JPS611046A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS611046A
JPS611046A JP59124089A JP12408984A JPS611046A JP S611046 A JPS611046 A JP S611046A JP 59124089 A JP59124089 A JP 59124089A JP 12408984 A JP12408984 A JP 12408984A JP S611046 A JPS611046 A JP S611046A
Authority
JP
Japan
Prior art keywords
type
island
current
substrate
latch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59124089A
Other languages
Japanese (ja)
Inventor
Sadahiro Hayamizu
速水 貞博
Yukio Miyazaki
行雄 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59124089A priority Critical patent/JPS611046A/en
Publication of JPS611046A publication Critical patent/JPS611046A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a C-MOSIC having excellent latch up withstand by forming the first conductive type island into the first conductive type high density substrate. CONSTITUTION:An n<--> type layer 105 is epitaxially grown on a high density n<+> type semiconductor substrate 111, and a p type island 106 and an n<-> type island 112 are formed on the layer 105. In this case, the island 112 is diffused into the substrate 105. In this configuration, when a positive surge voltage is applied to an output terminal OUT, a large current is flowed to the collector of a PNP type transistor (Tr) 2. In other words, if the amplification factor of the Tr 2 is large, the base current of the Tr 3 increases to rush to latch up state. However, when the island 112 is diffused into the substrate 111, the base density of the Trs 1, 2 increases. Thus, the recombination number of the carriers in the base increases, the current flowed corresponding to the increased number decreases, the current amplification factor decreases to increase the latch up withstand.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、半導体集積回路装置に関し、特に相補形M
OS集積回路装置(以下ClllO5ICと略称する)
の改良に係るものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit device, and particularly to a complementary type M
OS integrated circuit device (hereinafter abbreviated as ClllO5IC)
This is related to the improvement of.

〔従 来 技 術〕[Traditional technique]

一般的に0MO9ICは、同一基板上にPチャネルMO
S トランジスタ(以下PMO5Tと略称する)と、N
チャネルMOS トランジスタ(以下NHO3Tと略称
する)が形成されているために、これらを構成している
P形およびN膨拡散層の間に寄生バイポーラトランジス
タが形成されると共に、これらのトランジスタがサイリ
スタを構成して、こ〜にいわゆる。ラッチアップと呼ば
れる0MO3IC独特の不具合な現象を生ずることにな
り、結果的に ICを破壊に至らしめるという欠点を有
している。
Generally, 0MO9IC has P-channel MO on the same substrate.
S transistor (hereinafter abbreviated as PMO5T) and N
Since a channel MOS transistor (hereinafter abbreviated as NHO3T) is formed, a parasitic bipolar transistor is formed between the P type and N expansion diffusion layers that constitute these transistors, and these transistors constitute a thyristor. So, this is what is called. This results in a phenomenon called latch-up, which is unique to 0MO3 ICs, and has the drawback of eventually leading to the destruction of the IC.

第1図は0M05回路の最少単位を示す回路図である。FIG. 1 is a circuit diagram showing the minimum unit of the 0M05 circuit.

この第1図において、(A)はPMO9Tであり、(1
01)はそのソース、(102)はそのドレインを示し
、また(B)はNMOSTであり、(103)はそのソ
ース、(104)はドレインを示している。そしてPM
O9T (A) (7)’/−ス(101)は電源端子
V o D ニ、NMOST(B)のソース(103)
は電源端子v、Sにそれぞれに接続され、両HO5T(
A) 、 (B)のゲートは入力端子INに、同ドレイ
ン(+02) 、 (+oa)は出力端子OUTにそれ
ぞれ共通に接続されている。
In this Figure 1, (A) is PMO9T, (1
01) indicates its source, (102) indicates its drain, (B) indicates NMOST, (103) indicates its source, and (104) indicates its drain. And P.M.
O9T (A) (7)'/-S (101) is the power supply terminal V o D, the source (103) of NMOST (B)
are connected to the power supply terminals v and S, respectively, and both HO5T (
The gates of A) and (B) are commonly connected to the input terminal IN, and the drains (+02) and (+oa) of the same are commonly connected to the output terminal OUT, respectively.

また、第2図は前記第1図回路を実際に構成した従来で
のCMOS ICの構造断面図である。この第2図にお
いて、(105)はn−形半導体基板であって、 (1
08)、(112)はNMOST (B)、PMOST
 (A)をそれぞれに形成するp−形、n−形アイラン
ド、(107)はその絶縁層、(108)は金属電極、
(1o9)は電源端子vS8のためのダ形コンタクト層
、(109)は電源端子vDDのためのn+形コンタク
ト層である。
Further, FIG. 2 is a structural sectional view of a conventional CMOS IC that actually constitutes the circuit shown in FIG. 1. In this FIG. 2, (105) is an n-type semiconductor substrate, (1
08), (112) are NMOST (B), PMOST
(A) are p-type and n-type islands formed respectively, (107) is the insulating layer, (108) is the metal electrode,
(1o9) is a double-shaped contact layer for the power supply terminal vS8, and (109) is an n+ type contact layer for the power supply terminal vDD.

そして、PMOST (A)は、n−形アイランド(1
12)上に形成されてソース(101)となるダ拡散層
およびドレイン(102)となるダ拡散層と、これらの
ソース(101)およびドレイン(102)間にあって
絶縁層(107)を介して形成される金属電極(108
)によるゲート電極とにより構成され、またPMOST
 (A)は、p−形アイランド(10B)上に形成され
てソース(+03)となるn++散層およびドレイン(
104)となるn++散層と、これらのソース(103
)およびドレイン(104)間にあって絶縁層(10?
)を介し形成される金属電極(108)によるゲート電
極とにより構成されている。
And PMOST (A) is an n-type island (1
12) A D diffusion layer formed on the source (101) and a D diffusion layer forming the drain (102), and an insulating layer (107) formed between the source (101) and the drain (102). metal electrode (108
), and PMOST
(A) shows the n++ diffused layer formed on the p-type island (10B) to become the source (+03) and the drain (
104) and these sources (103
) and the drain (104) and an insulating layer (10?) between the drain (104) and the drain (104).
) and a gate electrode formed by a metal electrode (108).

こへでこの第2図構成のCMOS fil:にあっては
、さきにも述べたように、ラッチアップに関係するそれ
ぞれのバイポーラトランジスタ、および抵抗が、同図に
破線で示した通りに寄生する。
In the CMOS fil: with the configuration shown in Figure 2, as mentioned earlier, the respective bipolar transistors and resistors related to latch-up are parasitic as shown by the broken lines in the figure. .

すなわち、(1)はPMOST (A)のダ形ソース領
域(101)  と、n−形アイランド(112)と、
それに千−形アイランド(106)との間に形成される
ところの。
That is, (1) consists of the D-type source region (101) of PMOST (A), the n-type island (112),
It is formed between it and a thousand-shaped island (106).

PNP トランジスタ、(2)はPMOST (A)の
p+形トレイン領域(102)と、n−形アイランド(
112)と、そにp−形アイランド(106)との間に
形成されるところの、  PNPトランジスタを示して
いる。また(3)はNHO3T (B) (Inn+n
n−形領域(+03)と、p−形アイランド(10B)
と、それにn−形半導体基板(105’)との間に形成
されるところの、NPIランジスタンジスタ、(4)は
NHO9T (B)のn+形トドレイン領域104) 
と、p−形アイランド(10G)と、それにn−形半導
体基板(105)との間に形成されるところの。
PNP transistor, (2) connects p+ type train region (102) of PMOST (A) and n- type island (
112) and a p-type island (106) therein. Also, (3) is NHO3T (B) (Inn+n
n-type region (+03) and p-type island (10B)
and an n-type semiconductor substrate (105'), an NPI transistor (4) is an n+-type drain region 104 of NHO9T (B)).
, the p-type island (10G), and the n-type semiconductor substrate (105).

NPN トランジスタを示している。また(5)はn−
形半導体基板(105)内の電源端子V。Dに至るまで
の抵抗、(6)はPMOST (A)のダ形ソース領域
(101)内の抵抗、(7)はp−形アイランド(10
6)内の電源端子V ss ニ至るまテノ抵抗、(8)
はNHO9T (B) (7)n+形ソース領域(10
3)内の抵抗である。さらに第3図には、これらの第2
図に破線で示した寄生素子による寄生回路を表わしてい
る。
An NPN transistor is shown. Also, (5) is n-
power supply terminal V in the shaped semiconductor substrate (105). The resistance up to D, (6) is the resistance in the D-type source region (101) of PMOST (A), and (7) is the resistance in the p-type island (10
6) Tenohistor all the way to the power supply terminal Vss in
is NHO9T (B) (7) n+ type source region (10
3) is the internal resistance. Furthermore, in Figure 3, these second
The figure shows a parasitic circuit made up of parasitic elements indicated by broken lines.

続いてこれらの第2図、第3図によりラッチアップ現象
時の動作について述べる。
Next, the operation during the latch-up phenomenon will be described with reference to FIGS. 2 and 3.

いま、出力端子OUTに負のサージ電圧が印加されると
、p−形アイランド(10B)とNHO5T (B) 
(7)n”形ドレイン(+04)との間に順方向電流が
流れて、NPN トランジスタ(4)が導通状態になり
、n−形半導体基板(105)からNHO3T (B)
のn1形ドレイン(104)に向けて、NPN トラン
ジスタ(4)の増幅率hFE1で増幅された電流が流れ
、この電流は電源端子V。0から抵抗(5)を介して供
給される。そこでこの電流によりPNP トランジスタ
(1)のベース・エミッタ間が順バイアスされて導通し
、電流は電源端子V、。から抵抗(8)、 PNPトラ
ンジスタ(1)、おトランジスタ(1)、および抵抗(
7)を通して電源端子vDDへ流れる。そしてこれによ
ってさらにNPNトランジスタ(3)が順バイアスされ
、PNP トランジスタ(1)のベース電流を引くので
、さきの出力端子OUTへのサージ入力がなくなっても
、 PNP トランジスタ(1)とNPN トランジス
タ(3)とによるサイリスタ構成のために、電源端子v
DD−vSS間に大きな電流が流れ続けることになり、
結果的に素子を破壊に至らしめるのである。
Now, when a negative surge voltage is applied to the output terminal OUT, the p-type island (10B) and NHO5T (B)
(7) A forward current flows between the n” type drain (+04), the NPN transistor (4) becomes conductive, and the NHO3T (B) is transferred from the n− type semiconductor substrate (105).
A current amplified by the amplification factor hFE1 of the NPN transistor (4) flows toward the n1 type drain (104) of the NPN transistor (4), and this current flows to the power supply terminal V. 0 through a resistor (5). Therefore, this current causes the base and emitter of the PNP transistor (1) to be forward biased and conductive, and the current flows to the power supply terminal V. resistor (8), PNP transistor (1), transistor (1), and resistor (
7) to the power supply terminal vDD. This further forward biases the NPN transistor (3) and draws the base current of the PNP transistor (1), so even if the previous surge input to the output terminal OUT disappears, the PNP transistor (1) and the NPN transistor (3) ) and for the thyristor configuration, the power supply terminal v
A large current will continue to flow between DD and vSS,
As a result, the element is destroyed.

ついでまた同様にして、出力端子OUTに正のサージ電
圧が印加されると、n−形アイランド(+12)とPM
OST (A) ノP+形ドレイン(102)との間に
順方向電流が流れて、PNP トランジスタ(2)が導
通状態になり、p−形アイランド(10B)からPMO
ST (A)のp+形トドレイン102)に向けて、 
PNPトランジスタ(2)の増幅率hFE2で増幅され
た電流が抵抗(7)を介して電源端子VSSへ流れる。
Then, in the same way, when a positive surge voltage is applied to the output terminal OUT, the n-type island (+12) and PM
OST (A) A forward current flows between the P+ type drain (102) and the PNP transistor (2) becomes conductive, and the PNP transistor (2) is connected from the p- type island (10B) to the PMO drain (102).
Toward the p+ type drain 102) of ST (A),
A current amplified by the amplification factor hFE2 of the PNP transistor (2) flows to the power supply terminal VSS via the resistor (7).

そこでこの電流によりNPN トランジスタ(3)のベ
ース・エミッタ間が順バイアスされて導通状態になり、
電流は電源端子vDDから抵抗(5)、NPNトランジ
スタ(3)、および抵抗(8)を通して電源端子vSS
へ流れる。そしてこれによりさらにPNP トランジス
タ(1)が順バイアスされ、  NPNトランジスタ(
3)のベース電流を引くので、さきの出力端子0υTへ
のサージ入力がなくなっても、PNP トランジスタ(
1)とNPNトランジスタ(3)とによるサイリスタ構
成のために、電源端子V。D’SS間に大きな電流が流
れ続けて同様な結果をもたらすのであって、このように
CMOS ICでは、その構造上、寄生バイポーラトラ
ンジスタ形成を避けることができず、ラッチアップ現象
ガ大きな問題となるものであった。
Therefore, due to this current, the base-emitter of the NPN transistor (3) is forward biased and becomes conductive.
Current flows from the power supply terminal vDD to the power supply terminal vSS through the resistor (5), NPN transistor (3), and resistor (8).
flows to As a result, the PNP transistor (1) is further forward biased, and the NPN transistor (
3), so even if the surge input to the output terminal 0υT disappears, the PNP transistor (
1) and an NPN transistor (3) for the thyristor configuration, the power supply terminal V. A large current continues to flow between D'SS and produces the same result, and due to the structure of CMOS ICs, the formation of parasitic bipolar transistors cannot be avoided, and the latch-up phenomenon becomes a major problem. It was something.

また最近に至っては、第4図のように、高濃度n+形半
導体基板(111)上にn−形層(105)をエピタキ
シャル成長させ、この成長層(105)にP−形アイラ
ンド(108)、n−形アイランド(112)を形成さ
せることで前記したラッチアップ現象を防止する手段が
試みられている。この構造は半導体基板の濃度を高める
ことで、寄生バイポーラのPNP トランジスタ(1)
、(2)のベース濃度を上げ、これによりベース中でキ
ャリアをできるだけ多く再結合させるようにして、PN
P トランジスタ(1)、(2)の増幅率hFEI 、
h□2を低くさせ、ラッチアップ耐量を大きくさせるこ
とを意図したものである。
Recently, as shown in FIG. 4, an n- type layer (105) is epitaxially grown on a highly doped n+ type semiconductor substrate (111), and a P- type island (108) is formed on this grown layer (105). Attempts have been made to prevent the latch-up phenomenon described above by forming n-type islands (112). This structure is achieved by increasing the concentration of the semiconductor substrate, resulting in a parasitic bipolar PNP transistor (1).
, (2) by increasing the base concentration, thereby recombining as many carriers as possible in the base, to increase the PN
P amplification factor hFEI of transistors (1) and (2),
This is intended to lower h□2 and increase latch-up resistance.

しかし、この第4図構成では、両アイランド領域濃度を
制御するために、n−形層(to5)の濃度を非常に薄
く形成する必要がある。そしてこのために電源端子vD
Dからの抵抗(5)に加えてn−形層(105)での抵
抗(8)が重畳されてしまうことになり、高濃度基板(
111)を使用して第3図構成における抵抗(5)の抵
抗値を下げる目的が達せられなくなって、ラッチアップ
耐量に劣ることになるものであった。
However, in the configuration shown in FIG. 4, in order to control the concentration of both island regions, it is necessary to form the n-type layer (to5) with a very low concentration. And for this purpose the power supply terminal vD
In addition to the resistance (5) from D, the resistance (8) in the n-type layer (105) will be superimposed, and the high concentration substrate (
111), the purpose of lowering the resistance value of the resistor (5) in the configuration shown in FIG. 3 could not be achieved, and the latch-up resistance would be poor.

〔発明の概要〕 この発明は従来のこのような欠点を改善しようとするも
ので、前記した第4図構成での抵抗(8)の形成を排除
することによって、ラッチアップ耐量に優れたCMOS
 ICを提供するものである。
[Summary of the Invention] The present invention aims to improve such drawbacks of the conventional technology, and by eliminating the formation of the resistor (8) in the configuration shown in FIG.
It provides IC.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明に係る半導体集積回路装置としての相補
形MO3集積回路装置の一実施例につき。
Hereinafter, one embodiment of a complementary MO3 integrated circuit device as a semiconductor integrated circuit device according to the present invention will be described.

第5図を参照して詳細に説明する。This will be explained in detail with reference to FIG.

この第5図実施例装置において、前記第1図ないし第4
図従来例装置と同一符号は同一または相当部分を表わし
ており、この実施例装置では、前記n−形アイランドを
高濃度基板(105)内まで拡散させたものである。
In this FIG. 5 embodiment device, the above-mentioned FIGS.
The same reference numerals as in the conventional device in the figure represent the same or corresponding parts, and in this example device, the n-type islands are diffused into the high concentration substrate (105).

こへでいま、前記の従来例において述べたように、出力
端子OUTに正のサージ電圧が印加されたときに、PN
P トランジスタ(2)のコレクタに流れる電流が大き
い、すなわちPNP トランジスタ(2)の増幅率hF
E2が大きいと、NPN トランジスタ(3)のベース
電流が大きくなって、ラフチアツブ状態に突入するので
あるが、この実施例装置でのようにn−形アイランド(
112)を高濃度基板(111)内にまで拡散させると
、 PNP トランジスタ(1)、(2)のベース濃度
が高まるために、このベース中でのキャリアの再結合数
が増加し、この増加分に対応して流れる電流が少なくな
り、電流増幅率が低下して、ラフチアツブ耐量が大きく
なる。そしてまたこの構造により、前記従来例での第4
図中の抵抗(8)が除去されて、同第3図におけるPN
P トランジスタ(1)のベース・エミッタ間の寄生抵
抗(5)が第4図の従来例に比較して低減化され、これ
により同第4図でのPNP トランジスタ(1)、(2
)が動作しにくへなって、ラッチアップ耐量が大きく改
善されることになるのである。
Now, as described in the conventional example above, when a positive surge voltage is applied to the output terminal OUT, the PN
The current flowing through the collector of P transistor (2) is large, that is, the amplification factor hF of PNP transistor (2)
When E2 is large, the base current of the NPN transistor (3) becomes large and enters a rough stub state.
When 112) is diffused into the highly concentrated substrate (111), the base concentration of the PNP transistors (1) and (2) increases, so the number of carrier recombinations in this base increases, and this increase Correspondingly, the current that flows decreases, the current amplification factor decreases, and the rough rise resistance increases. Also, due to this structure, the fourth
When the resistor (8) in the figure is removed, the PN in Figure 3 is
The parasitic resistance (5) between the base and emitter of the P-type transistor (1) is reduced compared to the conventional example shown in FIG.
) becomes difficult to operate, and the latch-up resistance is greatly improved.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明によるときは、第1導電形
の高濃度基板上に、第1導電形の低濃度層をエピタキシ
ャル成長させて、このエピタキシャル成長層上に、高濃
度基板に接しないように第1導電形のMOS トランジ
スタを形成させるための第2導電形の第1領域を、また
高濃度基板に接するように第2導電形のMO9I−ラン
ジスタを形成させるための第1導電形の第2領域をそれ
ぞれに形成させたので、この種の半導体集積回路装置に
おけるところの、ラッチアップ現象の一因となっている
寄生トランジスタでのベース・エミッタ間の寄生抵抗の
抵抗値を低減させ、これによってラッチアップ耐量を向
上でき、しかも構成が簡単で容易に実施可能であるなど
の特長を有するものである。
As detailed above, according to the present invention, a low concentration layer of the first conductivity type is epitaxially grown on a high concentration substrate of the first conductivity type, and a low concentration layer of the first conductivity type is grown on the epitaxially grown layer so as not to be in contact with the high concentration substrate. A first region of a second conductivity type for forming a MOS transistor of a first conductivity type, and a second region of a first conductivity type for forming a MO9I-transistor of a second conductivity type in contact with a high concentration substrate. Since the regions are formed separately, the resistance value of the parasitic resistance between the base and emitter of the parasitic transistor, which is a cause of the latch-up phenomenon in this type of semiconductor integrated circuit device, can be reduced. It has features such as being able to improve latch-up resistance, and being simple in structure and easy to implement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は相補形NOS集積回路の最少単位を示す回路図
、第2図は第1図回路を実際に構成させた場合の従来例
による相補形HO5集積回路装置の構造を寄生素子と共
に示す断面図、第3図は同上寄生素子による寄生回路を
示す回路図、第4図はラッチアップ防止のために改良さ
れた従来例装置の構造を寄生素子と共に示す断面図、第
5図はこの発明に係る相補形MOS集積回路装置の一実
施例構造を寄生素子と共に示す断面図である。 (A)・・・・PMOST (PチャネルMO5トラン
ジスタ)、(tol)・・・・PMOSTのソース、(
102)・・・・PMOSTのドレイン、(B)・・・
・NMO3T (NチャネルMO3トランジスタ) 、
 (+03)・・・・NMO8Tのソース、(104)
・・・・NMO3Tのドレイン、(105)・・・・低
濃度半導体層(低濃度エピタキシャル成長層) 、 (
10B)および(112)・・・・アイランド(第1お
よび第2領域)、(Ill)・・・・高濃度半導体基板
Fig. 1 is a circuit diagram showing the minimum unit of a complementary NOS integrated circuit, and Fig. 2 is a cross section showing the structure of a conventional complementary HO5 integrated circuit device together with parasitic elements when the circuit shown in Fig. 1 is actually constructed. 3 is a circuit diagram showing a parasitic circuit using the same parasitic elements as above, FIG. 4 is a sectional view showing the structure of a conventional device improved to prevent latch-up together with parasitic elements, and FIG. 5 is a circuit diagram showing a parasitic circuit according to the present invention. FIG. 2 is a cross-sectional view showing the structure of an embodiment of such a complementary MOS integrated circuit device together with parasitic elements. (A)...PMOST (P-channel MO5 transistor), (tol)... Source of PMOST, (
102) Drain of PMOST, (B)...
・NMO3T (N-channel MO3 transistor),
(+03)...NMO8T source, (104)
...Drain of NMO3T, (105)...Low concentration semiconductor layer (low concentration epitaxial growth layer), (
10B) and (112)...island (first and second regions), (Ill)...high concentration semiconductor substrate.

Claims (1)

【特許請求の範囲】[Claims] 第1導電形の高濃度基板上に、第1導電形の低濃度層を
エピタキシャル成長させると共に、このエピタキシャル
成長層上にあつて、前記高濃度基板に接しないようにし
て、第1導電形のMOSトランジスタを形成させるため
の第2導電形の第1領域を、また前記高濃度基板に接す
るようにして、第2導電形のMOSトランジスタを形成
させるための第1導電形の第2領域をそれぞれに形成さ
せたことを特徴とする半導体集積回路装置。
A low concentration layer of a first conductivity type is epitaxially grown on a high concentration substrate of a first conductivity type, and a MOS transistor of a first conductivity type is formed on the epitaxially grown layer so as not to be in contact with the high concentration substrate. forming a first region of a second conductivity type for forming a MOS transistor of a second conductivity type, and a second region of a first conductivity type for forming a MOS transistor of a second conductivity type in contact with the high concentration substrate; A semiconductor integrated circuit device characterized by:
JP59124089A 1984-06-13 1984-06-13 Semiconductor integrated circuit device Pending JPS611046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59124089A JPS611046A (en) 1984-06-13 1984-06-13 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59124089A JPS611046A (en) 1984-06-13 1984-06-13 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS611046A true JPS611046A (en) 1986-01-07

Family

ID=14876652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59124089A Pending JPS611046A (en) 1984-06-13 1984-06-13 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS611046A (en)

Similar Documents

Publication Publication Date Title
JPH0318347B2 (en)
JPS5967670A (en) Semiconductor device
JP2661318B2 (en) Semiconductor device
JPS611046A (en) Semiconductor integrated circuit device
US5155572A (en) Vertical isolated-collector PNP transistor structure
JPS6060753A (en) Semiconductor device
JPS59205751A (en) Semiconductor integrated circuit device
KR100317610B1 (en) semiconductor device
JPS60254651A (en) Input protection circuit for cmos circuit
JPS6281053A (en) Semiconductor integrated circuit device
JPS5885558A (en) Semi-custom semiconductor device
JPH09307000A (en) Semiconductor device
JPS6027162A (en) Complementary type mos integrated circuit device
JPS60154554A (en) Complementary type insulated gate field effect semiconductor device
KR890005033Y1 (en) Cmos accumulation of opposite electric current output circuit
JPS61101072A (en) Complementary mos semiconductor device
JPH0271555A (en) Semiconductor integrated circuit
JPS626658B2 (en)
JPH04207068A (en) Composite type semiconductor device
JPS63161658A (en) Semiconductor integrated circuit device
JPS61208864A (en) C-mos integrated circuit device
JPH04213219A (en) Semiconductor integrated circuit
JPS63244876A (en) Complementary mis type semiconductor device and manufacture thereof
JPH0222859A (en) Semiconductor device
JPH06120745A (en) Bipolar integrated circuit