JPH0454978B2 - - Google Patents

Info

Publication number
JPH0454978B2
JPH0454978B2 JP57214468A JP21446882A JPH0454978B2 JP H0454978 B2 JPH0454978 B2 JP H0454978B2 JP 57214468 A JP57214468 A JP 57214468A JP 21446882 A JP21446882 A JP 21446882A JP H0454978 B2 JPH0454978 B2 JP H0454978B2
Authority
JP
Japan
Prior art keywords
insulating film
input
protection resistor
diffusion layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57214468A
Other languages
Japanese (ja)
Other versions
JPS59104171A (en
Inventor
Ryuhei Myagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP57214468A priority Critical patent/JPS59104171A/en
Publication of JPS59104171A publication Critical patent/JPS59104171A/en
Publication of JPH0454978B2 publication Critical patent/JPH0454978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Description

【発明の詳細な説明】 本発明は半導体装置、特に内部回路としての
MOS型電界効果トランジスタの集積装置(以下
「MOSIC」と略記する)に関する。本発明の目的
は、MOSICの、静電気や、定格以上の高電圧に
よる破壊に対する耐量を改善すること及び寄生サ
イリスタのターンオン現象(以下ラツチアツプ現
象と呼ぶ)を誘起することを防止することにあ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, particularly as an internal circuit.
The present invention relates to a MOS field effect transistor integrated device (hereinafter abbreviated as "MOSIC"). The purpose of the present invention is to improve the resistance of MOSICs to destruction caused by static electricity and high voltages exceeding the rated voltage, and to prevent the turn-on phenomenon of a parasitic thyristor (hereinafter referred to as latch-up phenomenon) from being induced.

MOSICの静電気等の過大サージによる破壊現
象は、その開発当初からの問題であつたため、こ
れまでに各種の対策が提案され、改良の手が加え
られてきた。ところが、現在の様にMOSICの集
積密度が一段と高まると、従来の対策をそのまま
上記MOSICに用いることは、MOS型電界効果ト
ランジスタのゲート絶縁膜以外の絶縁皮膜(以下
「フイールド絶縁膜」と呼ぶ)の静電気破壊や、
相補型絶縁ゲート半導体集積装置(以下「C−
MOSIC」と略す)内に必然的に存在してしまう、
ラツチアツプ現象を誘起する結果となる。
The phenomenon of destruction of MOSICs due to excessive surges of static electricity, etc. has been a problem since the beginning of their development, so various countermeasures have been proposed and improvements have been made. However, as the integration density of MOSICs continues to increase as it does today, it is difficult to use conventional measures for the MOSICs as they are, which means that the insulating film other than the gate insulating film of the MOS field effect transistor (hereinafter referred to as "field insulating film") static electricity damage,
Complementary insulated gate semiconductor integrated device (hereinafter referred to as “C-
(abbreviated as "MOSIC"),
This results in a latch-up phenomenon.

本発明は、上記状況と、各種の静電気による破
壊現象に関する実験結果を検討しなされたもので
ある。
The present invention was developed by considering the above-mentioned situation and experimental results regarding various types of breakdown phenomena caused by static electricity.

従来のC−MOSICの入出力端子における代表
的な破壊保護回路は、第1図に示す如く、入力パ
ツドとしてのボンデイングパツド1に入つた信号
が、保護抵抗2、クランプ保護ダイオード3に電
位を与えたのち、C−MOSICの入力部としての
入力ゲート4に伝えられる回路になつており、そ
の保護抵抗2は、第2図aに示す如く、N型半導
体101中に設けられたP型拡散層102によつ
て形成されるか、第2図bに示す如く、半導体基
板101の表面上にフイールド絶縁膜103を形
成させ、次いでフイールド絶縁膜103上に多結
晶シリコン層105を設けることによつて、上記
保護抵抗2が得られている。
A typical breakdown protection circuit for the input/output terminals of a conventional C-MOSIC, as shown in Fig. 1, is such that a signal input to a bonding pad 1 serving as an input pad causes a potential to be applied to a protective resistor 2 and a clamp protection diode 3. After this, the circuit is transmitted to the input gate 4 as the input part of the C-MOSIC, and the protective resistor 2 is a P-type diffusion provided in the N-type semiconductor 101, as shown in FIG. 2a. 2b, or by forming a field insulating film 103 on the surface of the semiconductor substrate 101 and then providing a polycrystalline silicon layer 105 on the field insulating film 103. Thus, the above-mentioned protective resistor 2 was obtained.

尚第2図において、104は、保護抵抗2とボ
ンデイングパツド1、あるいはクランプ保護ダイ
オードとを接続するメタル配線層、106はフイ
ールド絶縁皮膜である。
In FIG. 2, 104 is a metal wiring layer connecting the protective resistor 2 and the bonding pad 1 or the clamp protective diode, and 106 is a field insulating film.

この様な構造によつて、静電気等の破壊耐量は
向上してきたが、上記でも説明した様に、
MOSICが高集積化されると、P型拡散層102
による保護抵抗2の形成は、C−MOSIC特有の
ラツチアツプ現象を引き起し易くするという欠点
を有している。従つて、保護抵抗としては、多結
晶シリコン層105を採用するのが望ましい。し
かるに、該多結晶シリコン層による高抵抗値の保
護抵抗を設けると、ボンデイングパツド1に加わ
つた静電気等による過大電圧が、保護ダイオード
3を通じて中和されるに要する時間は長くなり、
フイールド絶縁膜103の破壊をもたらす。
This structure has improved the breakdown resistance against static electricity, but as explained above,
As MOSICs become highly integrated, the P-type diffusion layer 102
The formation of the protective resistor 2 in this manner has the disadvantage that it tends to cause the latch-up phenomenon peculiar to C-MOSIC. Therefore, it is desirable to use the polycrystalline silicon layer 105 as the protective resistor. However, if a high-resistance protection resistor made of the polycrystalline silicon layer is provided, the time required for the excessive voltage due to static electricity, etc. applied to the bonding pad 1 to be neutralized through the protection diode 3 becomes longer.
This results in destruction of the field insulating film 103.

従つて、本発明は、第3図に示す如く、ボンデ
イングパツド1とクランプダイオード3と接続す
る多結晶シリコン層105の直下の半導体基板1
01中に、該半導体基板の導電型とは異なる導電
型の拡散層を設け、過大入力電圧によるフイール
ド絶縁膜103の破壊耐量を向上させたものであ
る。以下にその原理を説明する。
Therefore, as shown in FIG.
A diffusion layer of a conductivity type different from that of the semiconductor substrate is provided in the semiconductor substrate 01 to improve breakdown resistance of the field insulating film 103 due to excessive input voltage. The principle will be explained below.

第4図は、N型半導体基板101に対し、ボン
デイングパツド1が負になる様な静電気的パルス
電圧が加わつて、フイールド絶縁膜103が破壊
に至る場合の等価回路図である。すなわち、ボン
デイングパツド1とN型半導体基板101との間
には、絶縁膜容量5と、N型半導体基板101と
P型拡散層107の間で形成される接合容量6が
直列に存在している。これに上記のパルス電圧が
加わると、該絶縁膜容量5に加わる電圧は、瞬間
的には、絶縁膜容量値C1と接合容量値C2との容
量分割比C2/(C1+C2)に、上記パルス電圧値
を乗じた値に相当する電圧となるため、絶縁膜1
03の破壊電圧は、従来の接合容量6が存在しな
い場合と比べ、みかけ上、上昇することになる。
この結果、従来例えば、フイールド絶縁膜厚がお
よそ7000Åの場合、半導体基板に対して400〜
500Vの負電圧が入力端子に加わると、ボンデイ
ングパツド1からの接続用メタル配線層104と
多結晶シリコン層105とのコンタクト部108
において、容易にフイールド絶縁膜が破壊したの
に対し、P型拡散層107を多結晶シリコン下に
設けたものでは、破壊電圧は600〜700Vに改善さ
れた。また、このP型拡散層107は、他の拡散
層、メタル配線層とは電気信号的に完全に独立し
ているため、該P型拡散層が存在する由に、ラツ
チアツプ現象が生じ易くなるという不安は全くな
い。
FIG. 4 is an equivalent circuit diagram when an electrostatic pulse voltage is applied to the N-type semiconductor substrate 101 so that the bonding pad 1 becomes negative, and the field insulating film 103 is destroyed. That is, an insulating film capacitor 5 and a junction capacitor 6 formed between the N-type semiconductor substrate 101 and the P-type diffusion layer 107 exist in series between the bonding pad 1 and the N-type semiconductor substrate 101. There is. When the above pulse voltage is applied to this, the voltage applied to the insulating film capacitor 5 momentarily becomes equal to the capacitance division ratio C2/(C1+C2) between the insulating film capacitance value C1 and the junction capacitance value C2, and the voltage applied to the above pulse voltage Since the voltage corresponds to the value multiplied by the value, the insulating film 1
The breakdown voltage of 03 appears to be higher than that in the case where the conventional junction capacitance 6 does not exist.
As a result, conventionally, for example, when the field insulating film thickness was approximately 7000 Å, the
When a negative voltage of 500V is applied to the input terminal, the contact portion 108 between the connection metal wiring layer 104 from the bonding pad 1 and the polycrystalline silicon layer 105
In contrast to the case where the field insulating film was easily destroyed, in the case where the P-type diffusion layer 107 was provided under the polycrystalline silicon, the breakdown voltage was improved to 600 to 700V. Furthermore, since this P-type diffusion layer 107 is completely independent from other diffusion layers and metal wiring layers in terms of electrical signals, the existence of this P-type diffusion layer tends to cause latch-up phenomenon. I have no anxiety at all.

以上述べた様に、本発明は、MOSICの微細化
を進める上でフイールド絶縁膜厚を薄くする際遭
遇する、定格外の高電圧や、静電気によるフイー
ルド絶縁膜の破壊耐量を改善するとともにラツチ
アツプ現象を防止する上で十分な効果が発揮され
る。
As described above, the present invention improves the breakdown resistance of the field insulating film due to unrated high voltages and static electricity, which are encountered when reducing the thickness of the field insulating film to advance the miniaturization of MOSICs, and also reduces the latch-up phenomenon. It is sufficiently effective in preventing this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のC−MOSICの入力端子にお
ける破壊保護を示す回路図。第2図は従来の保護
抵抗の構造を説明するための断面図。第3図は本
発明による破壊保護機構を示す断面図。第4図は
フイールド絶縁膜に静電気的パルスが加わり絶縁
膜破壊を起すことを説明するため等価回路図であ
る。 101……N型半導体基板、103……フイー
ルド絶縁膜、105……多結晶シリコン層、10
7……P型拡散層、5……絶縁膜容量、6……接
合容量。
FIG. 1 is a circuit diagram showing destruction protection at the input terminal of a conventional C-MOSIC. FIG. 2 is a cross-sectional view for explaining the structure of a conventional protective resistor. FIG. 3 is a sectional view showing the destruction protection mechanism according to the present invention. FIG. 4 is an equivalent circuit diagram for explaining that an electrostatic pulse is applied to a field insulating film, causing breakdown of the insulating film. 101... N-type semiconductor substrate, 103... Field insulating film, 105... Polycrystalline silicon layer, 10
7... P-type diffusion layer, 5... Insulating film capacitance, 6... Junction capacitance.

Claims (1)

【特許請求の範囲】 1 内部回路として相補型MOS電界効果トラン
ジスタを有する半導体装置において、第1導電型
の半導体基板中に設けられ、かつ電気的に独立し
ている第2導電型の拡散層、前記拡散層上に絶縁
膜を介して設けられた入力保護抵抗体、前記入力
保護抵抗体と入力パツドとを電気的に接続する第
1導電配線、前記入力保護抵抗体と前記内部回路
の入力部とを電気的に接続する第2導電配線を有
することを特徴とする半導体装置。 2 前記入力保護抵抗体が多結晶シリコンからな
るものであることを特徴とする特許請求の範囲第
1項記載の半導体装置。
[Claims] 1. In a semiconductor device having a complementary MOS field effect transistor as an internal circuit, a second conductivity type diffusion layer provided in a first conductivity type semiconductor substrate and electrically independent; an input protection resistor provided on the diffusion layer via an insulating film, a first conductive wire electrically connecting the input protection resistor and the input pad, and an input section of the input protection resistor and the internal circuit. A semiconductor device characterized by having a second conductive wiring that electrically connects the two. 2. The semiconductor device according to claim 1, wherein the input protection resistor is made of polycrystalline silicon.
JP57214468A 1982-12-06 1982-12-06 Semiconductor device Granted JPS59104171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57214468A JPS59104171A (en) 1982-12-06 1982-12-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57214468A JPS59104171A (en) 1982-12-06 1982-12-06 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS59104171A JPS59104171A (en) 1984-06-15
JPH0454978B2 true JPH0454978B2 (en) 1992-09-01

Family

ID=16656217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57214468A Granted JPS59104171A (en) 1982-12-06 1982-12-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59104171A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144454A (en) * 1984-08-09 1986-03-04 Fujitsu Ltd Semiconductor device
US4893212A (en) * 1988-12-20 1990-01-09 North American Philips Corp. Protection of power integrated circuits against load voltage surges
JP2843393B2 (en) * 1989-12-29 1999-01-06 沖電気工業株式会社 Multi-level output circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51886A (en) * 1974-06-20 1976-01-07 Sony Corp TEIKOSOSHI
JPS55110069A (en) * 1979-02-16 1980-08-25 Hitachi Ltd Semiconductor memory device
JPS55141748A (en) * 1979-04-20 1980-11-05 Sony Corp Thin film resistor for mos field effect transistor
JPS56146277A (en) * 1980-04-15 1981-11-13 Toshiba Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51886A (en) * 1974-06-20 1976-01-07 Sony Corp TEIKOSOSHI
JPS55110069A (en) * 1979-02-16 1980-08-25 Hitachi Ltd Semiconductor memory device
JPS55141748A (en) * 1979-04-20 1980-11-05 Sony Corp Thin film resistor for mos field effect transistor
JPS56146277A (en) * 1980-04-15 1981-11-13 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
JPS59104171A (en) 1984-06-15

Similar Documents

Publication Publication Date Title
JPH0151070B2 (en)
JPH08274267A (en) Semiconductor device
US4922316A (en) Infant protection device
JPH0454978B2 (en)
JP2611639B2 (en) Semiconductor device
JP3211871B2 (en) I / O protection circuit
JPS5815277A (en) Input protecting circuit
JPS6328500B2 (en)
JPH0658945B2 (en) Semiconductor device
JPH0526344B2 (en)
US5432369A (en) Input/output protection circuit
JPH0758737B2 (en) Semiconductor device
JPH0888326A (en) Electrostatic protection structure of semiconductor device
JPH069208B2 (en) Semiconductor device
JPH04206961A (en) Semiconductor device
JP2830092B2 (en) Electrostatic protection element for semiconductor device
KR100240684B1 (en) Esd protection circuit of semiconductor device
JPS6355871B2 (en)
JPH0758736B2 (en) Semiconductor device
JP2585633B2 (en) Semiconductor device
JP3017083B2 (en) I / O protection circuit
JPS5915508Y2 (en) protection circuit
JPH0374876A (en) Semiconductor device
JPS6260816B2 (en)
JPH0518467B2 (en)