JPS6156431A - High-voltage semiconductor integrated circuit - Google Patents

High-voltage semiconductor integrated circuit

Info

Publication number
JPS6156431A
JPS6156431A JP17871484A JP17871484A JPS6156431A JP S6156431 A JPS6156431 A JP S6156431A JP 17871484 A JP17871484 A JP 17871484A JP 17871484 A JP17871484 A JP 17871484A JP S6156431 A JPS6156431 A JP S6156431A
Authority
JP
Japan
Prior art keywords
layer
potential
inversion
wiring
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17871484A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshida
浩 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17871484A priority Critical patent/JPS6156431A/en
Publication of JPS6156431A publication Critical patent/JPS6156431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To enable the high-voltage action by inhibiting the generation of parasitic MOSFET effect by a method wherein a conductor layer with a fixed potential impressed by isolation from the semiconductor substrate is formed between the substrate and a wiring conductor. CONSTITUTION:An N<-> epitaxial layer 3 is assumed to be impressed with a high voltage through an electrode 7 and an N<+> diffused layer 5. A wiring 8 extends over isolated P-layers 2 to the top of a P-layer 4: when the potential of the wiring 8 is low enough to generate an inversion layer, inversion layers 9 generate in the layer 3. Current flows from the P-layer 4 through these inver sion layers 9 to the substrate 1 having the lowest potential, and then a parasitic MOSFET generates. The potential of a conductor layer 10 of aluminum or poly Si is fixed at the maximum potential by forming this layer 10 at the region where an inversion layer 6 is desired to cut. A voltage of reverse polarity to that of a voltage generating inversion layers is impressed under the conductor layer 10, and the inversion layer is cut. Since the conductor layer 10 is formed by isolation from the layer 3, the withstand voltage does not deteriorate or the area does not increase.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高圧を取り扱う半導体集積回路の円、累子分M
f、p−n接合分離で行うものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a semiconductor integrated circuit that handles high voltage.
f, related to what is done by pn junction separation.

(従来の技#) 一般に高圧素子を集積回路に形成する場合は。(Traditional technique #) Generally when forming high voltage elements into integrated circuits.

P型基板上に低比抵抗のN−エピタキシャル層を厚く形
成し1表面よりP型基板に達っするP形波散層で、N−
エピタキシャル帰を囲んでいくつかの領域を形成しその
中に素子金形國して素子どおしを分離していた。
A thick N- epitaxial layer with low resistivity is formed on a P-type substrate, and a P-type wave dispersion layer reaches the P-type substrate from one surface.
Several regions were formed surrounding the epitaxial layer, and the device metals were placed in the regions to separate the devices.

この場合素子自身を耐圧にすることは比較的容易である
が、素子どおしを配線で結ぶことにょツ一定の機能を持
たせようとするとでエピタキシャル層が高比抵抗のため
、配線と配線下のシリコン酸化膜がMO8構造を形成し
この配線と、この配線下のN−エピタキシャル層の電位
関係によりP形反転層ができる。このP形反転層が電位
差のある2つのP層間にできるとこれらのP層をソース
、ドレインとした寄生MO8PETが動作して不要な電
流が流れることになり、正常な動作は期待できない。
In this case, it is relatively easy to make the elements themselves withstand voltage, but if you try to provide a certain function by connecting the elements with wiring, the epitaxial layer has a high resistivity, so the wiring and wiring The underlying silicon oxide film forms an MO8 structure, and a P-type inversion layer is formed due to the potential relationship between this wiring and the N-epitaxial layer below this wiring. If this P-type inversion layer is formed between two P layers with a potential difference, a parasitic MO8PET with these P layers as a source and drain will operate, causing unnecessary current to flow, and normal operation cannot be expected.

(発明が解決しようとする問題点) 本発明の一目的は寄生MO8PET効果の発生を抑えて
、高電圧動作の可能な半導体集積回路を得ることにある
(Problems to be Solved by the Invention) One object of the present invention is to suppress the occurrence of the parasitic MO8PET effect and to obtain a semiconductor integrated circuit capable of high voltage operation.

(問題点を解決するための手段) 本発明によれば半導体基板と配線導体との間に半導体基
板とは分離して固定電位の印加されfc導体層全形成し
た半導体集積回路を得る。
(Means for Solving the Problems) According to the present invention, a semiconductor integrated circuit is obtained in which a fixed potential is applied between a semiconductor substrate and a wiring conductor, separated from the semiconductor substrate, and an FC conductor layer is entirely formed.

・(実施例) 次に1図面全便って本発明をエフ詳細に説明する。·(Example) Next, the present invention will be explained in detail with reference to one drawing.

第3図は寄生MO8F’ETの発生する様子を示し次も
のでN−エピタキシャル層3に電標7と1拡散層5を通
じて高圧が印加されているとする。この時配線8が分離
2層2の上を通って2層4の上に延びており、しかもこ
の配線8の電位が反転層を生じるのに十分なほど低いと
N−エピタキシャル層3に反転層9が生じる。この反転
層9を通して電流が最低電位となっている基板1へ2層
4から流れる。
FIG. 3 shows how a parasitic MO8F'ET is generated, and assumes that a high voltage is applied to the N- epitaxial layer 3 through the electrode 7 and the 1-diffusion layer 5. At this time, the wiring 8 passes over the isolation layer 2 and extends over the layer 2 4, and if the potential of this wiring 8 is low enough to create an inversion layer, an inversion layer is formed in the N-epitaxial layer 3. 9 occurs. Through this inversion layer 9, current flows from the second layer 4 to the substrate 1, which has the lowest potential.

この様なことを防ぐ沈めに、従来は第4図のごと<N”
/i5’t”N−エピタキシャル層3に形成している。
Conventionally, to prevent such a situation, <N”
/i5't''N- is formed in the epitaxial layer 3.

このN+層5′は高濃度のため反転層が生じにくい。こ
のため反転層9がこの部分で分断”       され
る。しかし、この高濃度層5・の位置に十分考慮して決
定する必要がある。すなわちこの高濃度層5′に空乏層
が達すると容物にアバランシェブレイクダウンを起し、
耐圧が低下するためである0例えば、第4図でに分離2
層2との距離が十分離れていないと本来の耐圧が失われ
る。十分離すことは面積の増大につなが〕好ましくない
Since this N+ layer 5' has a high concentration, an inversion layer is difficult to form. Therefore, the inversion layer 9 is divided at this part. However, it is necessary to carefully consider the position of this high concentration layer 5. In other words, when the depletion layer reaches this high concentration layer 5', the container caused an avalanche breakdown,
For example, in Fig. 4, separation 2
If the distance from layer 2 is not sufficient, the original withstand voltage will be lost. Separating them sufficiently will lead to an increase in area, which is undesirable.

本発明によればこの様な面積増大を生ずることなくチャ
ンネルを力、トすることができる。丁なわち、第1図が
本発明の一実施例を示したものである。本発明によれば
1反転層9を分断したい領域にアルミニウム又はポリシ
リコンなどの導体層10t−形成し、この導体層10の
電位を最高電位に固定する。この様にすると、この導体
層10の下には反転層を生ずる電圧とは逆極性の電圧が
印加され1反転層を分断す、る。又この部分では導体層
10がN エピタキシャル層3とは分離して形成されて
いるので、従来のような耐圧が劣化したり、面積が増大
することもない。
According to the present invention, the channel can be tightened without causing such an increase in area. Specifically, FIG. 1 shows one embodiment of the present invention. According to the present invention, a conductor layer 10t of aluminum or polysilicon is formed in the region where the inversion layer 9 is to be divided, and the potential of the conductor layer 10 is fixed at the highest potential. In this way, a voltage having a polarity opposite to the voltage that produces an inversion layer is applied below the conductor layer 10, thereby dividing one inversion layer. Further, since the conductor layer 10 is formed separately from the N 2 epitaxial layer 3 in this portion, there is no deterioration in breakdown voltage or increase in area as in the conventional case.

′l″R″’tJJ’l’l−j”、bmfHl、−a
6“6116″“゛  (第2図に代表的なものを示し
友。これは高圧のNPNトランジスタのコレクタが電源
v0゜にエミ、り領域5″′が接地GNDiC接続して
いる場合でエミ、り領域5″′よりの配線7″′の下に
最高電位に固定され7′c導体層10を形成している。
'l''R'''tJJ'l'l-j'', bmfHl, -a
6"6116"" (Figure 2 shows a typical example. This is a case where the collector of a high voltage NPN transistor is connected to the power supply v0° with an emitter, and the region 5"' is connected to the ground GN DiC. A conductor layer 10 fixed at the highest potential is formed below the wiring 7'' from the region 5''.

また、口糸してないが、ペース領域としての2層4より
の配線7“の下にも、電位の固定された導体層を形成す
ることもできる。又一般的ではないが以上の説明で用い
た各半導体領域の極性を反対にして形成することも考え
られ、この場合には本発明の配線の電位をGNDにすれ
ば良込。
Although not mentioned above, it is also possible to form a conductor layer with a fixed potential under the wiring 7'' from the second layer 4 as a space area.Also, although it is not common, the above explanation It is also possible to form the semiconductor regions with opposite polarities, and in this case, it is better to set the potential of the wiring of the present invention to GND.

(発明の効果) このように本発明によれば高電圧動作の可能な半導体集
積回路を小さな面積で実現できる。
(Effects of the Invention) As described above, according to the present invention, a semiconductor integrated circuit capable of high voltage operation can be realized in a small area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2・図は本
発明の適用例を示す断面図でるる。第3図は寄生Pch
 MOS FETが形成される様子を示す従来の半導体
装置の断面図、第4図はN+チャンネルストッパにより
寄生MO8FETの発生を防止した従来の半導体装置の
断面図である。 1・・・・・・P形半導体基体、2・・・・・・P形層
、3・・・・・・N形層、4・・・・・・P形層、5・
・・・・・N形層、5′・・・・・・N形層、6・・・
・・・絶縁膜、6′・・・・・・絶縁膜、7・・・・・
・Vcc(高電圧電極)、8・・・・・・低電圧配線、
9・・・・・・P杉皮転層、10・・・・・・vcC(
高電圧配線)、5“・・・・・・N形層(NPN)ラン
ジスタのコレクタ)。 5″′・・・・・・N形層(NPNトランジスタのエミ
、り)、7′・・・・・・vco(高電圧)配線、7“
・・・・・・ベース配線、7″′・・・・・・GND配
線。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an application example of the present invention. Figure 3 shows parasitic Pch
FIG. 4 is a cross-sectional view of a conventional semiconductor device showing how a MOS FET is formed, and FIG. 4 is a cross-sectional view of a conventional semiconductor device in which generation of a parasitic MO8FET is prevented by an N+ channel stopper. DESCRIPTION OF SYMBOLS 1... P-type semiconductor substrate, 2... P-type layer, 3... N-type layer, 4... P-type layer, 5...
...N-type layer, 5'...N-type layer, 6...
...Insulating film, 6'...Insulating film, 7...
・Vcc (high voltage electrode), 8...low voltage wiring,
9...P cedar bark inversion layer, 10...vcC (
High voltage wiring), 5''... N-type layer (NPN transistor collector). 5'''... N-type layer (NPN transistor emitter, ri), 7'... ...VCO (high voltage) wiring, 7"
...Base wiring, 7'''...GND wiring.

Claims (1)

【特許請求の範囲】[Claims] 半導体素子の形成された半導体層上の表面配線の下に絶
縁膜を介して前記半導体層の導電型を反転させるのと反
対の電圧を持つ導電体を形成したことを特徴とする高圧
半導体集積回路。
A high-voltage semiconductor integrated circuit characterized in that a conductor having a voltage opposite to that of inverting the conductivity type of the semiconductor layer is formed under a surface wiring on a semiconductor layer in which a semiconductor element is formed, via an insulating film. .
JP17871484A 1984-08-28 1984-08-28 High-voltage semiconductor integrated circuit Pending JPS6156431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17871484A JPS6156431A (en) 1984-08-28 1984-08-28 High-voltage semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17871484A JPS6156431A (en) 1984-08-28 1984-08-28 High-voltage semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6156431A true JPS6156431A (en) 1986-03-22

Family

ID=16053280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17871484A Pending JPS6156431A (en) 1984-08-28 1984-08-28 High-voltage semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6156431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273879A (en) * 1988-04-25 1989-11-01 Toshiba Corp Emergency stop device for water wheel
JPH02216847A (en) * 1989-02-17 1990-08-29 Nec Corp High breakdown strength semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558814A (en) * 1978-07-04 1980-01-22 Ube Ind Ltd Purification of waste gas of nox absorption tower

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558814A (en) * 1978-07-04 1980-01-22 Ube Ind Ltd Purification of waste gas of nox absorption tower

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273879A (en) * 1988-04-25 1989-11-01 Toshiba Corp Emergency stop device for water wheel
JPH02216847A (en) * 1989-02-17 1990-08-29 Nec Corp High breakdown strength semiconductor device

Similar Documents

Publication Publication Date Title
US5191395A (en) Mos type semiconductor device with means to prevent parasitic bipolar transistor
JP2689703B2 (en) MOS type semiconductor device
US3764864A (en) Insulated-gate field-effect transistor with punch-through effect element
JPS61296770A (en) Insulated gate field effect type semiconductor device
JPS5921170B2 (en) MOS type semiconductor device
JPS6156431A (en) High-voltage semiconductor integrated circuit
JPH06151728A (en) Semiconductor integrated circuit device
US5880514A (en) Protection circuit for semiconductor device
JPH01280359A (en) Insulated-gate type semiconductor device
JPS5931864B2 (en) Complementary insulated gate semiconductor circuit
JPH04363068A (en) Semiconductor device
JPH01185971A (en) Insulated gate semiconductor device
JPH01189955A (en) Semiconductor device
JPS62104068A (en) Semiconductor integrated circuit device
JPWO2005093842A1 (en) Semiconductor device
JP2816985B2 (en) Vertical MOS field-effect transistor
JPS6237816B2 (en)
JPH0669510A (en) High-breakdown-strength semiconductor device
JPS60254651A (en) Input protection circuit for cmos circuit
JP3264030B2 (en) Vertical MOSFET
JPS58178566A (en) Field effect transistor
JPS6333306B2 (en)
JPS59105369A (en) Semiconductor device
JPH0440867B2 (en)
JPS6212667B2 (en)