JPS59105369A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59105369A
JPS59105369A JP57215277A JP21527782A JPS59105369A JP S59105369 A JPS59105369 A JP S59105369A JP 57215277 A JP57215277 A JP 57215277A JP 21527782 A JP21527782 A JP 21527782A JP S59105369 A JPS59105369 A JP S59105369A
Authority
JP
Japan
Prior art keywords
ratio
polycrystalline
oxide film
field oxide
breakdown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57215277A
Other languages
Japanese (ja)
Other versions
JPH0658945B2 (en
Inventor
Ryuhei Miyagawa
宮川 隆平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57215277A priority Critical patent/JPH0658945B2/en
Publication of JPS59105369A publication Critical patent/JPS59105369A/en
Publication of JPH0658945B2 publication Critical patent/JPH0658945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To improve the strength to the breakdown of an MOSIC due to static electricity or a high voltage over the rating by a method wherein the ratio of the width of a small crystal Si, rectangular to the direction of electric signal transmission, to the length along the direction of electric signal transmission of a polycrystalline Si is set less than a specific value on a mask. CONSTITUTION:While latch-up phenomenon is avoided by setting at 6 or less the ratio L/W of the length L and the width W of the polycrystalline Si 105 which connects a bonding pad 1 and a clamp protection diode 3, the breakdown of a field oxide film due to an excess input voltage is prevented. As compared with a conventional device whose ratio L/W is taken large, for example, when the ratio L/W of the polycrystalline Si is 10, a voltage of 400-500V is just applied instantaneously between an input terminal and a semiconductor substrate, and the field oxide film is easily broken down at a contact part 107 between a connection aluminum wiring 104 from the bonding pad 1 and the polycrystalline Si 105; on the other hand, under the same condition at the ratio L/W=5, the breakdown of the field oxide film does not at all appear, and the latch-up withstand strength turns to the same level as that at the ratio L/W=10.

Description

【発明の詳細な説明】 本発明は半導体装置、特にMO8O8型電界効果トラン
ジスタ積装置(以下「MO8工C」と略記する)に関す
るもので、MO8工Cの信号用人出力端子と破壊防止用
保護素子とを、多結晶シリコンを用いて電気的に接続し
、該多結晶シリコンの信号伝播方向の長さLと、上記多
結晶シリコン長と直交をなす方向の幅Wの比、L、/v
ffマスク上で6以下にして、静電気や、定格以上の高
電圧によるMO8ICの破壊に対する耐量を改善するこ
とにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, particularly an MO8O8 type field effect transistor multilayer device (hereinafter abbreviated as "MO8C"), and a signal output terminal and a protection element for preventing destruction of the MO8C. are electrically connected using polycrystalline silicon, and the ratio of the length L of the polycrystalline silicon in the signal propagation direction to the width W in the direction orthogonal to the polycrystalline silicon length, L, /v
The purpose is to set it to 6 or less on the ff mask to improve the resistance to destruction of the MO8IC due to static electricity or high voltage exceeding the rating.

MO8ICの静電気等の過大サージによる破壊現象は、
その開発当初からの問題であったため、これまでに各種
の対策が提案され、改良の手が加えられてきた。ところ
が、現在の様VcM OS工Cの集積密度が一段と高ま
ると、従来の対策をそのまま上記M OS工Cに用いる
ことは、MO8O8型電界効果トランジスタート酸化膜
以外の絶縁酸化膜C以下「フィールドシ化膜」と呼ぶ)
の静電気破壊や、MO8IC内に必然的に存在してしま
う、寄生サイリスターのターンオン現象(以下ラッチア
ップ現象と呼ぶ)を招く結果になる。
The destruction phenomenon caused by excessive surge of static electricity etc. of MO8IC is as follows.
Since this has been a problem since the beginning of its development, various countermeasures have been proposed and improvements have been made. However, as the current integration density of VcMOS technology C continues to increase, it is no longer possible to use the conventional countermeasures as they are for the above-mentioned MOS technology. )
This results in electrostatic damage and a turn-on phenomenon (hereinafter referred to as latch-up phenomenon) of the parasitic thyristor that inevitably exists in the MO8IC.

本発明は、上記の状況を十分ふまえ、MO8工Cの入出
力端子と破壊防止用保護素子を接続する多結晶シリコン
層の長さし及び、幅Wの比を改良したものである。
The present invention takes the above-mentioned situation into consideration and improves the ratio of the length and width W of the polycrystalline silicon layer connecting the input/output terminal of MO8 C and the protection element for preventing destruction.

従来の相補型絶縁ゲート半導体集積装置C以下rc−M
O8工C」と略す〕の入出力端子における代表的な破壊
保趨回路は、第1図に示す如く、ポンディングパッド1
に入った信号が、保護抵抗2、クランプ保護ダイオード
3に電位を与えたのち、C−MO8工Cの入力ゲート4
に伝えられる回路になっておシ、その保護抵抗2は、第
2図αに示す如く、N型半導体101中に設けられた。
Conventional complementary insulated gate semiconductor integrated device C or below rc-M
A typical breakdown protection circuit at the input/output terminal of a
The input signal applies a potential to the protection resistor 2 and the clamp protection diode 3, and then to the input gate 4 of the C-MO8 C.
The protective resistor 2 is provided in an N-type semiconductor 101 as shown in FIG. 2 α.

該半導体基板101の導電型とは異なる導電型、すなわ
ちP型拡散/J 102によって形成されるか、811
!2図すに示す如く、半導体基板101の表面上にフィ
ールド酸化M103’lr形成させ、次いでフィールド
酸化膜103の表面上に多結晶71737層105を設
けることによって、上記保護抵抗2が得られている。こ
の様な構造によって静電気等の破壊耐量は向上してきた
が、上記でも説明した様に、MO8工Cが高集積化され
ると、P型拡散層102による保護抵抗2の形成は、C
MO8工C特有のラッチアップ現象を引き起し易くする
という欠点を有している。ところで、このラッチアップ
現象は、従来の半導体装置、例えば、特公昭55−29
139号公報の明細書に示されている如く、半導体基板
中に高濃度拡散層を設けた構造で半導体基板の電位勾配
をなくし、かつ、MO8O8型電界効果トランジスタス
ク上のレイアウトを変更することによって、寄生サイリ
スタ特性を劣化させて、生じにくくすることが可能であ
るが、筒集積度のMO8工Cにおいては、更に上記P”
?A散層102に代シ、保護抵抗として多結晶シリコン
層105を採用するのが望ましい。しかるに該多結晶シ
リコン層による高抵抗値の、すなわち、多結晶シリコン
長し/多結晶シリコン幅Wの値が大きい保護抵抗を設け
ると、ポンディングパッドlに加った静電気等による過
大電圧が、保護ダイオード2を通じて中和されるに要す
る時間は長くなり、フィールド酸化膜103の破壊をも
たらす。
A conductivity type different from that of the semiconductor substrate 101, that is, a P-type diffusion/J is formed by 102 or 811
! As shown in FIG. 2, the protective resistor 2 is obtained by forming field oxide M103'lr on the surface of the semiconductor substrate 101 and then providing a polycrystalline 71737 layer 105 on the surface of the field oxide film 103. . Such a structure has improved breakdown resistance against static electricity, etc., but as explained above, as MO8C becomes highly integrated, the formation of the protective resistor 2 by the P-type diffusion layer 102 becomes more difficult.
It has the disadvantage of easily causing the latch-up phenomenon peculiar to MO8-C. By the way, this latch-up phenomenon occurs in conventional semiconductor devices, for example,
As shown in the specification of Publication No. 139, by eliminating the potential gradient of the semiconductor substrate with a structure in which a highly concentrated diffusion layer is provided in the semiconductor substrate, and by changing the layout on the MO8O8 type field effect transistor screen. , it is possible to deteriorate the parasitic thyristor characteristics and make it less likely to occur, but in MO8 process C with a cylindrical integration degree, the above P''
? It is preferable to use a polycrystalline silicon layer 105 as a protective resistor instead of the A diffusion layer 102. However, if a protective resistor with a high resistance value, that is, a large value of polycrystalline silicon length/polycrystalline silicon width W, is provided by the polycrystalline silicon layer, excessive voltage due to static electricity applied to the bonding pad l, etc. The time required for neutralization through the protection diode 2 becomes longer, resulting in destruction of the field oxide film 103.

従って本発明は、第3図に示す如く、ポンディングパッ
ド1とクランプ保護ダイオード3とを接続する多結晶シ
リコン105の長さLと幅Wの比L/W −ii 5以
下にして、ラッチアップ現象を避けつつ、過大入力電圧
によるフィールド酸化膜の破壊という欠点を除去せしめ
たものである。従来の様に、LAW−(H大きくとった
ものと比較すると、例えば、多結晶シリコンのψを川と
した時、入力端子と半導体基板間に400〜500ボル
トの電圧が糾問的に加わっただけで、ポンディングパッ
ド1からの接続用アルミ配線104と多結晶シリコン1
05とのコンタクト部107において、容易にフィール
ド酸化月臭が破壊したのに対し、イ=5での同条件では
、フィールド酸化膜破壊は全く出現せず、また、ラッチ
アップ耐量はψ= IOのそれと同水準であった。
Therefore, as shown in FIG. 3, the present invention prevents latch-up by reducing the ratio L/W -ii of the length L and width W of the polycrystalline silicon 105 connecting the bonding pad 1 and the clamp protection diode 3 to 5 or less. This eliminates the drawback of field oxide film destruction due to excessive input voltage while avoiding this phenomenon. Compared to the conventional method where LAW-(H is set large), for example, when the ψ of polycrystalline silicon is used as a river, only a voltage of 400 to 500 volts is applied between the input terminal and the semiconductor substrate. Then, aluminum wiring 104 for connection from bonding pad 1 and polycrystalline silicon 1
At the contact part 107 with IO5, the field oxide film was easily destroyed, whereas under the same conditions at I=5, no field oxide film breakdown appeared at all, and the latch-up resistance was as low as ψ=IO. It was at the same level.

々お第2図乃至第3図において、106はフィールド酸
化膜、108はコンタクトホールである。
In FIGS. 2 and 3, 106 is a field oxide film, and 108 is a contact hole.

以上述べた様に、本発明は、MO8ICの微細化を進め
る上でフィールド酸化膜厚を薄くする際遭遇する、定格
外の高電圧や、静電気によるフィールド酸化膜の破壊を
防ぐために十分な効果が発揮される。
As described above, the present invention has a sufficient effect to prevent destruction of the field oxide film due to unrated high voltage and static electricity, which are encountered when thinning the field oxide film as MO8IC miniaturization progresses. Demonstrated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のC−MO8工Cの入力端子における破
壊保護を示す回路図。第2図は従来の保護抵抗の構造を
説明するための断面図。第3図は本発明による破壊保護
機構を示すパターン図である。 101・・・半導体基板 103・・・フィールド酸化膜 ]05@・・多結晶シリコン 以   上 出願人 株式会社諏訪精工舎
FIG. 1 is a circuit diagram showing destruction protection at the input terminal of a conventional C-MO8 design. FIG. 2 is a cross-sectional view for explaining the structure of a conventional protective resistor. FIG. 3 is a pattern diagram showing the destruction protection mechanism according to the present invention. 101...Semiconductor substrate 103...Field oxide film] 05@...Polycrystalline silicon or more Applicant Suwa Seikosha Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成された、MO8O8型電界効果トラ
ンジスタ出力端子と、クランプダイオードの如き破壊防
止用素子とが電気的に接続された回路を有する半導体装
置において、上記信号用入出力端子と、上記破壊防止用
素子の接続に、多結晶シリコンを用い、該多結晶シリコ
ンの電気的信号伝播方向に沿った長さに対する該電気的
信号伝播方向と直交する多結晶シリコンの幅の比を、マ
スク上で6以下にしたことを特徴とする半導体装置。
In a semiconductor device having a circuit in which an MO8O8 type field effect transistor output terminal formed on a semiconductor substrate and a breakdown prevention element such as a clamp diode are electrically connected, the signal input/output terminal and the breakdown prevention element such as a clamp diode are electrically connected. Polycrystalline silicon is used to connect the prevention element, and the ratio of the width of the polycrystalline silicon perpendicular to the electrical signal propagation direction to the length of the polycrystalline silicon along the electrical signal propagation direction is determined on the mask. 6 or less.
JP57215277A 1982-12-07 1982-12-07 Semiconductor device Expired - Lifetime JPH0658945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57215277A JPH0658945B2 (en) 1982-12-07 1982-12-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57215277A JPH0658945B2 (en) 1982-12-07 1982-12-07 Semiconductor device

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP4058161A Division JPH0758736B2 (en) 1992-03-16 1992-03-16 Semiconductor device
JP4058162A Division JPH0758737B2 (en) 1992-03-16 1992-03-16 Semiconductor device
JP4058163A Division JPH0758738B2 (en) 1992-03-16 1992-03-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS59105369A true JPS59105369A (en) 1984-06-18
JPH0658945B2 JPH0658945B2 (en) 1994-08-03

Family

ID=16669643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57215277A Expired - Lifetime JPH0658945B2 (en) 1982-12-07 1982-12-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0658945B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263276A (en) * 1985-05-17 1986-11-21 Matsushita Electronics Corp Semiconductor device
JP2019068035A (en) * 2017-09-28 2019-04-25 三菱電機株式会社 Silicon carbide semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120684A (en) * 1975-04-16 1976-10-22 Agency Of Ind Science & Technol Semicondactor resistance element
JPS53116788A (en) * 1977-03-23 1978-10-12 Toshiba Corp Circuit element structuring body
JPS562664A (en) * 1979-06-21 1981-01-12 Nec Corp Semiconductor device
JPS56146277A (en) * 1980-04-15 1981-11-13 Toshiba Corp Semiconductor device
JPS5724563A (en) * 1980-07-21 1982-02-09 Nec Corp Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120684A (en) * 1975-04-16 1976-10-22 Agency Of Ind Science & Technol Semicondactor resistance element
JPS53116788A (en) * 1977-03-23 1978-10-12 Toshiba Corp Circuit element structuring body
JPS562664A (en) * 1979-06-21 1981-01-12 Nec Corp Semiconductor device
JPS56146277A (en) * 1980-04-15 1981-11-13 Toshiba Corp Semiconductor device
JPS5724563A (en) * 1980-07-21 1982-02-09 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263276A (en) * 1985-05-17 1986-11-21 Matsushita Electronics Corp Semiconductor device
JP2019068035A (en) * 2017-09-28 2019-04-25 三菱電機株式会社 Silicon carbide semiconductor device

Also Published As

Publication number Publication date
JPH0658945B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
JP2638462B2 (en) Semiconductor device
JPH0729972A (en) Semiconductor device
JPS59105369A (en) Semiconductor device
JP2611639B2 (en) Semiconductor device
JPS5815277A (en) Input protecting circuit
JPH0454978B2 (en)
JPS5916365A (en) Complementary semiconductor device
US5432369A (en) Input/output protection circuit
JPH0590522A (en) Semiconductor device
JPH10223843A (en) Protective circuit of semiconductor device
JPH0888326A (en) Electrostatic protection structure of semiconductor device
JPH05267586A (en) Output protection network
JP2000332131A (en) Static electricity protection element, circuit therefor and semiconductor device
JPH0770707B2 (en) CMOS input protection circuit
JPH0831948A (en) Semiconductor integrated circuit device
JPH0590521A (en) Semiconductor device
JPH0738054A (en) Semiconductor device
KR100240684B1 (en) Esd protection circuit of semiconductor device
JP2830092B2 (en) Electrostatic protection element for semiconductor device
JPH0590523A (en) Semiconductor device
JPH0518467B2 (en)
JPH0526344B2 (en)
JPH07130838A (en) Semiconductor device
JPH05211292A (en) Semiconductor input protection device
JPH0518468B2 (en)