JPH02216847A - High breakdown strength semiconductor device - Google Patents

High breakdown strength semiconductor device

Info

Publication number
JPH02216847A
JPH02216847A JP3750789A JP3750789A JPH02216847A JP H02216847 A JPH02216847 A JP H02216847A JP 3750789 A JP3750789 A JP 3750789A JP 3750789 A JP3750789 A JP 3750789A JP H02216847 A JPH02216847 A JP H02216847A
Authority
JP
Japan
Prior art keywords
wiring
layer
epitaxial layer
potential
inversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3750789A
Other languages
Japanese (ja)
Inventor
Tsuguyoshi Oosawa
大澤 亜美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3750789A priority Critical patent/JPH02216847A/en
Publication of JPH02216847A publication Critical patent/JPH02216847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the breakdown strength from decreasing due to inversion of an epitaxial layer by providing a polysilicon wiring, which crosses a wiring extended through the area above an element isolating region and at the potential homopolar with the element isolating region, on a substrate, and maintaining this wiring at the polar potential reverse to the element isolating region. CONSTITUTION:A thick insulating film 6 of a silicon oxide film is formed on a silicon substrate 1, and thereon a phosphorous glass (PSG) film 7 is formed, and further thereon an aluminum wiring 8 is formed. And a polysilicon wiring 9 is formed on an insulating film 6 by patterning such that it crosses the aluminum wiring 8 between an N<+>-type diffusion layer 10 and an element isolating region 5. This wiring is electrically connected to an epitaxial layer 2, and is always kept at the same potential as the epitaxial layer 2. By this constitution, the wiring 9 is formed directly not through a PSG film 7. Accordingly, by the effect of the high potential of the polysilicon wiring 9, an inversion layer 12, which arises below the aluminum wiring 8, becomes hard to be inverted, whereby breakdown generation by the inversion layer can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高耐圧半導体装置に関し、特に埋込み拡散層に
よって分離された高耐圧MO3)ランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high voltage semiconductor device, and more particularly to a high voltage MO3) transistor separated by a buried diffusion layer.

〔従来の技術] 従来、PN接合分離により素子間分離が行われる高耐圧
MO3,)ランジスタでは、素子を形成するエピタキシ
ャル層を逆導電型の埋込層で包囲して分離し、この分離
されたエピタキシャル層に高耐圧MOSトランジスタを
形成している。そして、このMOS)ランジスタを他の
素子や外部配線と接続する際には、配線をこの素子分離
用の埋込層上を通して接続を行っている。
[Prior Art] Conventionally, in high-voltage MO3) transistors in which element isolation is performed by PN junction isolation, the epitaxial layer forming the element is surrounded and isolated by a buried layer of the opposite conductivity type, and this separated A high voltage MOS transistor is formed in the epitaxial layer. When this MOS transistor is connected to other elements or external wiring, the wiring is passed over this buried layer for element isolation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の高耐圧MO3)ランジスタでは、埋込層
上を通された配線に埋込層と同電位の高電圧が印加され
たとき、換言すればエピタキシャル層と逆電位の高電圧
が印加されたときに、配線下のエピタキシャル層が反転
される。そして、この反転層がソース・ドレイン領域或
いはコンタクト領域等の高濃度の拡散層に衝突した所で
ブレークダウンを起こし、耐圧を低下させるという問題
が生じている。
In the above-mentioned conventional high-voltage MO3) transistor, when a high voltage having the same potential as the buried layer is applied to the wiring passed over the buried layer, in other words, a high voltage having the opposite potential to the epitaxial layer is applied. At this time, the epitaxial layer under the wiring is inverted. A problem arises in that this inversion layer causes breakdown where it collides with a highly doped diffusion layer such as a source/drain region or a contact region, resulting in a reduction in breakdown voltage.

本発明はこのようなエピタキシャル層の反転による耐圧
の低下を防止した高耐圧半導体装置を提供することを目
的とする。
An object of the present invention is to provide a high breakdown voltage semiconductor device that prevents a decrease in breakdown voltage due to such inversion of the epitaxial layer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の高耐圧半導体装置は、一導電型の半導体基板に
逆導電型のエピタキシャル層を形成し、このエピタキシ
ャル層を一導電型の埋込層で形成した素子分M fil
域により素子分離する半導体装置において、半導体基板
上には素子分離領域上を通して延設される素子分離領域
と同極性電位の配線と交差するポリシリコン配線を設け
ており、しかもこのポリシリコン配線を前記素子分離領
域と逆極性電位に保持した構成としている。
The high-voltage semiconductor device of the present invention has an epitaxial layer of an opposite conductivity type formed on a semiconductor substrate of one conductivity type, and an element portion M fil in which this epitaxial layer is formed with a buried layer of one conductivity type.
In a semiconductor device in which elements are isolated by a region, a polysilicon wiring is provided on a semiconductor substrate and intersects with a wiring having the same polarity potential as the element isolation region, which extends over the element isolation region, and this polysilicon wiring is The structure is such that it is held at a potential of opposite polarity to that of the element isolation region.

〔作用〕[Effect]

上述した構成では、素子分1g領域上を通して延設され
る配線が原因とされる反転層の発生をポリシリコン配線
によって抑制し、この反転層により生じるブレークダウ
ンを抑制して高耐圧化を可能とする。
In the above-mentioned configuration, the polysilicon wiring suppresses the generation of an inversion layer caused by the wiring extending over the 1g region of the element, and suppresses the breakdown caused by this inversion layer, making it possible to increase the breakdown voltage. do.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

P−型シリコン基板1の素子分離領域に高濃度のP型不
純物を選、次的に導入しておき、この基板1上にN−型
エピタキシャル層2を成長する。このとき、前記P型不
純物が上方に拡散し、P゛゛込層3が形成される。更に
、エピタキシャル層20表面から高濃度のP型不純物を
選択的に拡散させてP“層4を形成し、前記P°埋込層
3に到達させることで、これらP゛゛込層3とP゛層4
で素子分離領域5を形成する。
A highly concentrated P type impurity is selected and introduced into the element isolation region of a P- type silicon substrate 1, and an N- type epitaxial layer 2 is grown on this substrate 1. At this time, the P-type impurity diffuses upward, and a P-type impurity layer 3 is formed. Furthermore, by selectively diffusing high-concentration P-type impurities from the surface of the epitaxial layer 20 to form a P'' layer 4 and allowing it to reach the P° buried layer 3, these P'' buried layers 3 and P'' layer 4
Then, element isolation regions 5 are formed.

この素子分離領域で分離されたエピタキシャル層2には
、MoSトランジスタを形成しており、図では例えばエ
ピタキシャルコンタクト領域としてのN“拡散層10を
示している。
A MoS transistor is formed in the epitaxial layer 2 separated by this element isolation region, and the figure shows, for example, an N'' diffusion layer 10 as an epitaxial contact region.

マタ、前記シリコン基板1上には、シリコン酸化膜から
なる厚い絶縁膜6を形成し、更にこの上にリンガラス(
PSG)膜7を形成し、この上にアルミニウム配、98
を形成している。このアルミニウム配線8はエピタキシ
ャル層2に形成されたMo3)ランジスタを他のMo3
)ランジスタ或いは電源、接地等の外部配線に接続する
ためのものである。
First, a thick insulating film 6 made of a silicon oxide film is formed on the silicon substrate 1, and a phosphor glass (
PSG) film 7 is formed, and an aluminum layer 98 is formed on this film.
is formed. This aluminum wiring 8 connects the Mo3) transistor formed in the epitaxial layer 2 to another Mo3 transistor.
) This is for connecting to a transistor or external wiring such as power supply and grounding.

そして、前記絶縁膜6の上には、前記N゛型型数散層0
と素子分N領域5との間において、前記アルミニウム配
線8と交差するようにパターン形成したポリシリコン配
線9を形成している。このポリシリコン配線9は前記エ
ピタキシャル層2に電気接続しており、常にエピタキシ
ャル層2と同電位に保持されるように構成している。
Then, on the insulating film 6, the N-type scattering layer 0
A polysilicon wiring 9 is formed in a pattern so as to intersect with the aluminum wiring 8 between the element N region 5 and the aluminum wiring 8 . This polysilicon wiring 9 is electrically connected to the epitaxial layer 2 and is configured to be always held at the same potential as the epitaxial layer 2.

ここで、前記エピタキシャル層2は高圧V0電位とされ
、前記素子分離領域5はVSS電位とされているため、
これらの接合面には空乏層11が広がり、耐圧を保って
いる。
Here, since the epitaxial layer 2 is at a high voltage V0 potential and the element isolation region 5 is at a VSS potential,
A depletion layer 11 spreads across these junction surfaces to maintain breakdown voltage.

ここで、アルミニウム配線8にVSS電位が加えられる
と、エピタキシャル層2の表面はこのV。
Here, when a VSS potential is applied to the aluminum wiring 8, the surface of the epitaxial layer 2 reaches this V.

電位に引かれてホールが集まりP−型に反転する。Attracted by the potential, holes gather and invert into a P-type.

こうして形成されたP−反転1i112はN゛゛散層1
0に到達し、P−N’″接合の耐圧以上の電界がかかる
と、素子分M ’pTJ域5とエピタキシャル層2の耐
圧の実力以下でもブレークダウンを起こすおそれがある
The P-inversion 1i112 thus formed is the N-diffused layer 1
0, and if an electric field higher than the breakdown voltage of the PN''' junction is applied, breakdown may occur even if the voltage is lower than the actual breakdown voltage of the element M'pTJ region 5 and the epitaxial layer 2.

しかしながら、この構成ではポリシリコン配線9はPS
Gi7@介さずシリコン酸化膜6の上に直接形成されて
いるため、ポリシリコン配線9の高電位の影響でアルミ
ニウム配線8の下に生じる反転層12は反転し難くなり
、上述した反転層によるブレークダウンの発生を防止す
る。
However, in this configuration, the polysilicon wiring 9 is
Since Gi7@ is formed directly on the silicon oxide film 6 without intervening, the inversion layer 12 formed under the aluminum interconnection 8 due to the high potential of the polysilicon interconnection 9 becomes difficult to invert, and the above-mentioned break due to the inversion layer occurs. Prevent the occurrence of down.

なお、本発明はN型シリコン基板にP−エピタキシャル
層を形成しかつこのエピタキシャル層をN゛゛込層によ
り素子分離する構成においても同様に適用することがで
きる。
Note that the present invention can be similarly applied to a structure in which a P-epitaxial layer is formed on an N-type silicon substrate and the elements of this epitaxial layer are separated by an N-type layer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、素子分離領域と同極性電
位の配線と交差するポリシリコン配線を設け、かつこの
ポリシリコン配線を前記素子分離領域と逆極性電位に保
持しているので、素子分離領域上を通して延設された配
線が原因とされる反転層の発生をポリシリコン配線によ
って抑制し、素子分離領域とエピタキシャル層との本来
の耐圧を保って半導体装置の高耐圧化を実現できる効果
がある。
As explained above, in the present invention, a polysilicon wiring is provided which intersects with a wiring having the same polarity potential as the element isolation region, and this polysilicon wiring is held at the opposite polarity potential to the element isolation region. Polysilicon wiring suppresses the occurrence of an inversion layer caused by wiring extending over the area, maintains the original withstand voltage between the element isolation region and the epitaxial layer, and has the effect of increasing the withstand voltage of semiconductor devices. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図である。 1・・・P型シリコン基板、2・・・N−エピタキシャ
ル層、3・・・P゛埋込層、4・・・P゛層、5・・・
素子分離領域、6・・・シリコン酸化膜、7・・・PS
G、8・・・アルミニウム配線、9・・・ポリシリコン
配線、10・・・N゛拡散層、11・・・空乏層、12
・・・P−型反転層。
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... P type silicon substrate, 2... N- epitaxial layer, 3... P' buried layer, 4... P' layer, 5...
Element isolation region, 6... silicon oxide film, 7... PS
G, 8... Aluminum wiring, 9... Polysilicon wiring, 10... N' diffusion layer, 11... Depletion layer, 12
...P-type inversion layer.

Claims (1)

【特許請求の範囲】[Claims] 1、一導電型の半導体基板に逆導電型のエピタキシャル
層を形成し、このエピタキシャル層を一導電型の埋込層
で形成した素子分離領域により素子分離した半導体装置
において、前記半導体基板上には前記素子分離領域上を
通して延設される素子分離領域と同極性電位の配線と交
差するポリシリコン配線を設け、かつこのポリシリコン
配線を前記素子分離領域と逆極性電位に保持したことを
特徴とする高耐圧半導体装置。
1. In a semiconductor device in which an epitaxial layer of an opposite conductivity type is formed on a semiconductor substrate of one conductivity type, and elements of this epitaxial layer are isolated by an element isolation region formed of a buried layer of one conductivity type, on the semiconductor substrate: A polysilicon wiring is provided that extends over the element isolation region and intersects with a wiring having the same polarity potential as the element isolation region, and the polysilicon wiring is maintained at a potential of opposite polarity to the element isolation region. High voltage semiconductor device.
JP3750789A 1989-02-17 1989-02-17 High breakdown strength semiconductor device Pending JPH02216847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3750789A JPH02216847A (en) 1989-02-17 1989-02-17 High breakdown strength semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3750789A JPH02216847A (en) 1989-02-17 1989-02-17 High breakdown strength semiconductor device

Publications (1)

Publication Number Publication Date
JPH02216847A true JPH02216847A (en) 1990-08-29

Family

ID=12499445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3750789A Pending JPH02216847A (en) 1989-02-17 1989-02-17 High breakdown strength semiconductor device

Country Status (1)

Country Link
JP (1) JPH02216847A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985984A (en) * 1972-12-20 1974-08-17
JPS6156431A (en) * 1984-08-28 1986-03-22 Nec Corp High-voltage semiconductor integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985984A (en) * 1972-12-20 1974-08-17
JPS6156431A (en) * 1984-08-28 1986-03-22 Nec Corp High-voltage semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US7279768B2 (en) Semiconductor device for overvoltage protection
US8304827B2 (en) Semiconductor device having on a substrate a diode formed by making use of a DMOS structure
KR100683102B1 (en) Semiconductor device
JPH08130308A (en) Semiconductor device
TWI784064B (en) Gate-controlled bipolar junction transistor and operation method thereof
US4476479A (en) Semiconductor device with operating voltage coupling region
CN101364596A (en) Semiconductor device
JPH02216847A (en) High breakdown strength semiconductor device
JPH08195443A (en) Semiconductor device and its manufacture
JP3217484B2 (en) High voltage semiconductor device
TWI756624B (en) Semiconductor structure
KR20080060995A (en) Semiconductor device having mosfet including ring type gate electrode
JPH07147384A (en) Semiconductor device
JPS58182861A (en) Semiconductor device
JPH0453169A (en) Semiconductor protective device
JPH0222858A (en) Semiconductor device
CN106206565A (en) Diode and diode string circuit
JPH0653490A (en) Semiconductor device
JPH0258864A (en) Semiconductor device
JPH03248476A (en) Semiconductor device
JPS6156431A (en) High-voltage semiconductor integrated circuit
JPH09283752A (en) Mis-type semiconductor device
JPH0215672A (en) Semiconductor device
JPH0548015A (en) Semiconductor device
KR19990066039A (en) Pad for Improving IC Performance of Semiconductor Devices