JPS5819137B2 - Complementary MOS transistor - Google Patents

Complementary MOS transistor

Info

Publication number
JPS5819137B2
JPS5819137B2 JP52017624A JP1762477A JPS5819137B2 JP S5819137 B2 JPS5819137 B2 JP S5819137B2 JP 52017624 A JP52017624 A JP 52017624A JP 1762477 A JP1762477 A JP 1762477A JP S5819137 B2 JPS5819137 B2 JP S5819137B2
Authority
JP
Japan
Prior art keywords
type
region
mos transistor
semiconductor substrate
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52017624A
Other languages
Japanese (ja)
Other versions
JPS53100780A (en
Inventor
松岡俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP52017624A priority Critical patent/JPS5819137B2/en
Publication of JPS53100780A publication Critical patent/JPS53100780A/en
Publication of JPS5819137B2 publication Critical patent/JPS5819137B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は相補型MO8I−ランジスタ(以下C−MOS
)ランジスタと呼ぶ)に於ける寄生トランジスタ群に依
るサイリスタ効果(これをラッチアップ現象と言う)の
防止に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a complementary MO8I-transistor (hereinafter referred to as C-MOS).
This invention relates to prevention of the thyristor effect (referred to as latch-up phenomenon) due to a group of parasitic transistors in a transistor (referred to as a transistor).

一般にC−MOSトランジスタは第1図に示す如く、比
較的高抵抗であるN型半導体基板1にP型頭域2を拡散
あるいはイオン注入法等に依り形成し、このP型頭域2
:内に・N十型ソース領域3とN+型トドレイン領域4
を近接して設け、更にP型頭域2を導出する為のP+型
接触領域5を設けてNチャンネルMOSトランジスタが
形成される。
Generally, as shown in FIG. 1, in a C-MOS transistor, a P-type head region 2 is formed on an N-type semiconductor substrate 1 having a relatively high resistance by diffusion or ion implantation.
:Inside N+ type source region 3 and N+ type drain region 4
are provided adjacent to each other, and a P+ type contact region 5 for leading out the P type head region 2 is further provided to form an N-channel MOS transistor.

才たN型半導体基板1にはP+型ドレイン領域6とP十
型ソース領域7とが近接して設けられ、更にN型半導体
基板1を導出する為のN+型液接触領域8設けられてP
チャンネルMOSトランジスタが形成される。
A P + -type drain region 6 and a P -type source region 7 are provided in close proximity to the mature N-type semiconductor substrate 1 , and an N + -type liquid contact region 8 is further provided for leading out the N-type semiconductor substrate 1 .
A channel MOS transistor is formed.

一方、9は入力の静電破壊防止用のダイオードDを形成
するP+型領域、あるいはクロスアンダ−配線用のP+
型領域であるが、以下入力の静電破壊防止用のダイオー
ドDとして説明する。
On the other hand, 9 is a P+ type region forming a diode D for preventing electrostatic damage at the input, or a P+ type region for cross-under wiring.
Although it is a type region, it will be explained below as an input diode D for preventing electrostatic damage.

上記したNチャンネルMOS)ランジスタ及びPチャン
ネルMOSトランジスタ等が形成されたN型半導体基板
1の表面には各々の領域、に窓を有する絶縁酸化膜10
が設けられ、各々の窓には電極が設けられ、更にチャン
ネル上即ちゲート領域とドレイ−ン領域との間の酸化膜
10上にも電極が設けられている。
On the surface of the N-type semiconductor substrate 1 on which the above-mentioned N-channel MOS transistors, P-channel MOS transistors, etc. are formed, there is an insulating oxide film 10 having windows in each region.
An electrode is provided in each window, and an electrode is also provided on the channel, that is, on the oxide film 10 between the gate region and the drain region.

NチャンネルMOSトランジスタのソース電極11はP
+型接触領域5の電極12と接続されて、電源電圧VS
Sが印加される。
The source electrode 11 of the N-channel MOS transistor is P
It is connected to the electrode 12 of the + type contact area 5 and the power supply voltage VS
S is applied.

またPチャンネルMOSトランジスタのソース電極13
はN+型液接触領域8電極14と接続されて電源電圧V
DDが印加される。
Also, the source electrode 13 of the P-channel MOS transistor
is connected to the N+ type liquid contact region 8 electrode 14 and the power supply voltage V
DD is applied.

更にNチャンネルMO8I−ランジスタのドレイン電極
15とPチャンネルMOSトランジスタのドレイン電極
16とが接続されてC−MOSトランジスタの出力とな
り、Nチャシネ11MO8)ランジスタのN十型ソース
領域3とN+型トドレイン領域4の間の酸化膜10上に
設けたゲート電極17と、PチャンネルMOSトランジ
スタのP+型ドレイン領域6とP型ソース領域7との間
の酸化膜10上に設けたゲート電極18とが接続され、
且つ静電破壊防止用のダイオードDを形成するP型領域
9上に設けられた電極19に接続されてC−MOSトラ
ンジスタの入力となっている。
Furthermore, the drain electrode 15 of the N-channel MO8 I-transistor and the drain electrode 16 of the P-channel MOS transistor are connected to become the output of the C-MOS transistor, and the N-type source region 3 and the N+-type drain region 4 of the N-channel MO8) transistor are connected. A gate electrode 17 provided on the oxide film 10 between the P channel MOS transistor and a gate electrode 18 provided on the oxide film 10 between the P+ type drain region 6 and the P type source region 7 of the P channel MOS transistor are connected.
Further, it is connected to an electrode 19 provided on the P-type region 9 forming a diode D for preventing electrostatic discharge damage, and serves as an input to a C-MOS transistor.

上述の如く構成されたC−MOSトランジスタに於いて
、第2図の等価回路に示す如く、寄生トランジスタ等が
生じ、後に述べるラッチアップ現象が現われる。
In the C-MOS transistor configured as described above, parasitic transistors and the like occur as shown in the equivalent circuit of FIG. 2, and a latch-up phenomenon, which will be described later, occurs.

第2図の等価回路を説明するとC−MOSトランジスタ
はP−MOSトランジスタとN−MOSトランジスタと
で形成され、入力には静電破壊防止用ダイオードDが電
源電圧VDDとの間に設けられている。
To explain the equivalent circuit in Figure 2, the C-MOS transistor is formed by a P-MOS transistor and an N-MOS transistor, and a diode D for preventing electrostatic damage is provided at the input between it and the power supply voltage VDD. .

TrlはP+型ソース領域7をエミッタ、N型半導体基
板1をベース、P型領域2をコレクタとするPNP型の
寄生トランジスタであり、Tr2はN型半導体基板1を
コレクタ、P型領域2をベース、N++ソース領域3を
エミッタとするNPN型の寄生トランジスタである。
Trl is a PNP parasitic transistor having the P+ type source region 7 as the emitter, the N type semiconductor substrate 1 as the base, and the P type region 2 as the collector, and Tr2 has the N type semiconductor substrate 1 as the collector and the P type region 2 as the base. , is an NPN type parasitic transistor having the N++ source region 3 as an emitter.

またTrl及びTr2は等価回路の如<PNPN接合の
寄生サイリスタを形成する。
Further, Trl and Tr2 form a parasitic thyristor with a PNPN junction as an equivalent circuit.

更に抵抗R1はN+型液接触領域8らP型領域2に至る
までのN型半導体基板1の内部抵抗であり、等測的には
Trlのエミッターベース間に位置するバイアス抵抗と
なる。
Further, the resistance R1 is an internal resistance of the N-type semiconductor substrate 1 from the N+ type liquid contact region 8 to the P-type region 2, and isometrically a bias resistance located between the emitter base of Trl.

一方抵抗R2はビ型接触領域5からN型半導体基板1ま
でのP型領域2の内部抵抗であり、等測的にTr2のベ
ース−エミッタ間に位置するバイアス抵抗となる。
On the other hand, the resistance R2 is an internal resistance of the P-type region 2 from the Vi-type contact region 5 to the N-type semiconductor substrate 1, and is a bias resistance located equimetrically between the base and emitter of the Tr2.

またTr3はN型半導体基板1をコレクタ、P型領域2
をベース、N+型トドレイン領域4エミッタとするNP
N型の寄生トランジスタであり、抵抗R3はP型領域2
の内部抵抗である。
In addition, Tr3 has an N-type semiconductor substrate 1 as a collector and a P-type region 2 as a collector.
NP with base, N+ type drain region 4 emitter
It is an N-type parasitic transistor, and the resistor R3 is a P-type region 2.
is the internal resistance of

T r 4はP生型領域9をエミッタ、N型半導体基板
1をベース、P型領域2をコレクタとするPNP型の寄
生トランジスタである。
T r 4 is a PNP type parasitic transistor having the P type region 9 as the emitter, the N type semiconductor substrate 1 as the base, and the P type region 2 as the collector.

次に上述した第1図及び第2図を参照してラッチアップ
現象を説明する。
Next, the latch-up phenomenon will be explained with reference to FIGS. 1 and 2 mentioned above.

まずラッチアップ現象が生じる原因は入力あるいは出力
端子のノイズが考えられる。
First, the cause of the latch-up phenomenon is thought to be noise at the input or output terminals.

入力端子inに印加されるノイズの場合に於いて、入力
端子電圧が電源電圧VDDを超えると静電破壊防止用の
ダイオードDは順方向にバイアスされて、入力端子in
から電源電圧VDDにダイオードDを介して電流が流れ
、C−MOSトランジスタのゲートが保護されるのであ
るが、ダイオードDに電流が流れることはTr4のエミ
ッタからベースにべ一定流が流れることであるのでTr
4は導通状態になり、入力端子inからTr4のエミッ
タ、コレクタ及び抵抗R2を介してコレクタ電流が電源
電圧VDDより更に低電圧である電源電EV88に流れ
るのである。
In the case of noise applied to the input terminal in, when the input terminal voltage exceeds the power supply voltage VDD, the diode D for preventing electrostatic damage is forward biased, and the input terminal in
A current flows from the source voltage VDD to the power supply voltage VDD through the diode D, and the gate of the C-MOS transistor is protected.However, the current flowing through the diode D means that a constant current flows from the emitter to the base of Tr4. So Tr
4 becomes conductive, and a collector current flows from the input terminal in through the emitter and collector of Tr4 and the resistor R2 to the power supply voltage EV88, which has a lower voltage than the power supply voltage VDD.

すると、抵抗R2の両端にはコレクタ電流に依って電圧
降下が生じ、Tr2はバイアスされてベース電流が流れ
導通状態になるので、Tr2には電源電圧′vDDから
抵抗R1を介してコレクタ電流が流れる。
Then, a voltage drop occurs across the resistor R2 due to the collector current, and Tr2 is biased and the base current flows and becomes conductive, so a collector current flows from the power supply voltage 'vDD through the resistor R1 to Tr2. .

このコレクタ電流に依って抵・抗R1の両端にも電圧降
下が生じTrlがバイアスされて導通状態となり、Tr
には電源電圧■DDからコレクタ電流が流れ、゛抵抗
R2を介して電源電圧v88に至る。
This collector current causes a voltage drop across the resistor R1, biasing Trl and making it conductive.
A collector current flows from the power supply voltage DD to the power supply voltage V88 through the resistor R2.

このコレクタ電流はTr2のバイアスを更に深くするも
のである。
This collector current makes the bias of Tr2 deeper.

従ってVDDからvssに流れる電流は相乗効果に依り
瞬時に激増するのである。
Therefore, the current flowing from VDD to vss increases instantly due to the synergistic effect.

次に出力端子outに印加されたノイズの場合に於いて
、出力端子が電源電圧V より低くなると、電源電圧V
p sからTr3にベース電流が抵1抗R3を介して流
れるのでTr3は導通状態となり、Tr3には電源電圧
VDDから抵抗R1を介してコレクタ電流が流れる。
Next, in the case of noise applied to the output terminal out, when the output terminal becomes lower than the power supply voltage V, the power supply voltage V
Since base current flows from ps to Tr3 via resistor R3, Tr3 becomes conductive, and collector current flows from power supply voltage VDD to Tr3 via resistor R1.

抵抗R0の両端にはコレクタ電流に依る電圧降下が生じ
Trlがバイアスされ、Trlにはコレクタ電流がR2
を介して電源電圧VSSに流れる。
A voltage drop occurs across the resistor R0 due to the collector current, biasing Trl, and the collector current R2
The current flows to the power supply voltage VSS through the power supply voltage VSS.

従ってTr2もバイアスされ、以下前述の場合と同様に
相乗効果により電源電圧VDDから電源電圧VSSに流
れる電流は瞬時に激増するのである。
Therefore, Tr2 is also biased, and as in the case described above, the current flowing from the power supply voltage VDD to the power supply voltage VSS increases instantly due to the synergistic effect.

上述の如く説明した現象がラッチアップ現象であり、従
来のC−MOSトランジスタではこのラッチアップ現象
が生じ易く、C−MOSトランジスタの正常な動作がで
きないと共にC−MOS)ランジスタの破壊を招くこと
がある危惧を有していた。
The phenomenon explained above is the latch-up phenomenon, and this latch-up phenomenon easily occurs in conventional C-MOS transistors, which prevents the C-MOS transistor from operating normally and can lead to destruction of the C-MOS transistor. I had certain concerns.

本発明シま上述した点に鑑みて為されたものであり、従
来の危惧を完全に除去したC−MOSトランジスタを提
供するものである。
The present invention has been made in view of the above-mentioned points, and provides a C-MOS transistor that completely eliminates the conventional concerns.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第3図は本発明の実施例を示す断面図である。FIG. 3 is a sectional view showing an embodiment of the present invention.

本実施例はN++半導体基板20と、N型半導体層21
と、P型領域2と、N++ソース領域3と、N十型ドレ
ン領域4と、P+型接触領域5と、P十型ドレイン領域
6と、P+型ソース領域7と、N十型接触領域8と、P
生型領域9と、酸化膜10と、電極11〜19及び22
とから構成される。
This embodiment includes an N++ semiconductor substrate 20 and an N-type semiconductor layer 21.
, P type region 2, N++ source region 3, N0 type drain region 4, P+ type contact region 5, P0 type drain region 6, P+ type source region 7, N0 type contact region 8. and P
Green mold region 9, oxide film 10, electrodes 11 to 19 and 22
It consists of

第3図に於て、N++半導体基板20と、N型半導体層
21と電極22とを除いて他は従来例と同様なので図番
を一致させて詳しい説明を省略する。
In FIG. 3, except for the N++ semiconductor substrate 20, the N-type semiconductor layer 21, and the electrode 22, the rest is the same as the conventional example, so the drawing numbers are the same and detailed explanation is omitted.

N生型半導体基板20はN十型の高不純物濃度を有する
低抵抗の半導体である。
The N type semiconductor substrate 20 is an N0 type semiconductor with high impurity concentration and low resistance.

このN十型半導体基板20上に比較的高抵抗を有するN
型半導体層21を例えばエピタキシャル等Cと依り設け
る。
On this N0-type semiconductor substrate 20, an N
A type semiconductor layer 21 is provided, for example, by an epitaxial layer or the like.

このN型半導体層21にP像領域2、N++ソース領域
3、N十型ドレイン領域4、P+型接触領域5、P+型
ドレイン領域6、P+型ソース領域7、N生型接触領域
8、P+型領域9を形成する。
This N-type semiconductor layer 21 includes a P image region 2, an N++ source region 3, an N-type drain region 4, a P+-type contact region 5, a P+-type drain region 6, a P+-type source region 7, an N-type contact region 8, and a P+-type contact region 5. A mold region 9 is formed.

また電極22はN生型半導体基板20に電源電圧vDD
を印加するためのものであり、C−MOS トランジス
タを固着パッド(図示せず)に固着し、この固着パッド
を電極として、PチャンネルMOSトランジスタのP+
型ソース電極7とN+型液接触領域8接触するものであ
る。
Further, the electrode 22 is connected to the N-type semiconductor substrate 20 at a power supply voltage vDD.
The C-MOS transistor is fixed to a fixed pad (not shown), and this fixed pad is used as an electrode to apply P+ of the P-channel MOS transistor.
The N+ type source electrode 7 and the N+ type liquid contact region 8 are in contact with each other.

従って、N生型接触領域8とP+型ソース領域7との間
に於けるN型半導体層21の内部抵抗は極端に小さくな
るのである。
Therefore, the internal resistance of the N-type semiconductor layer 21 between the N-type contact region 8 and the P+ type source region 7 becomes extremely small.

以上の如く形成された本実施例の等価回路図を第4図に
示す。
An equivalent circuit diagram of this embodiment formed as described above is shown in FIG.

寄生トランジスタ等は従来と同様に生じ、同様の等価回
路図となるが、N生型半導体基板20を設け、これに電
源電圧■DDを印加することに依って、N生型接触領域
8とP+型ソース領域7間の内部抵抗が極端に小さくな
ることは前記した通りであり、これを等価回路に表わす
とP+型ソース領域7をエミッタ、N型半導体層21を
ベース、P像領域2をコレクタとする寄生トランジスタ
Tr1のベース−エミッタ間に挿入された内部抵抗R1
に非常に低抵抗であるR4が並列に接続されたものとな
る。
Parasitic transistors, etc. occur in the same way as in the conventional case, and the equivalent circuit diagram is the same. However, by providing the N-type semiconductor substrate 20 and applying the power supply voltage DD to it, the N-type contact region 8 and the P+ As mentioned above, the internal resistance between the type source regions 7 is extremely small, and when this is expressed in an equivalent circuit, the P+ type source region 7 is the emitter, the N type semiconductor layer 21 is the base, and the P image region 2 is the collector. The internal resistance R1 inserted between the base and emitter of the parasitic transistor Tr1 is
and R4, which has a very low resistance, are connected in parallel.

従って、入力端子電圧が電源電圧VDDを超えてTr2
が導通状態となっても、Tr2を流れるコレクタ電流は
N生型半導体基板20からN++ソース領域3に流れる
Therefore, the input terminal voltage exceeds the power supply voltage VDD and Tr2
Even if it becomes conductive, the collector current flowing through Tr2 flows from the N-type semiconductor substrate 20 to the N++ source region 3.

即ち非常に低抵抗であるR4に流れるのでTrlを導通
状態とする様なバイアス電圧は生じないのである。
That is, since the current flows through R4, which has a very low resistance, no bias voltage is generated that would make Trl conductive.

また出力端子電圧が電源電圧VS S、より小さくなっ
た場合もTr3を流れるコレクタ電流は同様に抵抗R4
を流れるのでTrlを導通状態とするバイアス電圧は生
じない。
Also, when the output terminal voltage becomes lower than the power supply voltage VS S, the collector current flowing through Tr3 is similarly
Since the current flows through Trl, a bias voltage that makes Trl conductive is not generated.

従ってTrlとTr2の相乗効果に依るラッチアップ現
象は生じないのである。
Therefore, the latch-up phenomenon due to the synergistic effect of Trl and Tr2 does not occur.

更に、第3図に示した実施例に於いては、従来の如くN
生型接触領域8を設けてあり、P+型ソース領域7と電
気的に接続されているが、本実施例の構造に依ればN型
半導体層21に対する電気的接−はN生型半導体基板2
0がP+型ソース領域7に電気的に接続されることに依
って為される。
Furthermore, in the embodiment shown in FIG.
A green contact region 8 is provided and is electrically connected to the P+ type source region 7, but according to the structure of this embodiment, the electrical connection to the N type semiconductor layer 21 is made through the N type semiconductor substrate. 2
0 is electrically connected to the P+ type source region 7.

従ってN生型接触領域8は不必要であり削除することも
できる。
Therefore, the N-type contact area 8 is unnecessary and can be deleted.

この場合抵抗R1は電源電圧VDDに接続されなくなり
、Trlのバイアス電圧を生じる電流の流路がなくなる
ので更に効果的にラッチアップ現象を防止できるもので
ある。
In this case, the resistor R1 is no longer connected to the power supply voltage VDD, and there is no flow path for the current that generates the bias voltage of Trl, so that the latch-up phenomenon can be more effectively prevented.

以上の説明に於いて、本発明をN十型半導体基板を用い
て説明したが、上記C−MOSトランジスタの構造を全
く逆にし、P+型半導代基板を用いても本興明の効果は
変らないことは言うまでもない。
In the above explanation, the present invention has been explained using an N0 type semiconductor substrate, but even if the structure of the C-MOS transistor is completely reversed and a P+ type semiconductor substrate is used, the effect of the present invention will not be affected. Needless to say, nothing has changed.

上述の如く本発明ζこ依れば一導電型の高不純物、濃度
の半導体基板を使用し、且つ電源電圧VDDをこれに印
加することに依り、寄生トランジスタのバイアス抵抗と
なる内部抵抗を大幅に減少して入出力端子ノイズに依る
ラッチアップ現象を完全に防止する有益なものである。
As described above, according to the present invention, by using a highly impurity and concentration semiconductor substrate of one conductivity type and applying the power supply voltage VDD to it, the internal resistance that becomes the bias resistance of the parasitic transistor can be significantly reduced. This is beneficial because it reduces and completely prevents the latch-up phenomenon caused by input/output terminal noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示すC−MOSトランジスタの断面図
、第2図は第1図に示したC−MOSトランジスタの等
価回路図、第3図は本発明の実施例を示す断面図、第4
図は第3図に示した実施例の等価回路図である。 2・・・・・・P型領域、3・・・・・・N生型ソース
領域、4・・・・・・N十型ドレイン領域、5・・・・
・・P+型接触領域、6・・・・・・P+型ドレイン領
域、7・・・・・・P+型ソース領域、8・・・・・・
N+型液接触領域9・・・・・・P+型領域、10・・
・・・・酸化膜、11〜19・・・・・・電極、20・
・・・・・N++半導体基板、21・・・・・・N型半
導体層、22・・・・・・電極である。
FIG. 1 is a sectional view of a C-MOS transistor showing a conventional example, FIG. 2 is an equivalent circuit diagram of the C-MOS transistor shown in FIG. 1, and FIG. 3 is a sectional view showing an embodiment of the present invention. 4
This figure is an equivalent circuit diagram of the embodiment shown in FIG. 3. 2...P-type region, 3...N-type source region, 4...N-type drain region, 5...
...P+ type contact region, 6...P+ type drain region, 7...P+ type source region, 8...
N+ type liquid contact area 9...P+ type area, 10...
... Oxide film, 11-19 ... Electrode, 20.
. . . N++ semiconductor substrate, 21 . . . N-type semiconductor layer, 22 . . . electrode.

Claims (1)

【特許請求の範囲】 1−導電型の高不純物濃度の半導体基板と、該半導体基
板上に設けられたこれと同導電型で低不純物濃度の半導
体層と、該半導体層に設けられたこれと逆導電型の領域
と、該領域内に設けられた。 同導電型の接触領域及び逆導電型のソース領域とドレイ
ン領域令有するMOSトランジスタと、前記半導体層に
設けられた同導電型の接触領域及び逆導電型のソース領
域とドレイン領域とを有するMOSトランジスタとを備
え、前記半導体層に設けられた接触領域及びソース領域
と、前記半導体基板とを電気的に接続して成る相補型M
OSトランジスタ。
[Claims] 1- A semiconductor substrate of a conductivity type with a high impurity concentration, a semiconductor layer of the same conductivity type and a low impurity concentration provided on the semiconductor substrate, and a semiconductor layer provided on the semiconductor layer with a low impurity concentration. A region of opposite conductivity type is provided within the region. A MOS transistor having a contact region of the same conductivity type and a source region and a drain region of opposite conductivity types, and a MOS transistor having a contact region of the same conductivity type and a source region and a drain region of opposite conductivity types provided in the semiconductor layer. A complementary type M comprising a contact region and a source region provided in the semiconductor layer and the semiconductor substrate are electrically connected to each other.
OS transistor.
JP52017624A 1977-02-15 1977-02-15 Complementary MOS transistor Expired JPS5819137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52017624A JPS5819137B2 (en) 1977-02-15 1977-02-15 Complementary MOS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52017624A JPS5819137B2 (en) 1977-02-15 1977-02-15 Complementary MOS transistor

Publications (2)

Publication Number Publication Date
JPS53100780A JPS53100780A (en) 1978-09-02
JPS5819137B2 true JPS5819137B2 (en) 1983-04-16

Family

ID=11949012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52017624A Expired JPS5819137B2 (en) 1977-02-15 1977-02-15 Complementary MOS transistor

Country Status (1)

Country Link
JP (1) JPS5819137B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134934U (en) * 1984-02-20 1985-09-07 トキコ株式会社 disc brake
JPS6181025U (en) * 1984-10-31 1986-05-29
JPS61112131U (en) * 1984-12-26 1986-07-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737878A (en) * 1980-08-19 1982-03-02 Toshiba Corp Semiconductor integrated circuit
JPS6088457A (en) * 1983-10-14 1985-05-18 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501676A (en) * 1973-05-07 1975-01-09
JPS5011794A (en) * 1973-06-04 1975-02-06
JPS5028795A (en) * 1973-07-13 1975-03-24

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501676A (en) * 1973-05-07 1975-01-09
JPS5011794A (en) * 1973-06-04 1975-02-06
JPS5028795A (en) * 1973-07-13 1975-03-24

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134934U (en) * 1984-02-20 1985-09-07 トキコ株式会社 disc brake
JPS6181025U (en) * 1984-10-31 1986-05-29
JPS61112131U (en) * 1984-12-26 1986-07-16

Also Published As

Publication number Publication date
JPS53100780A (en) 1978-09-02

Similar Documents

Publication Publication Date Title
JP3246807B2 (en) Semiconductor integrated circuit device
US4672584A (en) CMOS integrated circuit
KR20030008988A (en) Esd protection circuit of semiconductor controlled rectifier structure capable of operating at low trigger voltage
US4543593A (en) Semiconductor protective device
US6215135B1 (en) Integrated circuit provided with ESD protection means
JP3320872B2 (en) CMOS integrated circuit device
US5148250A (en) Bipolar transistor as protective element for integrated circuits
US4689653A (en) Complementary MOS integrated circuit including lock-up prevention parasitic transistors
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JPS5819137B2 (en) Complementary MOS transistor
JP2679046B2 (en) Memory device
JPS5931987B2 (en) Complementary MOS transistor
JP2741797B2 (en) CMOS semiconductor integrated circuit device
JPS6197858A (en) Latch-up preventer for cmos transistor
JPH044755B2 (en)
KR20030035209A (en) Semiconductor controlled rectifier for use in electrostatic discharge protecting circuit
JPS60223154A (en) Semiconductor device
JP2601664B2 (en) Insulated gate field effect semiconductor device
JP2768842B2 (en) Semiconductor laser
JPH0456465B2 (en)
JP3036905B2 (en) Complementary MIS semiconductor device
JPH0222859A (en) Semiconductor device
JP3038744B2 (en) CMOS type semiconductor integrated circuit device
JPS6336145B2 (en)
JPH01208860A (en) Latching-up preventing structure of cmos transistor