JPH0590522A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0590522A
JPH0590522A JP4058162A JP5816292A JPH0590522A JP H0590522 A JPH0590522 A JP H0590522A JP 4058162 A JP4058162 A JP 4058162A JP 5816292 A JP5816292 A JP 5816292A JP H0590522 A JPH0590522 A JP H0590522A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
width
resistor
input
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4058162A
Other languages
Japanese (ja)
Other versions
JPH0758737B2 (en
Inventor
Ryuhei Miyagawa
隆平 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4058162A priority Critical patent/JPH0758737B2/en
Publication of JPH0590522A publication Critical patent/JPH0590522A/en
Publication of JPH0758737B2 publication Critical patent/JPH0758737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the breakdown of an MOS IC due to static electricity and high voltage, by connecting the I/O terminal for signal of an MOS IC with a protective element for preventing breakdown by using polycrystalline silicon, and setting the ratio of the length of the polycrystalline silicon in the signal propagation direction to the width in the direction perpendicular to the polycrystalline silicon length to be equal to 6 or smaller. CONSTITUTION:A bonding pad 1 is formed on a semiconductor substrate, and connected with polycrystalline silicon 105 by using an aluminum wiring 104. The ratio L/W is set to be equal to 6 or smaller where L and W are the length and the width, respectively, of the polycrystalline silicon 105 turning to the resistor of an input protecting circuit. The width of the polycrystalline silicon 105 is made smaller than the width of an input terminal 1. Thereby a field oxide film is prevented from being broken down by an excessive input voltage, while evading the latchup phenomenon. By making the width of the polycrystalline silicon 105 turning to the resistor smaller than the width of the bonding pad 1 turning to an input terminal, the amount of a current to be inputted to the polycrystalline silicon is controlled, and the insulating film is protected from an excessive voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置、特にMOS
型電界効果トランジスタの集積装置(以下MOSICと
略記する)に関する。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor device, particularly a MOS.
Type field effect transistor integrated device (hereinafter abbreviated as MOSIC).

【0002】[0002]

【従来の技術】MOSICの静電気等の過大サージによ
る破壊現象は、その開発当初からの問題であったため、
これまでに各種の対策が提案され、改良の手が加えられ
てきた。
2. Description of the Related Art Since the destruction phenomenon due to excessive surge such as static electricity of MOSIC has been a problem from the beginning of its development,
So far, various measures have been proposed and improvements have been made.

【0003】従来の相補型絶縁ゲート半導体集積装置
(以下C−MOSICと略す)の入出力端子における代
表的な破壊保護回路は、図1に示す如く、ボンディング
バット1に入った信号が、保護抵抗2、クランプ保護ダ
イオード3に電位を与えたのち、C−MOSICの入力
ゲート4に伝えられる回路になっており、その保護抵抗
2は、図2(a)に示す如く、N型半導体101中に設
けられた。該半導体基板101の導電型とは異なる導電
型、すなわちP型拡散層102によって形成されるか、
図2(b)に示す如く、半導体基板101の表面上にゲ
ート酸化膜以外の絶縁酸化膜(以下フィールド酸化膜と
呼ぶ)103を形成させ、次いでフィールド酸化膜10
3の表面上に多結晶シリコン層105を設けることによ
って、上記保護抵抗2が得られている。
A typical destruction protection circuit at an input / output terminal of a conventional complementary insulated gate semiconductor integrated device (hereinafter abbreviated as C-MOSIC) is, as shown in FIG. 2. After the potential is applied to the clamp protection diode 3, the circuit is transmitted to the input gate 4 of the C-MOSIC, and the protection resistor 2 is provided in the N-type semiconductor 101 as shown in FIG. It was provided. Is formed by a conductivity type different from that of the semiconductor substrate 101, that is, a P-type diffusion layer 102,
As shown in FIG. 2B, an insulating oxide film (hereinafter referred to as a field oxide film) 103 other than the gate oxide film 103 is formed on the surface of the semiconductor substrate 101, and then the field oxide film 10 is formed.
The protection resistor 2 is obtained by providing the polycrystalline silicon layer 105 on the surface of the protection resistor 2.

【0004】[0004]

【発明が解決しようとする課題】ところが、現在の様に
MOSICの集積密度が一段と高まると、従来の対策を
そのまま上記MOSICに用いることは、MOS型電界
効果トランジスタのフィールド酸化膜の静電気破壊や、
MOSIC内に必然的に存在してしまう、寄生サイリス
ターのターンオン現象(以下ラッチアップ現象と呼ぶ)
を招く結果になる。
However, when the integration density of MOSIC is further increased as in the present situation, it is possible to use the conventional measures as they are in the MOSIC as described above, because electrostatic breakdown of the field oxide film of the MOS field effect transistor,
Turn-on phenomenon of the parasitic thyristor that is inevitably present in the MOSIC (hereinafter referred to as the latch-up phenomenon)
Will result in.

【0005】つまり、この様な構造によって静電気等の
破壊耐量は向上してきたが、上記でも説明した様に、M
OSICが高集積化されると、P型拡散層102による
保護抵抗2の形成は、C−MOSIC特有のラッチアッ
プ現象を引き起こし易くするという欠点を有している。
ところで、このラッチアップ現象は、従来の半導体装
置、例えば、特公昭55−29139号公報の明細書に
示されている如く、半導体基板中に高濃度拡散層を設け
た構造で半導体基板の電位勾配をなくし、かつMOS型
電界効果トランジスタのマスク上のレイアウトを変更す
ることによって、寄生サイリスタ特性を劣化させて、生
じにくくすることが可能であるが、高集積度のMOSI
Cにおいては、更に上記P+ 拡散層102に代わり、保
護抵抗として多結晶シリコン層105を採用するのが望
ましい。しかるに該多結晶シリコン層による高抵抗値
の、即ち、多結晶シリコン長L/多結晶シリコン幅Wの
値が大きい保護抵抗を設けると、ボンディングパット1
に加った静電気等による過大電圧が、保護ダイオード2
を通じて中和されるに要する時間は長くなり、フィール
ド酸化膜103の破壊をもたらすという問題点を有す
る。
That is, although the breakdown resistance against static electricity has been improved by such a structure, as described above, M
When the OSIC is highly integrated, the formation of the protection resistor 2 by the P-type diffusion layer 102 has a drawback that the latch-up phenomenon peculiar to the C-MOSIC is easily caused.
By the way, this latch-up phenomenon occurs in a conventional semiconductor device, for example, in a structure in which a high-concentration diffusion layer is provided in a semiconductor substrate as shown in the specification of Japanese Patent Publication No. 55-29139, the potential gradient of the semiconductor substrate. It is possible to reduce the parasitic thyristor characteristics and prevent them from occurring by eliminating the above and changing the layout on the mask of the MOS field effect transistor.
In C, it is desirable to use a polycrystalline silicon layer 105 as a protective resistance instead of the P + diffusion layer 102. However, if a protective resistance having a high resistance value due to the polycrystalline silicon layer, that is, having a large value of polycrystalline silicon length L / polycrystalline silicon width W is provided, the bonding pad 1
Excessive voltage due to static electricity applied to the protection diode 2
Therefore, it takes a long time to be neutralized, and the field oxide film 103 is destroyed.

【0006】そこで本発明はこのような問題点を解決す
るもので、その目的とするところはMOSICの入出力
端子と破壊防止用保護素子を接続する多結晶シリコン層
の長さL及び、幅Wの比を改良したものである。即ち、
MOSICの信号用入出力端子と破壊防止保護素子と
を、多結晶シリコンを用いて電気的に接続し、該多結晶
シリコンの信号伝播方向の長さLと、上記多結晶シリコ
ン長と直交をなす方向の幅Wの比、L/Wをマスク上で
6以下にして、静電気や、定格以上の高電圧によるMO
SICの破壊に対する耐量を改善することにある。
Therefore, the present invention solves such a problem, and an object thereof is to provide a length L and a width W of a polycrystalline silicon layer for connecting an input / output terminal of a MOSIC and a protection element for destruction prevention. It is an improved ratio of. That is,
The signal input / output terminal of the MOSIC and the destruction prevention protection element are electrically connected using polycrystalline silicon, and the length L of the polycrystalline silicon in the signal propagation direction is orthogonal to the length of the polycrystalline silicon. The ratio of the width W in the direction, L / W, is set to 6 or less on the mask, and the
It is to improve the tolerance of the SIC to destruction.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置は、
MOS型電界効果トランジスタを有する半導体装置にお
いて、半導体基板上に設けられた入力端子、電気的信号
伝播方向に沿った長さに対する電気的信号伝播方向と直
交する幅の比が、マスク上で6以下である抵抗体、前記
入力端子と前記抵抗体とを電気的に接続する第1導電配
線、前記抵抗体と破壊防止用素子とを電気的に接続する
第2導電配線、前記破壊防止用素子と前記MOS型電界
効果トランジスタの入力ゲートとを電気的に接続し、か
つ前記第1導電配線の配線幅に比べて小なる配線幅であ
る第3導電配線を有することを特徴とする。
The semiconductor device of the present invention comprises:
In a semiconductor device having a MOS field effect transistor, a ratio of a width orthogonal to an electric signal propagating direction to an input terminal provided on a semiconductor substrate and a length along the electric signal propagating direction is 6 or less on a mask. A resistor, a first conductive wire electrically connecting the input terminal and the resistor, a second conductive wire electrically connecting the resistor and the destruction prevention element, and the destruction prevention element It is characterized in that it has a third conductive wiring that is electrically connected to the input gate of the MOS field effect transistor and has a wiring width smaller than the wiring width of the first conductive wiring.

【0008】[0008]

【実施例】本発明の実施例について図3を用いて説明す
る。
EXAMPLE An example of the present invention will be described with reference to FIG.

【0009】本発明は、図3に示す如く、ボンディング
パット1とクランプ保護ダイオード3とを接続する多結
晶シリコン105の長さLと幅Wの比L/Wを6以下に
して、ラッチアップ現象を避けつつ、過大入力電圧によ
るフィールド酸化膜の破壊という欠点を除去せしめたも
のである。従来の様に、L/Wを大きくとったものと比
較すると、例えば、多結晶シリコンのL/Wを10とし
た時、入力端子と半導体基板間に400から500ボル
トの電圧が瞬間的に加わっただけで、ボンディングパッ
ド1からの接続用アルミ配線104と多結晶シリコン1
05とのコンタクト部107において、容易にフィール
ド酸化膜が破壊したのに対し、L/W=5での同条件で
は、フィールド酸化膜破壊は全く出現せず、また、ラッ
チアップ耐量L/W=10のそれと同水準であった。
According to the present invention, as shown in FIG. 3, the latch-up phenomenon is achieved by setting the ratio L / W of the length L and the width W of the polycrystalline silicon 105 connecting the bonding pad 1 and the clamp protection diode 3 to 6 or less. While avoiding the above, the drawback of destruction of the field oxide film due to excessive input voltage is eliminated. Compared with the conventional one in which the L / W is large, for example, when the L / W of polycrystalline silicon is 10, a voltage of 400 to 500 V is instantaneously applied between the input terminal and the semiconductor substrate. The aluminum wiring 104 for connection from the bonding pad 1 and the polycrystalline silicon 1
While the field oxide film was easily destroyed at the contact portion 107 with 05, the field oxide film was not destroyed at all under the same condition of L / W = 5, and the latch-up resistance L / W = It was at the same level as that of 10.

【0010】なお図2乃至図3において、106はフィ
ールド酸化膜、108はコンタクトホールである。
2 to 3, 106 is a field oxide film and 108 is a contact hole.

【0011】[0011]

【発明の効果】以上延べた様に、本発明によれば、MO
SICの微細化を進める上でフィールド酸化膜を薄くす
る際遭遇する、定格外の高い電圧や、静電気によるフィ
ールド酸化膜の破壊を防ぐために十分な効果を有する。
As described above, according to the present invention, the MO
It has a sufficient effect for preventing the breakdown of the field oxide film due to a high voltage outside the rating and static electricity that are encountered when thinning the field oxide film in advancing the miniaturization of the SIC.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のC−MOSICの入力端子における破壊
保護を示す回路図。
FIG. 1 is a circuit diagram showing destruction protection at an input terminal of a conventional C-MOS IC.

【図2】従来の保護抵抗の構造を説明するための断面
図。
FIG. 2 is a cross-sectional view for explaining the structure of a conventional protection resistor.

【図3】本発明による破壊保護機構を示すパターン図。FIG. 3 is a pattern diagram showing a destruction protection mechanism according to the present invention.

【符号の説明】[Explanation of symbols]

101半導体基板 103フィールド酸化膜 105多結晶シリコン 101 semiconductor substrate 103 field oxide film 105 polycrystalline silicon

【手続補正書】[Procedure amendment]

【提出日】平成4年4月14日[Submission date] April 14, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0001】[0001]

【産業上の利用分野】本発明は半導体装置、特にMOS
型電界効果トランジスタの集積装置(以下MOSICと
略記する)に関し、特に入力保護回路の構造に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor device, particularly a MOS.
And about the integrated device of the type field effect transistor (hereinafter abbreviated as MOSIC), even more particularly the structure of the input protection circuit
Of.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】つまり、この様な構造によって静電気等の
破壊耐量は向上してきたが、上記でも説明した様に、M
OSICが高集積化されると、P型拡散層102による
保護抵抗2の形成は、C−MOSIC特有のラッチアッ
プ現象を引き起こし易くするという欠点を有している。
ところで、このラッチアップ現象は、従来の半導体装
置、例えば、特公昭55−29139号公報の明細書に
示されている如く、半導体基板中に高濃度拡散層を設け
た構造で半導体基板の電位勾配をなくし、かつMOS型
電界効果トランジスタのマスク上のレイアウトを変更す
ることによって、寄生サイリスタ特性を劣化させて、生
じにくくすることが可能であるが、高集積度のMOSI
Cにおいては、更に上記P+拡散層102に代わり、保
護抵抗として多結晶シリコン105を採用するのが望ま
しい。しかるに該多結晶シリコン105による高抵抗値
の、即ち、多結晶シリコン長L/多結晶シリコン幅Wの
値が大きい保護抵抗を設けると、ボンディングパット1
に加った静電気等による過大電圧が、保護ダイオード2
を通じて中和されるに要する時間は長くなり、フィール
ド酸化膜103の破壊をもたらすという問題点を有す
る。また、高密度化が進むにつれて、MOSICの入力
ゲートに入力する電流量も大きくなるという問題を有す
る。
That is, although the breakdown resistance against static electricity has been improved by such a structure, as described above, M
When the OSIC is highly integrated, the formation of the protection resistor 2 by the P-type diffusion layer 102 has a drawback that the latch-up phenomenon peculiar to the C-MOSIC is easily caused.
By the way, this latch-up phenomenon occurs in a conventional semiconductor device, for example, in a structure in which a high-concentration diffusion layer is provided in a semiconductor substrate as shown in the specification of Japanese Patent Publication No. 55-29139, the potential gradient of the semiconductor substrate. It is possible to reduce the parasitic thyristor characteristics and prevent them from occurring by eliminating the above and changing the layout on the mask of the MOS field effect transistor.
In C, it is desirable to use polycrystalline silicon 105 as a protective resistance instead of the P + diffusion layer 102. However, if a protective resistor having a high resistance value of the polycrystalline silicon 105, that is, a large value of the polycrystalline silicon length L / the polycrystalline silicon width W is provided, the bonding pad 1
Excessive voltage due to static electricity applied to the protection diode 2
Therefore, it takes a long time to be neutralized, and the field oxide film 103 is destroyed. Also, as the density increases, the input of MOSIC
There is a problem that the amount of current input to the gate also increases.
It

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】そこで本発明はこのような問題点を解決す
るもので、その目的とするところはMOSICの入出力
端子と破壊防止用素子を接続する多結晶シリコン層の長
さL及び、幅Wの比を改良したものである。即ち、MO
SICの信号用入出力端子と破壊防止保護素子とを、多
結晶シリコンを用いて電気的に接続し、該多結晶シリコ
ンの信号伝播方向の長さLと、上記多結晶シリコン長と
直交をなす方向の幅Wの比、L/Wを6以下にして、
電気や、定格以上の高電圧によるMOSICの破壊に対
する耐量を改善し、また、入力端子と多結晶シリコンを
電気的に接続する導線の巾に比較して、MOSICの入
力ゲートと破壊防止用素子とを電気的に接続する導線の
巾の方を細くすることによってMOSICへ入力する電
流量を制御することができ、入力保護性能の向上を図り
つつ、高密度化に対応する構成にすることが可能とな
る。
Therefore, the present invention solves such a problem, and an object of the present invention is to set the length L and the width W of the polycrystalline silicon layer connecting the input / output terminals of the MOSIC and the destruction preventing element. It is an improved ratio. That is, MO
The signal input / output terminal of the SIC and the destruction prevention protection element are electrically connected using polycrystalline silicon, and the length L of the polycrystalline silicon in the signal propagation direction is orthogonal to the length of the polycrystalline silicon. the ratio of width is W, the L / W in the 6 or less, static electricity and to improve tolerance to breaking MOSIC by more high voltage rating, also the input terminal and the polycrystalline silicon
Compared to the width of the conductor to be electrically connected,
Of the conductor that electrically connects the force gate and the destruction prevention element
By inputting a narrower width to the input to the MOSIC
The flow rate can be controlled to improve the input protection performance.
At the same time, it is possible to have a configuration that supports high density.
It

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置は、
MOS型電界効果トランジスタを有する半導体装置にお
いて、半導体基板上に設けられた入力端子、電気的信号
伝播方向に沿った長さに対する電気的信号伝播方向と直
交する幅の比が、6以下である抵抗体、前記入力端子と
前記抵抗体とを電気的に接続する第1導電配線、前記抵
抗体と破壊防止用素子とを電気的に接続する第2導電配
線、前記破壊防止用素子と前記MOS型電界効果トラン
ジスタの入力ゲートとを電気的に接続し、かつ前記第1
導電配線の配線幅に比べて小なる配線幅である第3導電
配線を有することを特徴とする。
The semiconductor device of the present invention comprises:
In a semiconductor device having a MOS field effect transistor, a resistor having a ratio of a width orthogonal to an electrical signal propagation direction to an input terminal provided on a semiconductor substrate to a length along the electrical signal propagation direction is 6 or less. Body, a first conductive wiring for electrically connecting the input terminal and the resistor, a second conductive wiring for electrically connecting the resistor and a destruction prevention element, the destruction prevention element and the MOS type Electrically connecting to an input gate of the field effect transistor, and
It is characterized by having a third conductive wiring having a wiring width smaller than the wiring width of the conductive wiring.

【手続補正6】[Procedure Amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】本発明は、図3に示す如く、半導体基板1
01上にボンディングパッド1を設け、これを入力端子
とする。アルミ配線104により多結晶シリコン105
とを隣接して接続する。この多結晶シリコン105は本
入力保護回路の抵抗体となる。多結晶シリコン105の
長さLと幅Wの比L/Wを6以下にして、更に入力端子
1の巾より多結晶シリコン105の巾を小さくする。こ
れは、ラッチアップ現象を避けつつ、過大入力電圧によ
るフィールド酸化膜の破壊という欠点を除去せしめたも
のである。また入力端子となるボンディングパッド1の
巾より抵抗体となる多結晶シリコン105の巾を小さく
することにより、多結晶シリコンに入力する電流量をボ
ンディングパッド側において制御し、絶縁膜の過大電圧
からの保護に寄与することができる。更に、ボンディン
グパッド1がたとえ小さくなってもそれに伴って抵抗体
の巾も小さくすることにより、高集積化を図ることがで
きる。更に多結晶シリコン105とクランプ保護ダイオ
ード3とをアルミ配線にて隣接するように接続し、更に
MOSICの入力ゲートに接続する端子にアルミ配線に
より接続する。このとき、クランプ保護ダイオードに隣
接して入力ゲートを設けている。また、ボンディングパ
ッド1と多結晶シリコンを接続するアルミ配線104の
巾に比べて、クランプ保護ダイオードとMOSの入力ゲ
ートに接続する端子とを接続するアルミ配線の巾の方が
細くなるようにする。つまり、ボンディングパッド1と
多結晶シリコン105を接続するアルミ配線104の巾
に比ベて、クランプ保護ダイオードとMOSICの入力
ゲートに接続する端子とを接続するアルミ配線の巾の方
が太いと、ボンディングパッド1に加わった静電気等に
よる過大電圧が一度にクランプ保護ダイオード3にかか
る恐れがあるため、フィールド酸化膜の破壊をもたら
す。本実施例のようにマスク上でL/W=6以下のよう
な多結晶シリコン105を用いた保護回路と、従来の様
に、L/Wを大きくとったものと比較すると、例えば、
多結晶シリコンのL/Wを10とした時、入力端子と半
導体基板間に400から500ボルトの電圧が瞬間的に
加わっただけで、ボンディングパッド1からの接続用ア
ルミ配線104と多結晶シリコン105とのコンタクト
部107において、容易にフィールド酸化膜が破壊した
のに対し、L/W=5での同条件では、フィールド酸化
膜破壊は全く出現せず、また、ラッチアップ耐量L/
W=10のそれと同水準であった。
The present invention, as shown in FIG. 3, the semiconductor substrate 1
Bonding pad 1 is provided on 01, and this is an input terminal
And Aluminum wiring 104 allows polycrystalline silicon 105
And are connected adjacent to each other. This polycrystalline silicon 105 is a book
It becomes the resistor of the input protection circuit. The ratio L / W of the length L and the width W of the polycrystalline silicon 105 is set to 6 or less, and the input terminal
The width of the polycrystalline silicon 105 is made smaller than the width of 1. This
This avoids the latch-up phenomenon and eliminates the defect that the field oxide film is destroyed by an excessive input voltage. In addition, the bonding pad 1
The width of polycrystalline silicon 105, which is a resistor, is smaller than the width.
This reduces the amount of current input to the polycrystalline silicon.
Control on the bonding pad side, and excessive voltage of the insulating film
Can contribute to protection from. Furthermore, bondin
Even if the pad 1 becomes smaller, the resistor
It is possible to achieve high integration by reducing the width of
Wear. Furthermore, polycrystalline silicon 105 and clamp protection dio
And connect it to the terminal 3 with aluminum wiring so that they are adjacent to each other.
Aluminum wiring for the terminal connected to the input gate of MOSIC
Connect more. At this time, beside the clamp protection diode
An input gate is provided in contact with it. In addition, the bonding pattern
Of the aluminum wiring 104 connecting the pad 1 and the polycrystalline silicon
Compared to the width, the clamp protection diode and the MOS input gate
The width of the aluminum wiring that connects to the terminal that connects to the
Make it thin. That is, with the bonding pad 1
Width of aluminum wiring 104 connecting polycrystalline silicon 105
Clamp protection diode and MOSIC input
The width of the aluminum wiring that connects to the terminal that connects to the gate
If the thickness is thick, the static electricity applied to the bonding pad 1
Is the overvoltage caused by the clamp protection diode 3 at once?
May cause damage to the field oxide film.
You L / W = 6 or less on the mask as in this embodiment
Comparing a protection circuit using a polycrystal silicon 105 with a conventional one having a large L / W, for example,
When the L / W of the polycrystalline silicon is set to 10, only a voltage of 400 to 500 V is instantaneously applied between the input terminal and the semiconductor substrate, and the aluminum wiring 104 for connection from the bonding pad 1 and the polycrystalline silicon 105 are formed. While the field oxide film was easily destroyed at the contact portion 107 with, under the same condition of L / W = 5, the field oxide film was not destroyed at all, and the latch-up resistance was L / W.
It was at the same level as that of W = 10.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】[0011]

【発明の効果】以上延べた様に、本発明によれば、多結
晶シリコン105の長さLと幅Wの比L/Wを6以下に
して、更に入力端子と多結晶シリコン105を電気的に
接続する導線の巾に比較して、MOSICの入力ゲート
と破壊防止用素子とを電気的に接続する導線の巾の方を
細くすることによって、MOSICの微細化を進める上
でフィールド酸化膜を薄くする際遭遇する、定格外の高
い電圧や、静電気によるフィールド酸化膜の破壊を防ぐ
ために十分な効果を有する。また、高集積化に伴って素
子が微細化され、電気的な耐性の弱いMOSICに入力
する電流量を制限することが可能となるとなり高密度
化、高信頼性が達成できるという効果を有する。
As described above, according to the present invention, there are
The ratio L / W of the length L and the width W of the crystalline silicon 105 is set to 6 or less.
Then, the input terminal and the polycrystalline silicon 105 are electrically connected to each other.
Input gate of MOSIC compared to the width of the connecting conductor
The width of the conductor that electrically connects the
The thinness has a sufficient effect for preventing the breakdown of the field oxide film due to high voltage outside the rating and static electricity which are encountered when thinning the field oxide film in advancing the miniaturization of MOSIC. In addition, with high integration,
Input to MOSIC with small electrical resistance and weak electrical resistance
It becomes possible to limit the amount of electric current
It has the effect of achieving high reliability and high reliability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/784 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 29/784

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】MOS型電界効果トランジスタを有する半
導体装置において、半導体基板上に設けられた入力端
子、電気的信号伝播方向に沿った長さに対する電気的信
号伝播方向と直交する幅の比が、マスク上で6以下であ
る抵抗体、前記入力端子と前記抵抗体とを電気的に接続
する第1導電配線、前記抵抗体と破壊防止用素子とを電
気的に接続する第2導電配線、前記破壊防止用素子と前
記MOS型電界効果トランジスタの入力ゲートとを電気
的に接続し、かつ前記第1導電配線の配線幅に比べて小
なる配線幅である第3導電配線を有することを特徴とす
る半導体装置。
1. A semiconductor device having a MOS field effect transistor, wherein a ratio of a width of an input terminal provided on a semiconductor substrate and a width orthogonal to the electrical signal propagation direction to a length along the electrical signal propagation direction is: A resistor having 6 or less on the mask, a first conductive wire electrically connecting the input terminal and the resistor, a second conductive wire electrically connecting the resistor and the destruction prevention element, A breakdown preventing element and an input gate of the MOS field effect transistor are electrically connected, and a third conductive wiring having a wiring width smaller than a wiring width of the first conductive wiring is provided. Semiconductor device.
JP4058162A 1992-03-16 1992-03-16 Semiconductor device Expired - Lifetime JPH0758737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4058162A JPH0758737B2 (en) 1992-03-16 1992-03-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4058162A JPH0758737B2 (en) 1992-03-16 1992-03-16 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57215277A Division JPH0658945B2 (en) 1982-12-07 1982-12-07 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0590522A true JPH0590522A (en) 1993-04-09
JPH0758737B2 JPH0758737B2 (en) 1995-06-21

Family

ID=13076299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4058162A Expired - Lifetime JPH0758737B2 (en) 1992-03-16 1992-03-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0758737B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025532A (en) * 2005-07-21 2007-02-01 Seiko Epson Corp Electro-optic device and electronic equipment
KR100887884B1 (en) * 2007-10-01 2009-03-06 주식회사 동부하이텍 Semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366178A (en) * 1976-11-26 1978-06-13 Toshiba Corp Input protecting circuit
JPS5376678A (en) * 1976-12-17 1978-07-07 Nec Corp Semiconductor device
JPS56110267A (en) * 1980-02-06 1981-09-01 Nec Corp Semiconductor device
JPS56146278A (en) * 1980-04-15 1981-11-13 Toshiba Corp Semiconductor device
JPS5723269A (en) * 1980-07-16 1982-02-06 Toshiba Corp Input protecting circuit
JPS5724563A (en) * 1980-07-21 1982-02-09 Nec Corp Semiconductor device
JPS57180158A (en) * 1981-04-30 1982-11-06 Nec Corp Input protector for complementary mos integrated circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366178A (en) * 1976-11-26 1978-06-13 Toshiba Corp Input protecting circuit
JPS5376678A (en) * 1976-12-17 1978-07-07 Nec Corp Semiconductor device
JPS56110267A (en) * 1980-02-06 1981-09-01 Nec Corp Semiconductor device
JPS56146278A (en) * 1980-04-15 1981-11-13 Toshiba Corp Semiconductor device
JPS5723269A (en) * 1980-07-16 1982-02-06 Toshiba Corp Input protecting circuit
JPS5724563A (en) * 1980-07-21 1982-02-09 Nec Corp Semiconductor device
JPS57180158A (en) * 1981-04-30 1982-11-06 Nec Corp Input protector for complementary mos integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025532A (en) * 2005-07-21 2007-02-01 Seiko Epson Corp Electro-optic device and electronic equipment
KR100887884B1 (en) * 2007-10-01 2009-03-06 주식회사 동부하이텍 Semiconductor device

Also Published As

Publication number Publication date
JPH0758737B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
JP2638462B2 (en) Semiconductor device
KR930011797B1 (en) Semiconductor integrated circuit device
EP0161983B1 (en) Input protection arrangement for vlsi integrated circuit devices
US6587320B1 (en) Apparatus for current ballasting ESD sensitive devices
JP3217336B2 (en) Semiconductor device
EP0162460A2 (en) Integrated circuit with an input protective device
JPH08274267A (en) Semiconductor device
JPH0590522A (en) Semiconductor device
EP0087155B1 (en) Means for preventing the breakdown of an insulation layer in semiconductor devices
JP2611639B2 (en) Semiconductor device
JPH0590523A (en) Semiconductor device
JPH0590521A (en) Semiconductor device
EP0620598B1 (en) Input/output protective circuit
JP3185723B2 (en) Semiconductor device
JPS59105369A (en) Semiconductor device
JP3271435B2 (en) Semiconductor integrated circuit device
JP3319445B2 (en) Semiconductor device
JPH0454978B2 (en)
JP4006023B2 (en) Integrated circuit
JPH06140588A (en) Semiconductor integrated circuit
JPH0831948A (en) Semiconductor integrated circuit device
JP3017083B2 (en) I / O protection circuit
JPH0518467B2 (en)
JPH05211292A (en) Semiconductor input protection device
JPH0518468B2 (en)