685 A JP7201685 A JP 7201685A JP S6169166 A JPS6169166 A JP S6169166A
Authority
JP
Japan
Prior art keywords
region
semiconductor
type
type region
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60072016A
Other languages
Japanese (ja)
Inventor
Satoru Ogawa
覚 小川
Yoshinori Yamamoto
山元 良則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60072016A priority Critical patent/JPS6169166A/en
Publication of JPS6169166A publication Critical patent/JPS6169166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Abstract

PURPOSE:To prevent the generation of a latch-up by forming an impurity region in concentration higher than a first semiconductor region by an impurity diffused to the first semiconductor region from a semiconductor substrate on heat treatment at a time when shaping a second semiconductor region and lowering substrate resistance. CONSTITUTION:A P type region 43 is formed in partial surface region in an N type region 42 by using a selective diffusion technique in the main surface of an N<+> type semiconductor substrate 41. N<+> regions 44, 45 are shaped in a surface region in the P type region 43 while P<+> type regions 46, 47 are formed in a surface region in the N type region 42. Since the state of a high temperature continues for a prolonged time when the P type region 43 is diffused and shaped, an impurity in the substrate 41 is diffused into the N type region 42 in a section being in contact with the substrate 41, and a section being in contact with the P type region 43 of the N type region 42 is changed into N<+> and an N<+> type region 56 is formed. The values of equivalent resistors 28-32 in the N<+> type region 56 turned into N<+> are reduced extremely, thus hardly generating a latch-up phenomenon, then resulting in exceeding resistance against breakdown.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、相補型broS半導体装置に係わり、特に
ラッチアップによる破壊に対する強化を計れる半導体装
置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a complementary broS semiconductor device, and more particularly to a method for manufacturing a semiconductor device that can be strengthened against destruction due to latch-up.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

相補型MO8半導体装置(以下CMO8と略称する)は
同一基板上にPチャンネルとNチャンネルのトラ7ジス
タを形成し、この両トランジスタ・を直列接続したもの
を基本回路素子として用いるものでおり、高集積化が可
能な点および低電力消費性等種々の特徴金有している。
Complementary MO8 semiconductor device (hereinafter abbreviated as CMO8) has P-channel and N-channel transistors formed on the same substrate, and these two transistors are connected in series, which is used as the basic circuit element. It has various features such as the possibility of integration and low power consumption.

このため近年ではCMO8―種々の回路に応用されてき
ている。しかしなからCMO8の短所としては破壊に対
して弱いことも否めず1次のような破壊現象があけられ
る。七の1つとして先ずラッチアップによる破壊、次に
Nチャ/ネルトランジスタの耐圧の2次降伏現象による
破壊、さらにr−ト酸化膜の静電破壊現象等がある。
Therefore, in recent years, CMO8 has been applied to various circuits. However, as a disadvantage of CMO8, it cannot be denied that it is vulnerable to destruction, and a first-order destruction phenomenon occurs. One of the seven causes is damage caused by latch-up, damage caused by secondary breakdown of the withstand voltage of N-channel transistors, and electrostatic damage caused by the r-type oxide film.

この中でもラッチアップによる破壊は0MO8構造−で
あるがための不可避な破壊モードであり、従来このラッ
チアップによる破壊に対して槙々の対策がなされている
がまた完全に防止できるような対策がないのが現状であ
る。
Among these, destruction due to latch-up is an unavoidable failure mode due to the 0MO8 structure, and although extensive countermeasures have been taken to prevent destruction due to latch-up, there are no measures that can completely prevent it. is the current situation.

ここで次に0MO8としてインバータの場合を例にして
ラッチアップによる破壊現象を説明する。第3図は従来
のインバータの構成を示す断面図である。図において1
1はN型の半導体基板、12はこの半導体基板11の主
面側の表面領域に設けられたP型領域、13.14はこ
のP型領域12の表面領域に一定間隔を保って設けられ
、Nチャンネルトランジスタのソース領域およびドレイ
ン領域となるN4 型領域、1s、isは上記N型の半
導体基板の表面領域に一定間隔を保って設けられ、Pチ
ャンネルトランジスタのドレイン領域およびソース領域
となるP4型領域、11はNチャンネルトランジスタの
r−ト酸化膜、18はPチャンネルトランジスタのダー
ト酸化膜、19.20はNチャンネルトランジスタのソ
ースおよびドレイ/電f   極・″・″“Pf+ 7
$A/ ) ’j :y−)fi(Dソースおよびドレ
イン%&、2s、2s’はNチャンネルおよびPチャ/
ネルトランジスタのダート電極であり、上記ダート電極
23.23’は共通接続でれ、その接続点は入力信号I
N供給端に接続すれ、Nチャンネルトランジスタのソー
ス電極19は一方一源電圧Vss供給端に接続ぜれ、P
チャンネルトランジスタのソース電極21は他方電源電
圧VDD供給端に接続され、芒らにNチャンネルトラン
ジスタのドレイン電極2uおよびPチャンネルトランジ
スタのドレイン電極22は共通接続でれ、その共通接続
点は信号OUT出力端に接続される。
Next, the destruction phenomenon due to latch-up will be explained using an example of an inverter with 0MO8. FIG. 3 is a sectional view showing the configuration of a conventional inverter. In the figure 1
1 is an N-type semiconductor substrate, 12 is a P-type region provided on the main surface side of this semiconductor substrate 11, 13.14 is provided on the surface region of this P-type region 12 at a constant interval, N4 type regions, 1s, is, which will become the source and drain regions of the N-channel transistor, are provided at regular intervals on the surface region of the N-type semiconductor substrate, and the P4-type regions, which will become the drain and source regions of the P-channel transistor, are provided at regular intervals on the surface region of the N-type semiconductor substrate. 11 is the r-t oxide film of the N-channel transistor, 18 is the dirt oxide film of the P-channel transistor, and 19.20 is the source and drain/electrode f electrode of the N-channel transistor.
$A/)'j:y-)fi(D source and drain% &, 2s, 2s' is N channel and P channel/
The dirt electrodes 23 and 23' are commonly connected, and the connection point is connected to the input signal I.
The source electrode 19 of the N-channel transistor is connected to the supply voltage Vss, and the source electrode 19 of the N-channel transistor is connected to the supply terminal Vss,
The source electrode 21 of the channel transistor is connected to the other power supply voltage VDD supply terminal, and the drain electrode 2u of the N-channel transistor and the drain electrode 22 of the P-channel transistor are connected in common, and the common connection point is connected to the signal OUT output terminal. connected to.

このような構成のインバータではそのPN接合構造によ
り、NチャンネルおよびPチャンネルトランジスタの他
に図示するようにバイポーラのトランジスタが等測的に
発生する。すなわちP”型領域15fエミツタ領域、基
板11をペース領域およびP型領域12fコレクタ領域
とするPNP )う/ジメタ24、P4型領域16’f
fエミッタ領域、基板Ilをペース領域およびP型領域
12をコレクタ領域とするPNPトランジスタ25.N
 型領域14tエミツタ領域、P型領域12fベース領
域および基板11をコレクタ領域とするNPNトランジ
スタ26、N” 型領域tsftエミッタ領域、P型領
域12をペース領域および基板11をコレクタ領域とす
るNPN)ランジスタ27が発生する。
In an inverter having such a configuration, due to its PN junction structure, bipolar transistors are generated isometrically as shown in the figure in addition to N-channel and P-channel transistors. That is, the PNP type region 15f is an emitter region, the substrate 11 is a space region, and the P-type region 12f is a collector region.
A PNP transistor 25 having an f emitter region, a substrate Il as a pace region, and a P-type region 12 as a collector region. N
NPN transistor 26 with type region 14t emitter region, P type region 12f base region and substrate 11 as collector region, N” type region tsft emitter region, P type region 12 as pace region and substrate 11 as collector region 27 occurs.

第4図は上記等価的に発生するバイポーラトランジスタ
を等価抵抗と共に示す等価回路図であり、■中の各抵抗
28〜32は基板11における抵抗、および各抵抗33
〜37はP型領域12における抵抗でおる。いま第4図
において、出力端にVDDより高い電圧か印加されるか
あるいは適当な値の電流が供給されると、OUT〜PN
P )う/ラスタ25−抵抗32〜抵抗28〜Vl)D
の経路で電流が流れ、これによりPNPトランジスタ2
5が能動状態となる。上記PNPトランジスタ25が能
動状態になるとそのコレクタ電流は0UT−PNPトラ
ンジスタ25〜抵抗36〜抵抗37〜VSIIの経路で
流れる。上記電流が流れると抵抗37に電圧降下が生じ
てこの降下電圧によりNPNトランジスタ21が能動状
態になる。上記NPNトランジスタ27が能動状態にな
りてコレクタ電流が流れると抵抗28に電圧降下が生じ
、この抵抗28による降下電圧がζらにNPN)ランジ
スタ24を能動状態にせしめる。このような状態になる
とPNP )ランジスタ24およびN)’Nトランジス
タ27のコレクタ電流は互いのペース電流を供給し合う
ため、出力端の電圧あるいは供給電流が除去されてもV
DD I VB2間には一流が継続して流れ、最終的に
は前記ソースI11.極19゜21が損焼してしまう。
FIG. 4 is an equivalent circuit diagram showing the equivalently generated bipolar transistor as described above together with equivalent resistances.
.about.37 is the resistance in the P-type region 12. Now, in Fig. 4, when a voltage higher than VDD is applied to the output terminal or a current of an appropriate value is supplied, OUT~PN
P)U/Raster 25-Resistance 32~Resistance 28~Vl)D
Current flows through the path of PNP transistor 2.
5 becomes active. When the PNP transistor 25 becomes active, its collector current flows through the path from the 0UT-PNP transistor 25 to the resistor 36 to the resistor 37 to VSII. When the current flows, a voltage drop occurs across the resistor 37, and this voltage drop causes the NPN transistor 21 to become active. When the NPN transistor 27 becomes active and a collector current flows, a voltage drop occurs across the resistor 28, and this voltage drop across the resistor 28 causes the NPN transistor 24 to become active. In such a state, the collector currents of the PNP) transistor 24 and the N)'N transistor 27 supply pace current to each other, so even if the voltage at the output terminal or the supply current is removed, the V
The current continues to flow between DD I VB2 and finally the sources I11. Pole 19°21 was damaged.

〔発明の目的〕[Purpose of the invention]

この発明は上記のような事情を考慮してなきれたもので
あり、その目的とするところは、ラッテアップの発生を
防止することができ、もりて破壊に対して極めて強い半
導体装置の製造方法を提供することにある。
This invention was developed in consideration of the above-mentioned circumstances, and its purpose is to provide a method for manufacturing a semiconductor device that can prevent the occurrence of latte-up and is extremely resistant to breakage. Our goal is to provide the following.

〔発明の概要〕 すなわち、この発明においては、上記の目的を達成する
ために、高1度の半導体基板上にこの基板と同一導電型
で低a[の第1半鳩体領域を形成し、この第1半導体領
域に逆導電型の第2半導体領域(ウェル領域)を形成す
る。この第2半導体領域の形成の際における熱処理時、
半導体基板から第1半導体領域へ拡散される不純物によ
り、上記第1半纏体領域より高濃度の不純物領域〔第3
半導体領域〕を形成し、この不純物領域により基板抵抗
金工けてラッテアッフを防止するようにしている。
[Summary of the Invention] That is, in this invention, in order to achieve the above-mentioned object, a first semicircular region having a low a and having the same conductivity type as that of the substrate is formed on a semiconductor substrate having a high temperature of 1 degree. A second semiconductor region (well region) of an opposite conductivity type is formed in this first semiconductor region. During the heat treatment during the formation of this second semiconductor region,
Due to the impurity diffused from the semiconductor substrate to the first semiconductor region, an impurity region [third
A semiconductor region] is formed, and this impurity region is used to form a substrate resistor to prevent latte-up.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を診照してこの発明の一実施例を説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第2図は、比抵抗が0.05Ωα程度のN4型の半導体
基板41の主面に、気相成長法等により比抵抗が0.1
〜5ΩαのN型領域(第1半導体領域)42が堆積形成
されたものである。このような基板41に用いて、従来
と同じ方法でNチャネルおよびPチャネルトランジスタ
を形成すると第1図に示すような橋既となる。すなわち
、先ず公知であるフォトエツチング技術、選択拡散技術
を用いてN型領域42の一部表面領域にP型領域(第2
半尋体領域)43を形成する。この後、上記P型領域4
3の表面領域に所定の間隔を保って、Nチャネルトラン
ジスタのソースおよびドレイン領域となる一対のN4型
領域44.45を、一方N型領域420表面領域に所定
間隔を保りて、Pチャンネルトランジスタのソースおよ
びドレイ/領域となる一対のP4型領域46.47を形
成する。
In FIG. 2, the main surface of an N4 type semiconductor substrate 41 with a specific resistance of about 0.05 Ωα is coated with a specific resistance of 0.1 by vapor phase growth or the like.
An N-type region (first semiconductor region) 42 of ~5Ωα is deposited. If such a substrate 41 is used to form N-channel and P-channel transistors in the same manner as in the prior art, a bridge as shown in FIG. 1 will be formed. That is, first, a P-type region (second
A half-fathom region) 43 is formed. After this, the P-type region 4
A pair of N4 type regions 44, 45, which serve as the source and drain regions of the N-channel transistor, are placed at a predetermined distance in the surface area of 420, while a pair of N4 type regions 44, 45 are placed at a predetermined distance in the surface area of the N-type region 420. A pair of P4 type regions 46 and 47 are formed to serve as the source and drain/regions.

芒らにこの後はNチャンネルおよびPチャンネルトラン
ジスタの各ダート酸化a48.49を形成するとともに
%Nチャ/ネルトランジスタのソース、ドレイン両電極
50 、51% P゛チヤンネルトランジスタソース、
ドレイン両電極sz、ss、NチャンネルおよびPチャ
ンネル両トランジスタのダート電極54*55f:形成
し、上記ドレイン電極51.53どうしおよびダート電
極54.55どうしを接続配線することにより0MO3
のインバータが構成式れる。
After this, each dirt oxidation layer A48.49 of the N-channel and P-channel transistors is formed, and both the source and drain electrodes of the N-channel transistor and the source and drain electrodes of the 51% P-channel transistor are formed.
Both drain electrodes sz, ss, dirt electrodes 54*55f of both N-channel and P-channel transistors are formed, and the drain electrodes 51.53 and the dirt electrodes 54.55 are connected and wired to form 0MO3.
The inverter can be configured.

ところで上記P型領域43を拡散形成する際、例えば1
200u、15〜20時間の如く高温状態が長時間持続
されるため、基板41の不純物がこの基板41と接して
いる部分のN型領域42内に拡散される。この結果第1
図に示すようにN型領域42のP型領域43と接する部
分(図中右下りの斜線と左下りの斜線をともに付した部
分)がN4化ぜれN4型領域56となる。
By the way, when forming the P-type region 43 by diffusion, for example, 1
Since the high temperature state is maintained for a long time, such as 200u and 15 to 20 hours, impurities in the substrate 41 are diffused into the N-type region 42 in the portion in contact with the substrate 41. As a result, the first
As shown in the figure, the portion of the N-type region 42 in contact with the P-type region 43 (the portion indicated by both the diagonal line downward to the right and the diagonal line downward to the left in the figure) is converted to N4 and becomes an N4-type region 56.

これにより前記第4図に示す等価回路図中の等価抵抗2
8の値は従来に比較してρ〆/ρN−に減少する。たた
しρN“はN4型領域56の比抵抗、ρN−はN型領域
42の比抵抗であり、ρN4は基板41の比抵抗とは龜
等しい値すなわち0.05Ωαとなる。この結果上記抵
抗28の値は従来の値の1/2〜1/100に減少する
。したがってこのような構成において、従来と同様に出
力端にVDDより高い電圧が印加されるかあるいは適洛
な値の電流が供給されても、j記等価抵抗28の値が小
嘔いため、前記第4図に示すPNPトランジスタ24を
能動状態とでぜるに十分な電圧降下か生じない。さらに
N1化芒れたN4 型領域56内の前記等価抵抗28〜
32の値は、従来に比較して極めて小さくなるため。
As a result, the equivalent resistance 2 in the equivalent circuit diagram shown in FIG.
The value of 8 is reduced to ρ〆/ρN- compared to the conventional case. where ρN" is the specific resistance of the N4 type region 56, ρN- is the specific resistance of the N type region 42, and ρN4 has a value equal to the specific resistance of the substrate 41, that is, 0.05Ωα. As a result, the above resistance The value of 28 is reduced to 1/2 to 1/100 of the conventional value. Therefore, in such a configuration, a voltage higher than VDD is applied to the output terminal as in the conventional case, or a current of an appropriate value is applied. Even if it is supplied, the value of the equivalent resistance 28 of J is small, so that a sufficient voltage drop does not occur to switch the PNP transistor 24 shown in FIG. The equivalent resistance 28 in the region 56
This is because the value of 32 is extremely small compared to the conventional value.

ラッチアップ現象は発生しにくくなる。たとえばこの発
明をインバータに適用した場合、VDD= +20V、
 Vss = OV  O’に件で出力taを150m
A以上流してもラッチアップ現象が発生しないことか確
められている。
Latch-up phenomenon becomes less likely to occur. For example, when this invention is applied to an inverter, VDD= +20V,
Vss = OV O', output ta is 150m
It has been confirmed that the latch-up phenomenon does not occur even if the flow exceeds A.

なお、この発明は上記の一実施例に限定されるものでは
なく、たとえは上記実施例ではCMO8としてインバー
タの場合を説明したがこれに限らずナンドダート等につ
いても、さらにはこれらのゲート回路を用いたLSIに
も適用できることはもちろんである。
Note that the present invention is not limited to the above-mentioned embodiment, and for example, although the above embodiment describes the case of an inverter as CMO8, it is not limited to this, and can also be applied to Nand Dart etc., and furthermore, using these gate circuits. Of course, it can also be applied to LSIs.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれは、ラッチアップ現
象の発生が防止でき、もって破壊に対して極めて強い半
導体装置の製造方法が得られる。
As explained above, according to the present invention, it is possible to prevent the latch-up phenomenon from occurring, thereby providing a method of manufacturing a semiconductor device that is extremely resistant to destruction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれこの発明の一実施例に係
わる半導体装置の製造方法について説明するための断面
図、第3図は従来のCMO8インバータの断面図、第4
図は上記第3図のC?vt OSインバータの等価回路
図である。 41・・・N”型の半導体基板、42・・・N型領域(
il半導体領域)、43・・・P型領域(第2半導体領
域)、44.45・・・N4型領域(ソース部、ドレイ
ン部〕、46.47・・・P1型領域〔ソース部、ドレ
イン部〕、56・・・N4 領域(第3半導体領域)。 出願人代理人 yP理士 鈴 江 武 彦を 第1図 第2図 第3図 第41 V:):) 昭和 年 月 日
1 and 2 are cross-sectional views for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention, FIG. 3 is a cross-sectional view of a conventional CMO8 inverter, and FIG.
The figure is C in Figure 3 above? FIG. 2 is an equivalent circuit diagram of a vt OS inverter. 41...N'' type semiconductor substrate, 42...N type region (
il semiconductor region), 43...P type region (second semiconductor region), 44.45...N4 type region (source part, drain part), 46.47...P1 type region [source part, drain part] ], 56...N4 region (third semiconductor region). Applicant's agent: yP Physician Takehiko Suzue (Figure 1, Figure 2, Figure 3, Figure 41 V:):) Showa Year, Month, Day

Claims (1)

【特許請求の範囲】[Claims]  一導電型の高濃度半導体基板上に同一導電型で低濃度
の第1半導体領域を形成する工程と、この第1半導体領
域の表面領域に逆導電型の第2半導体領域を形成する工
程と、上記第1、第2半導体領域のそれぞれの表面領域
にソース部およびドレイン部を形成する工程とを具備し
、上記第2半導体領域の形成のための熱処理時、上記半
導体基板から上記第1半導体領域へ拡散される不純物に
よって、上記半導体基板と上記第1、第2半導体領域と
の間に一導電型で第1半導体領域より高濃度の第3半導
体領域を形成することを特徴とする半導体装置の製造方
法。
forming a low concentration first semiconductor region of the same conductivity type on a high concentration semiconductor substrate of one conductivity type; forming a second semiconductor region of the opposite conductivity type in the surface region of the first semiconductor region; forming a source part and a drain part in respective surface regions of the first and second semiconductor regions, and during heat treatment for forming the second semiconductor regions, from the semiconductor substrate to the first semiconductor regions. A semiconductor device characterized in that a third semiconductor region of one conductivity type and having a higher concentration than the first semiconductor region is formed between the semiconductor substrate and the first and second semiconductor regions by impurities diffused into the semiconductor substrate. Production method.
JP60072016A 1985-04-05 1985-04-05 Manufacture of semiconductor device Pending JPS6169166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60072016A JPS6169166A (en) 1985-04-05 1985-04-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60072016A JPS6169166A (en) 1985-04-05 1985-04-05 Manufacture of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6117579A Division JPS55153367A (en) 1979-05-18 1979-05-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6169166A true JPS6169166A (en) 1986-04-09

Family

ID=13477192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60072016A Pending JPS6169166A (en) 1985-04-05 1985-04-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6169166A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310984A (en) * 1976-07-17 1978-01-31 Mitsubishi Electric Corp Complementary type mos integrated circuit
JPS5389681A (en) * 1977-01-19 1978-08-07 Hitachi Ltd Mis type semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310984A (en) * 1976-07-17 1978-01-31 Mitsubishi Electric Corp Complementary type mos integrated circuit
JPS5389681A (en) * 1977-01-19 1978-08-07 Hitachi Ltd Mis type semiconductor device

Similar Documents

Publication Publication Date Title
JP3246807B2 (en) Semiconductor integrated circuit device
JPH0821632B2 (en) Semiconductor integrated circuit
JPS5873147A (en) Semiconductor integrated circuit device
JPS6169166A (en) Manufacture of semiconductor device
JPS63244874A (en) Input protective circuit
JPH02226808A (en) Power mosfet with overcurrent protecting function
JPS61129861A (en) Semiconductor device
JPS59158546A (en) Complementary type metal oxide semiconductor integrated circuit device
JPS5819137B2 (en) Complementary MOS transistor
JPH04163962A (en) Semiconductor integrated circuit
JPS63169113A (en) Resistor circuit network for semiconductor integrated circuit
JPH04211156A (en) Semiconductor device
JPH11150234A (en) Semiconductor device
JPH0743414B2 (en) Semiconductor integrated circuit with battery life detection circuit
JPS59205751A (en) Semiconductor integrated circuit device
JPS5814573A (en) Semiconductor device
JPS62198159A (en) Semiconductor device
JPS60254651A (en) Input protection circuit for cmos circuit
KR830002319B1 (en) CMOS integrated circuit prevents latchup by using intermediate layer and isolation structure
JPH1187700A (en) Semiconductor integrated circuit
JPS63161658A (en) Semiconductor integrated circuit device
JPS611046A (en) Semiconductor integrated circuit device
JPH01305560A (en) Complementary mos transistor
JPS62291163A (en) Semiconductor integrated circuit device
JPH02226760A (en) Semiconductor logic circuit