JPS5916365A - Complementary semiconductor device - Google Patents

Complementary semiconductor device

Info

Publication number
JPS5916365A
JPS5916365A JP57125423A JP12542382A JPS5916365A JP S5916365 A JPS5916365 A JP S5916365A JP 57125423 A JP57125423 A JP 57125423A JP 12542382 A JP12542382 A JP 12542382A JP S5916365 A JPS5916365 A JP S5916365A
Authority
JP
Japan
Prior art keywords
wiring
substrate
poly
diffusion layer
vcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57125423A
Other languages
Japanese (ja)
Other versions
JPS6362110B2 (en
Inventor
Isao Sasaki
佐々木 勇男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57125423A priority Critical patent/JPS5916365A/en
Publication of JPS5916365A publication Critical patent/JPS5916365A/en
Publication of JPS6362110B2 publication Critical patent/JPS6362110B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the generation of latch-up by a method wherein a resistance element of 500OMEGA or more is inserted in the midway of a power source wiring extending directly from a pad by means of a metallic wiring, and the power source wiring and a well formed on a semiconductor substrate at the same potential as the power source wiring are electrically connected at the part adjacent to the end part on the pad side of the resistance element. CONSTITUTION:The VCC aluminum wiring 8 in the outside and the diffused layer wiring 7 of a cell part 13 are connected via a poly Si resistor 10. This poly Si resistor is doped with phosphorus to poly Si of the thickness of 5,000Angstrom at the dosage of 1X10<15>/cm<2>. The resistor of approx. 1kV which is 5mum wide and approx. 15mum long is formed. The numeral 8' represents the aluminum wiring which connects the poly Si 10 and the diffused layer wiring 7 via contact holes 9 and 9'. Further, the substrate is kept at the potential VCC via the contact hole 11 and the diffused layer region 12 of the same impurity type as the Si substrate on the Si substrate, in order to make latch-up difficult to occur.

Description

【発明の詳細な説明】 本発明は相補型半導体装置(以下CMO8ICと称する
)に係り、特にその電源配線の配線構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a complementary semiconductor device (hereinafter referred to as CMO8IC), and particularly to the wiring structure of its power supply wiring.

CMO8ICに於いては、本質的に存在するPNPN構
造によりラッチアップ現象が発生し、CMO8ICの動
作範囲を制限している。これに対して、レイアウト上さ
まざまな対策が考えられているが、内部ブロックに於て
はチップサイズを大きくしたくないために充分な対策を
ほどこすことは難かしい。
In the CMO8IC, a latch-up phenomenon occurs due to the inherently existing PNPN structure, which limits the operating range of the CMO8IC. Various layout countermeasures have been considered to deal with this, but it is difficult to take sufficient countermeasures because it is not desired to increase the chip size in internal blocks.

しかしながらレイアウトルールのスケールダウンが進む
につれて、レイアウトルールの厳しい内部フbツクでラ
ッチアップ現象がおき易くってきており、チップ上あま
り面積を占めない範囲でなんらかの対策が必要になって
きている。
However, as layout rules are scaled down, latch-up phenomena are becoming more likely to occur in internal hooks with strict layout rules, and it is becoming necessary to take some kind of countermeasure within the range of not occupying too much area on the chip.

まず従来から用いられているP・ウェル方式CMO8I
Cを例にとり、第1図を用いてラッチアップに対する一
般的対策を次に述べる。ラッチアップはVCC端子1に
つながるN型シリコン基板上のP十拡散層3と、GND
(グランド)端子2につながるPウェル上のN十拡散層
4の間で、P十拡散層3−N型シリコン基板−Pウェル
から構成されるPNPパイボーラントランジスタと、N
十散散I@4−Pウェル−N型シリコン基板から構成さ
れる。
First, the conventionally used P-well type CMO8I
Taking C as an example, general countermeasures against latch-up will be described below using FIG. Latch-up occurs between the P1 diffusion layer 3 on the N-type silicon substrate connected to the VCC terminal 1, and the GND
Between the N1 diffusion layer 4 on the P well connected to the (ground) terminal 2, a PNP piborane transistor consisting of the P1 diffusion layer 3 - the N type silicon substrate - the P well, and the N
It is composed of ten scattered I@4-P well-N type silicon substrates.

NPNバイポーラトランジスタの双方がイオン状態にな
ったときおこる。このときv(C端子1とGND端子2
の間はショート状態となる。ラッチアップはP十拡散層
3とN十拡散層4の距離が小さくなるにつれておきやす
くなる。ラッチアップ全おきにくくするには、(1)N
型シリコン基板の電位の変動を防ぐために、基板表面は
形成されたN十拡散層5を介して基板をVCCにつなぐ
、(2)Pウェル電の変動を防ぐために、Pウェル表面
に形成されたP十拡散層6を介して、PウェルをGND
端子につなぐ、(3)ラッチアップのトリガとなる電流
をリミットするためにVCC端子1をP十拡散廣3の間
に抵抗It、を入れ、またはGNI)端子2とN十拡散
層4の間に抵抗R,2を入れるなどの方法がある。
This occurs when both NPN bipolar transistors are in the ionic state. At this time, v(C terminal 1 and GND terminal 2
During this period, it is in a short-circuit state. Latch-up becomes easier as the distance between the P10 diffusion layer 3 and the N10 diffusion layer 4 becomes smaller. To make latch-up less likely, (1) N
In order to prevent fluctuations in the potential of the silicon substrate, the substrate surface connects the substrate to VCC through the formed N+ diffusion layer 5. (2) In order to prevent fluctuations in the P well voltage, a Connect the P well to GND through the P well diffusion layer 6
(3) Insert a resistor It between the VCC terminal 1 and the P + diffusion layer 3, or between the GNI) terminal 2 and the N + diffusion layer 4, to limit the current that triggers latch-up. There is a method such as inserting a resistor R,2 into.

このとき抵抗値を約500Ω以上とすればラッチアップ
防止に効果がある。
At this time, setting the resistance value to approximately 500Ω or more is effective in preventing latch-up.

従来VCC端子とつながる内部ブロック内のN型基板上
のP十拡散層は、アルミニウムを用いてV(XE端子と
結ばれCいる。GND端子とつながるPウェル上のN十
拡散層に関しても同様である。
Conventionally, the P1 diffusion layer on the N type substrate in the internal block connected to the VCC terminal is connected to the V (XE terminal) using aluminum.The same goes for the N1 diffusion layer on the P well connected to the GND terminal. be.

本発明は、相補型半導体装置に於て、パッドから金属配
線によシ直接のびている電源配線と、内部ブロックの電
源配線とを、拡散層以外の約5000以上の抵抗素子を
介してらなぎ、かつ抵抗素子のパッド側の端部に近接し
た所で、電源配線と、その電源配線と同一電位にある半
導体基板または半導体基板表面に形成されたウェルとを
、電気的に接続させることによシ、より高集積度でP十
拡散層とN十拡散層の距離が短かい相補型半導体装置の
ラッチアップ発生を防止することを目的にしでいる。
In a complementary semiconductor device, the present invention connects a power supply wiring extending directly from a pad to a metal wiring and a power supply wiring of an internal block through approximately 5,000 or more resistive elements other than a diffusion layer, and By electrically connecting the power supply wiring to a semiconductor substrate or a well formed on the surface of the semiconductor substrate that is at the same potential as the power supply wiring, in the vicinity of the end of the resistor element on the pad side. The purpose of this invention is to prevent latch-up in a complementary semiconductor device with a higher degree of integration and a shorter distance between the P+ diffusion layer and the N+ diffusion layer.

内部ブロックの電源電位のレベル降下が問題になるとき
は、本発明を適用することができない場合も生ずる。し
かしながら、例えばCMOSメモリICに於てはセルの
■CC配線は数にΩの拡散層により形成されておシ、外
部のVcc配線とセル部のVcc配線の間に500Ω〜
数にΩの抵抗を入れても回路動作上問題にならない。C
MOSメモリICではセル部のレイアウト基準が最も厳
しくラッチアップがセル部でおきる可能性が高く、本発
明を適用することは、 CMOSメモリICのラッチア
ップ防止に大きな効果をもつ。
When a drop in the level of the power supply potential of an internal block becomes a problem, the present invention may not be applicable. However, in a CMOS memory IC, for example, the CC wiring of a cell is formed by a diffusion layer with several Ω, and the resistance between the external Vcc wiring and the Vcc wiring in the cell part is 500 Ω or more.
Even if a resistor of Ω is included in the number, there will be no problem in circuit operation. C
In a MOS memory IC, the layout standards for the cell part are the most strict, and there is a high possibility that latch-up will occur in the cell part, so applying the present invention has a great effect on preventing latch-up in a CMOS memory IC.

以下具体例を用いて本発明を説明する。第2図は従来か
ら行なわれているCMOSメモリICに於けるセル部1
3のVCC拡散層配線7とVCCパッドから引き出され
ている外部のVCCアルミニウム配線8とのつなぎ方を
示す。Vccアルミニウム配線はセル部のVCC拡散層
配線とコンタクトホール9を介して直結されている。そ
のため前記コンタクトホール付近に於ては、コンタクト
ホールからはじまるVcc拡散層配線の抵抗が小さく、
この付近でラッチアップがおきやすい。
The present invention will be explained below using specific examples. Figure 2 shows the cell section 1 in a conventional CMOS memory IC.
3 shows how to connect the VCC diffusion layer wiring 7 of No. 3 to the external VCC aluminum wiring 8 drawn out from the VCC pad. The Vcc aluminum wiring is directly connected to the VCC diffusion layer wiring in the cell portion via a contact hole 9. Therefore, near the contact hole, the resistance of the Vcc diffusion layer wiring starting from the contact hole is small.
Latch-up is likely to occur around this area.

かかる問題点を解決するため、本発明を適用した例を第
3図に示す。第3図に於て、外部のVccアルミニウム
配線8とセル部13の拡散層配線7は、ポリシリコン抵
抗10を介して結ばれている。
In order to solve this problem, an example in which the present invention is applied is shown in FIG. In FIG. 3, external Vcc aluminum wiring 8 and diffusion layer wiring 7 of cell section 13 are connected via polysilicon resistor 10. In FIG.

このポリシリコン抵抗は、厚さ5000Aのポリシリコ
ンに1X1o  /−のドーズ象でリンをドープしてつ
くる。巾5μm、長さ15μm程度で約1にΩの抵抗が
つくられる。8′はポリシリコン10と拡散層配線7と
をコンタクトホール9および9′を介してつなぐアルミ
ニウム配線である。さらにラッチアップをおきにくくす
るためにコンタクトホール11とシリコン基板上のシリ
コン基板と同−不純物型の拡散層領域12を介して基板
をVCC電位に保っている。
This polysilicon resistor is made by doping polysilicon with a thickness of 5000 Å with phosphorus at a dose of 1×1o/−. A resistance of about 1Ω is created with a width of about 5 μm and a length of about 15 μm. Reference numeral 8' denotes an aluminum wiring connecting polysilicon 10 and diffusion layer wiring 7 via contact holes 9 and 9'. Further, in order to prevent latch-up from occurring, the substrate is maintained at VCC potential through a contact hole 11 and a diffusion layer region 12 of the same impurity type as the silicon substrate on the silicon substrate.

以上の2つの対策によりレイアウト基準のよシ厳しいC
MOSメモリICに於いてもラッチアップを防止するこ
とができる。
Due to the above two measures, the layout standards are stricter.
Latch-up can also be prevented in MOS memory ICs.

即ち本発明は、より高密度のCMOSメモリICのラッ
チアップ防止対策として、非常に有用である。
That is, the present invention is very useful as a measure to prevent latch-up in higher density CMOS memory ICs.

【図面の簡単な説明】 第1図はラッチアップ現象を説明するために模式的に表
わした半導基板の断面図、第2図は従来の0MO8IC
に於ける外部VCC配線とセル部Vcc配線のつなぎ方
を表わす平面図、第3図は本発明を適用したときの前記
2配線間のつなぎ方を表わす平面図、である。 なお図において、1・・・・・・Vcc箪源端子、2・
・・・・・GND電源端子、3・・・・・・p十拡散層
、4・・・・・・N十拡散層、訃・・・・・基板電位を
とる/こめのN+拡散層。 6・・・・・・Pウェル電位をとるだめのN十拡散層、
7・・・・・・セル部のVcc拡散層配線、8・・・・
・・外部のVccアルミニウム配線、8′・・・・・・
アルミニウム配線、9・・・・・・拡散層とアルミニウ
ム配線をつなぐコンタクト、9′・・・・・・ポリシリ
コンとアルミニウム配線をつなぐコンタクト、10・・
・・・・ポリシリコン抵抗、11・・・・・・基板電位
をとるだめのコンタクト、12・・・・・・基板電位を
とるための炉−拡散層、13・・・・・・セルブロック
、である。 、−ゝ、 代理人弁理士内原   晋1″゛ゝ; ・       /
[Brief explanation of the drawings] Figure 1 is a cross-sectional view of a semiconductor substrate schematically shown to explain the latch-up phenomenon, and Figure 2 is a conventional 0MO8IC.
FIG. 3 is a plan view showing how to connect the external VCC wiring and the cell part Vcc wiring in the case of the present invention, and FIG. 3 is a plan view showing how to connect the two wirings when the present invention is applied. In the figure, 1...Vcc power source terminal, 2...
...GND power supply terminal, 3...P1 diffusion layer, 4...N10 diffusion layer, 2...N+ diffusion layer that takes the substrate potential. 6...N10 diffusion layer for taking P well potential,
7... Vcc diffusion layer wiring in cell section, 8...
...External Vcc aluminum wiring, 8'...
Aluminum wiring, 9...Contact connecting the diffusion layer and aluminum wiring, 9'...Contact connecting polysilicon and aluminum wiring, 10...
... Polysilicon resistor, 11 ... Contact for taking substrate potential, 12 ... Furnace-diffusion layer for taking substrate potential, 13 ... Cell block , is. ,−ゝ、Representative Patent Attorney Susumu Uchihara 1″゛ゝ; ・ /

Claims (2)

【特許請求の範囲】[Claims] (1)相補型半導体装置に於いて、半導体基板上の!T
hパッドから金属層により延在している電源配線途中に
5000以上の抵抗値を有する抵抗素子が挿入され、か
つ該抵抗素子の前記1を極パッド側の端部に近接した所
で前記電源配線と同一電位にある半導体基板表面に形成
されたウェルとが電気的に接続されていることを特徴と
する相補型半導体装置。
(1) In a complementary semiconductor device, on a semiconductor substrate! T
A resistor element having a resistance value of 5,000 or more is inserted in the middle of the power supply wiring extending from the h pad by a metal layer, and the power supply wiring 1. A complementary semiconductor device characterized in that a well formed on a surface of a semiconductor substrate that is at the same potential as a well is electrically connected to a well formed on a surface of a semiconductor substrate.
(2)前記抵抗素子がポリシリコン層を含んで形成され
ていることを特徴とする特許請求の範囲第(1)項記載
の相補型半導体装置。
(2) The complementary semiconductor device according to claim (1), wherein the resistance element is formed including a polysilicon layer.
JP57125423A 1982-07-19 1982-07-19 Complementary semiconductor device Granted JPS5916365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57125423A JPS5916365A (en) 1982-07-19 1982-07-19 Complementary semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57125423A JPS5916365A (en) 1982-07-19 1982-07-19 Complementary semiconductor device

Publications (2)

Publication Number Publication Date
JPS5916365A true JPS5916365A (en) 1984-01-27
JPS6362110B2 JPS6362110B2 (en) 1988-12-01

Family

ID=14909729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57125423A Granted JPS5916365A (en) 1982-07-19 1982-07-19 Complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPS5916365A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116864A (en) * 1989-09-29 1991-05-17 Nec Corp Cmos semiconductor integrated circuit device
JPH07326772A (en) * 1995-05-25 1995-12-12 Rohm Co Ltd Discrete diode device
JPH088446A (en) * 1995-05-25 1996-01-12 Rohm Co Ltd Discrete diode
JPH0832092A (en) * 1995-05-25 1996-02-02 Rohm Co Ltd Discrete diode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553712A1 (en) * 1992-01-29 1993-08-04 Kaltenbach & Voigt Gmbh & Co. Laser treatment device, especially for medical or dental use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458374A (en) * 1977-10-19 1979-05-11 Hitachi Ltd Complementary mis ic
JPS56133865A (en) * 1980-03-21 1981-10-20 Seiko Epson Corp Complementary mos transistor with high breakdown voltage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458374A (en) * 1977-10-19 1979-05-11 Hitachi Ltd Complementary mis ic
JPS56133865A (en) * 1980-03-21 1981-10-20 Seiko Epson Corp Complementary mos transistor with high breakdown voltage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116864A (en) * 1989-09-29 1991-05-17 Nec Corp Cmos semiconductor integrated circuit device
JPH07326772A (en) * 1995-05-25 1995-12-12 Rohm Co Ltd Discrete diode device
JPH088446A (en) * 1995-05-25 1996-01-12 Rohm Co Ltd Discrete diode
JPH0832092A (en) * 1995-05-25 1996-02-02 Rohm Co Ltd Discrete diode

Also Published As

Publication number Publication date
JPS6362110B2 (en) 1988-12-01

Similar Documents

Publication Publication Date Title
US4896243A (en) Efficient ESD input protection scheme
US6236087B1 (en) SCR cell for electrical overstress protection of electronic circuits
US5717559A (en) Input/output protection device for use in semiconductor device
KR100645039B1 (en) Electrostatic discharge protection device and mehtod of fabricating the same
KR0159451B1 (en) Protection circuit for a semiconductor device
EP0488340B1 (en) Semiconductor device having input protection circuit
JPH06177330A (en) Semiconductor device
EP0703621B1 (en) Electrostatic discharge protection device for MOS integrated circuits
JPH02273971A (en) Semiconductor device having protective circuit
US5814865A (en) Bimodal ESD protection for DRAM power supplies and SCRs for DRAMs and logic circuits
US5949094A (en) ESD protection for high density DRAMs using triple-well technology
EP0448119A2 (en) Input protection resistor used in input protection circuit
US5072271A (en) Protection circuit for use in semiconductor integrated circuit device
US5708610A (en) Semiconductor memory device and semiconductor device
EP0822596A2 (en) Improvements in or relating to integrated circuits
JP2679046B2 (en) Memory device
JPS5916365A (en) Complementary semiconductor device
JPH05505060A (en) Low trigger voltage SCR protection device and structure
KR100402337B1 (en) Bimodal ESD Protection Circuit for SCR and DRAM Power for DRAM and Logic Circuits
US6614061B2 (en) Electrostatic discharge-protection semiconductor device
KR20010102013A (en) Electrostatic discharge protection of integrated circuits
KR100645069B1 (en) Electrostatic discharge protection device and mehtod of fabricating the same
JPS63301555A (en) Semiconductor device
JP3038744B2 (en) CMOS type semiconductor integrated circuit device
JPS62165362A (en) Semiconductor integrated circuit device