JPS61292372A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61292372A
JPS61292372A JP13461985A JP13461985A JPS61292372A JP S61292372 A JPS61292372 A JP S61292372A JP 13461985 A JP13461985 A JP 13461985A JP 13461985 A JP13461985 A JP 13461985A JP S61292372 A JPS61292372 A JP S61292372A
Authority
JP
Japan
Prior art keywords
diffusion layer
drain
source side
length
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13461985A
Other languages
Japanese (ja)
Other versions
JPH0638427B2 (en
Inventor
Nobuyuki Takenaka
竹中 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP13461985A priority Critical patent/JPH0638427B2/en
Publication of JPS61292372A publication Critical patent/JPS61292372A/en
Publication of JPH0638427B2 publication Critical patent/JPH0638427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously improve the hot carrier production preventive capability and drain pressure-resistance increase capability of a semiconductor device by making the length of the diffusion layer on a drain side larger and the length of the diffusion layer on a source side shorter. CONSTITUTION:The MOSFET consists of a P-type silicon substrate 1, a gate oxide film 2, a gate electrode 3, a side wall 4, a low-density N<-> diffusion layer on the drain side 5-a, an N<-> diffusion layer on the source side 5-b, a high density N<+> diffusion layer on the drain side 6-a, and an N<+> diffusion layer on the source side 6-b. The width of the side wall LSW is the same on the source and drain sides, and the length of the N<-> diffusion layer is longer on the drain side (Ln<->D) than on the source side (Ln<->S). The generation of the hot carrier is substantially suppressed by Ln<->D made larger on the drain side. The increase in the channel resistance of the MOSFET is coped with by making Ln<-->S on the source side shorter.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はMOS型電界効果トランジスタ(以下MOSF
ETと記す)、特に二重拡散ドレイン(Lightly
 Doped Drain )構造の半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a MOS field effect transistor (hereinafter referred to as MOSF).
ET), especially double diffused drains (Lightly
The present invention relates to a semiconductor device having a doped drain structure.

従来の技術 MOSFETの微細化にともない、素子内部のの電界強
度が高くなシ、発生したホットキャリアによる素子特性
の劣化及びドレイン耐圧の低下が問題となってくる。
BACKGROUND OF THE INVENTION As MOSFETs become smaller in size, the electric field strength inside the device becomes higher, deterioration of device characteristics due to generated hot carriers, and reduction in drain breakdown voltage become problems.

この問題を解決するための構造として、例えばアイイー
イーイードランズアクション オプ エレクトロン デ
バイス イーデー29巻、4号。
As a structure for solving this problem, for example, IEE Lands Action Op Electron Device Eday Vol. 29, No. 4.

1982年、69o頁(IEEE Transacti
ons巻 of Electron Devices ED−29
v、4号、1982年。
1982, p. 69o (IEEE Transacti.
ons volume of Electron Devices ED-29
v, No. 4, 1982.

psso)に記載されているLDD構造のMOSFET
がある。従来のLDD構造をnチャンネル榊0→MOS
FETに適用した例を第3図aの断面図に示す。LDD
−MOSFETはp型シリコン基板11上に形成された
ゲート酸化膜12と、ゲート電極13と、同ゲート電極
13の両側壁に形成された絶縁物からなるサイドウオー
ル14と、前記ゲート電極13をマスクにしてイオン注
入法で形成されたn型の低濃度拡散層(n一層)15と
、前記サイドウオールをマスクにして同様に形成された
n型の高濃度拡散層(n”/り16とからなっており、
このn一層がMOSFET内部の電界零度を弱める働き
をすることによりホットキャリアの発生を抑制し、かつ
ドレイン耐圧を高めていた。
MOSFET with LDD structure described in psso)
There is. Conventional LDD structure is converted to n-channel Sakaki 0→MOS
An example applied to an FET is shown in the sectional view of FIG. 3a. LDD
- The MOSFET includes a gate oxide film 12 formed on a p-type silicon substrate 11, a gate electrode 13, side walls 14 made of an insulator formed on both side walls of the gate electrode 13, and a mask for the gate electrode 13. An n-type low concentration diffusion layer (n single layer) 15 formed using the ion implantation method, and an n type high concentration diffusion layer (n''/layer 16) formed in the same manner using the sidewall as a mask. has become,
This n layer functions to weaken the zero electric field inside the MOSFET, thereby suppressing the generation of hot carriers and increasing the drain breakdown voltage.

発明が解決しようとする問題点 りかLながら、従来(7)LDD−MOSFET−7’
は第3図すの等価回路図に示すようにn一層の抵抗Rn
−がソース・ドレイン間に直列に入るため、MOSFE
Tのオン抵抗が2Rn−高くなり電流駆動能力が低下す
る欠点があった。
Despite the problems that the invention attempts to solve, the conventional (7) LDD-MOSFET-7'
is a resistor Rn of n layers as shown in the equivalent circuit diagram in Figure 3.
- enters in series between the source and drain, so the MOSFE
There was a drawback that the on-resistance of T increased by 2Rn- and the current driving ability decreased.

また、n一層のホットキャリア発生防止能力及びドレイ
ン耐圧増大能力と抵抗Rn−は逆比例のの関係にあるた
め、n一層の長さLn−及び不純本発明は上記欠点を解
決するためになされたものであり、半導体基板上に形成
されたMOSFETのゲート電極の両側壁に、絶縁物か
らなる等しい厚さのサイドウオールが形成されており、
さらに同サイドウオール下部に前記半導体基板と逆の伝
導型を示す不純物の低濃度拡散層が形成され、かつ同低
濃度拡散層の長さがドレイン側の方がソース側よりも長
くなっていることを特徴としている。
In addition, since the ability to prevent hot carrier generation and the ability to increase drain breakdown voltage of the n-layer are inversely proportional to the resistance Rn-, the length Ln- of the n-layer and impurity The present invention was made to solve the above-mentioned drawbacks. A MOSFET is formed on a semiconductor substrate, and side walls of equal thickness are formed on both sides of the gate electrode of the MOSFET.
Furthermore, a low concentration diffusion layer of an impurity having a conductivity type opposite to that of the semiconductor substrate is formed at the bottom of the sidewall, and the length of the low concentration diffusion layer is longer on the drain side than on the source side. It is characterized by

作  用 本発明に係るMOSFETではソース側のn一層の長さ
が短いためRn″″(II>Rn−(S)  となり、
Rn−Q))+Rn−(S)を従来の直列抵抗値2Rn
−と等しくした場合、ホットキャリア発生防止能力及び
ドレイン耐圧増大能力を大幅に向上させることが可能と
なる。
Function: In the MOSFET according to the present invention, since the length of the n layer on the source side is shorter, Rn″″(II>Rn−(S)),
Rn-Q))+Rn-(S) is the conventional series resistance value 2Rn
-, it becomes possible to significantly improve the ability to prevent hot carrier generation and the ability to increase drain breakdown voltage.

実施例 本発明をnチャンネル型MOSFETに適用した時の一
実施例を第1図に示す。
Embodiment FIG. 1 shows an embodiment in which the present invention is applied to an n-channel MOSFET.

本発明のMOSFETは、第1図にその要部の断面図を
示すように、p型シリコン基板1と同基板上に形成され
たゲート酸化膜2と同酸化膜上に形成されたリンをドー
プしたポリシリコンからなるゲート電極3と、同ゲート
電極3の両側壁に形成されたCVD酸化膜からなるサイ
ドウオール4と、同サイドウオール下部に形成されたド
レイン側の低濃度n型(n−)拡散層5− aとソース
側のn−拡散層s−bと、それぞれのn−拡散層に接し
て形成されたドレイン側の高濃度n型(n勺拡散層6−
 aとソース側のn+拡散層e−bとで構成されている
The MOSFET of the present invention, as shown in a cross-sectional view of its main parts in FIG. A gate electrode 3 made of polysilicon, a sidewall 4 made of a CVD oxide film formed on both side walls of the gate electrode 3, and a low concentration n-type (n-) layer on the drain side formed at the bottom of the sidewall. The diffusion layer 5-a, the n-diffusion layer s-b on the source side, and the high concentration n-type (n-diffusion layer 6-a) on the drain side formed in contact with each n-diffusion layer.
a and an n+ diffusion layer eb on the source side.

さらに、サイドウオールの幅Is+w はソース側とド
レイン側で等しく、かつn−拡散層の長さはソース側(
LnS)  よりもドレイン側(Ln−D)の方が大き
くなっておシ、ホットキャリアの発生はドレイン側のL
n−Dを大きくしたことで大幅に抑制でき、またMOS
FETのチャンネル抵抗の増大に対してはソース側のL
n−3を短かくしたことで対処した。
Furthermore, the width Is+w of the sidewall is equal on the source side and the drain side, and the length of the n- diffusion layer is on the source side (
LnS) is larger on the drain side (Ln-D), and hot carriers are generated on the drain side (Ln-D).
By increasing n-D, it can be significantly suppressed, and the MOS
In response to an increase in FET channel resistance, the source side L
This problem was solved by shortening n-3.

次に本発明のLDD−MOSFETの製造方法の一実施
例を第2図a −dの工程順断面図を参照して説明する
Next, an embodiment of the method for manufacturing an LDD-MOSFET of the present invention will be described with reference to step-by-step sectional views of FIGS. 2a to 2d.

第2図aに示すようにp型(100)基板1上に900
℃の熱酸化によって厚さ約300人のゲート酸化膜2を
形成する。
As shown in FIG. 2a, a 900 nm
A gate oxide film 2 having a thickness of about 300 wafers is formed by thermal oxidation at .degree.

次に周知の減圧CVD法によって厚さ約6000人のポ
リシリコン膜を形成し、熱拡散によってリンを約1o2
0cnt−3程度ドープした後、フォトレジストアをマ
スクにして異方性エツチングを行ない、第2図aに示す
ような側面がほぼ垂直なゲート電極3を形成する。
Next, a polysilicon film with a thickness of about 6,000 wafers is formed by the well-known low pressure CVD method, and phosphorus is absorbed by about 1o2 by thermal diffusion.
After doping to about 0 cnt-3, anisotropic etching is performed using the photoresist as a mask to form a gate electrode 3 with substantially vertical sides as shown in FIG. 2a.

次に、ゲート電極3をマスクにしてイオン注入法によっ
て、リンを加速エネルギ60Key、ドーズ量5×10
 crrl の条件でシリコン基板1中に注入する。こ
のリン注入時に注入方向を第2図すに示すようにドレイ
ン側に約100傾けて注入する。すると、ゲート電極3
のシャドウ効果によシ、ソース側のリンイオン注入層は
ゲート電極端部から約0.1μm離間して形成される。
Next, using the gate electrode 3 as a mask, phosphorus is implanted using an ion implantation method at an acceleration energy of 60 keys and a dose of 5×10
It is implanted into the silicon substrate 1 under the conditions of crrl. During this phosphorus injection, the injection direction is tilted approximately 100 degrees toward the drain side as shown in FIG. Then, gate electrode 3
Due to the shadow effect, the phosphorus ion-implanted layer on the source side is formed at a distance of about 0.1 μm from the end of the gate electrode.

この離間長はゲート電極の厚さxtan(注入傾斜角)
にほぼ等しくなる。リンイオン注入後、シリコン基板に
900℃、30分間の熱処理を施して、注入したリンを
活性化及び拡散させて、第2図すに示したような、ドレ
イン耐圧層 散層5− aとs−bを形成する。第2図すではソース
側のn−″拡散層s−bがゲート電極下部に達している
状態を示したが、実際上は、以後の熱処理を経た後°に
ソース側のn−拡散層ts−bとゲート電極3とがオー
バーラツプすれば良い。
This separation length is the gate electrode thickness xtan (implantation tilt angle)
is approximately equal to . After implanting phosphorus ions, the silicon substrate is heat treated at 900°C for 30 minutes to activate and diffuse the implanted phosphorus, forming drain breakdown layers 5-a and s- as shown in Figure 2. form b. Although Figure 2 shows the state in which the n-'' diffusion layer s-b on the source side has reached the lower part of the gate electrode, in reality, after the subsequent heat treatment, the n- diffusion layer ts on the source side is -b and the gate electrode 3 should just overlap.

次に第2図Cに示すように、プラズマCVD法によって
、厚さ約5000Aの酸化膜4′を形成し、その後反応
性イオンエツチング法によって、シリコン基板1の表面
が露出するまで異方性エツチングを行ない、第2図dに
示したようなサイドウオール4を形成する。この時形成
されるサイドウオールの幅は、ゲート電極の形状、プラ
ズマ酸化膜のステップカバレージ、エツチングの異方度
によって影響を受けるが、本実施例の場合、サイドウオ
ールの幅は3500人であった。
Next, as shown in FIG. 2C, an oxide film 4' having a thickness of approximately 5000 Å is formed by plasma CVD, and then anisotropic etching is performed by reactive ion etching until the surface of silicon substrate 1 is exposed. Then, the sidewall 4 as shown in FIG. 2d is formed. The width of the sidewall formed at this time is influenced by the shape of the gate electrode, the step coverage of the plasma oxide film, and the degree of anisotropy of etching, but in the case of this example, the width of the sidewall was 3500 mm. .

次に、第2図dに示すように、サイドウオール4をマス
クにしてイオン注入法によってヒ素を加速エネルギ40
 Kev 、ドーズ量5X10m  の条件でシリコン
基板1中に注入する。この時、ヒ素イオンの注入方向を
、リンイオンの注入方向と逆のソース側に約10°傾け
て注入する。、今度は。
Next, as shown in FIG. 2d, using the sidewall 4 as a mask, arsenic is ion-implanted using an acceleration energy of 40%.
Kev and a dose of 5×10 m into the silicon substrate 1. At this time, the implantation direction of arsenic ions is tilted by about 10 degrees toward the source side, which is opposite to the direction of implantation of phosphorus ions. ,Next time.

サイドウオール4のシャドウ効果によシ、ドレイン側の
ヒ素イオン注入層はゲート電極端部から約0.1μm程
度離間して形成される。この離間長はサイドウオールの
高さ×−(注入傾斜角)にほぼ等しくなる。ヒ素イオン
注入後、シリコン基板1に1000℃、20分間の熱処
理を施して、注入されたヒ素原子を活性化及び拡散させ
て、n+拡散層6−aと6−bを形成することによって
第1図に示した、サイドウオールの幅Lsw  はソー
ス側とドレイン側で等しく、かつ、n−拡散層の長さは
Ln″’D(ドレイン側)の方がLn−9(ソース側)
よりも大きなLDD−MOSFETが完成する。
Due to the shadow effect of the sidewall 4, the arsenic ion-implanted layer on the drain side is formed at a distance of about 0.1 μm from the end of the gate electrode. This separation length is approximately equal to sidewall height×(implantation inclination angle). After implanting arsenic ions, the silicon substrate 1 is heat-treated at 1000°C for 20 minutes to activate and diffuse the implanted arsenic atoms, forming n+ diffusion layers 6-a and 6-b. The width Lsw of the sidewall shown in the figure is equal on the source side and the drain side, and the length of the n- diffusion layer is Ln''D (drain side) than Ln-9 (source side).
A larger LDD-MOSFET is completed.

本実施例の製造方法ではリン及びヒ素の両元素とも傾け
て注入したが、注入角度、ゲート電極の厚さ、サイドウ
オールの高さ、熱処理条件等々を適当な値に設定すれば
、リンまたはヒ素のどちらか一方のみを傾けて注入して
も本発明のLDD−MOSFETを製造することができ
る。
In the manufacturing method of this example, both phosphorus and arsenic were implanted at an angle, but if the implantation angle, gate electrode thickness, sidewall height, heat treatment conditions, etc. are set to appropriate values, phosphorus or arsenic can be implanted at an angle. The LDD-MOSFET of the present invention can be manufactured even if only one of them is implanted at an angle.

発明の効果 以上の説明から明らかなように本発明によると。Effect of the invention According to the present invention, as is clear from the above description.

ドレイン側のn−拡散層の長さLn−Dを大きく、逆に
ソース側のn−拡散層の長さLn−3を小さくできるの
で、ホットキャリア効果の抑制及びチャンネル抵抗増大
の抑制が同時に実現できる効果を有する。
Since the length Ln-D of the n-diffusion layer on the drain side can be increased and the length Ln-3 of the n-diffusion layer on the source side can be decreased, the hot carrier effect and the increase in channel resistance can be suppressed at the same time. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体装置の要部の断
面図、第2図a−dは本発明実施例のLDD−MOSF
ETを製造面から説明するための工程順断面図、第3図
aは従来のLDD−MOSFETを示す断面図、第3図
すはその等価回路である。 1・・・・・・p型シリコン基板、2・・・・・・ゲー
ト酸化膜、3・・・・・・ゲート電極、4・・・・・・
サイドウオール、6−a、5−b・・・・・・ドレイン
側とソース側のn−拡散層、e−a、e−b・・・・・
・ドレイン側とソース側のn+拡散層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−P翌シリコン基4( 2−一一ケートa4ら仄 3−m−ケートも、極 4−m−すイドウl−ル f−a −−−n−12,11J (hM7儀りン第 
1 図             F−is−−−n−
藝」K1(シース携りメーa−−−r1下L4(ルθ剣
ノ ロ −& −−−n”JE ILJ  (ン−y、、*
す2ソーλ4鴨                ドレ
インl)J第25!J ソース領IJドレイノ剥 第2図
FIG. 1 is a sectional view of a main part of a semiconductor device according to an embodiment of the present invention, and FIGS. 2 a to 2 d are LDD-MOSFs according to an embodiment of the present invention.
FIG. 3a is a cross-sectional view showing a conventional LDD-MOSFET, and FIG. 3 is an equivalent circuit thereof. 1...p-type silicon substrate, 2...gate oxide film, 3...gate electrode, 4...
Side wall, 6-a, 5-b... N-diffusion layer on drain side and source side, e-a, e-b...
・N+ diffusion layer on drain side and source side. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--PNext silicon group 4 (2-11 Kate a4 and 3-M-Kate are also polar 4-M-Suidoulfa ---N-12,11J (hM7 Girin No.
1 Figure F-is---n-
藝"K1 (sheath carrier mail a---r1 lower L4 (ru θ sword noro -&---n"JE ILJ (n-y,,*
Su2 saw λ4 duck drain l) J No. 25! J Source territory IJ Draino peeling Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に形成されたMOS型電界効果トラ
ンジスタのゲート電極の両側壁に絶縁物からなる等しい
厚さのサイドウォールが形成され、かつ前記サイドウォ
ール下部に前記半導体基板と逆の伝導型を示す不純物の
低濃度拡散層がソース側とドレイン側で異なった長さに
形成されていることを特徴とする半導体装置。
(1) Sidewalls of equal thickness made of an insulator are formed on both sides of the gate electrode of a MOS field effect transistor formed on a semiconductor substrate, and the lower part of the sidewall is of a conductivity type opposite to that of the semiconductor substrate. 1. A semiconductor device characterized in that a low concentration diffusion layer of an impurity exhibiting the following properties is formed to have different lengths on a source side and a drain side.
(2)低濃度拡散層の長さがドレイン側でノース側より
も長くなっていることを特徴とする特許請求の範囲第1
項記載の半導体装置。
(2) Claim 1 characterized in that the length of the low concentration diffusion layer is longer on the drain side than on the north side.
1. Semiconductor device described in Section 1.
JP13461985A 1985-06-20 1985-06-20 Method for manufacturing semiconductor device Expired - Lifetime JPH0638427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13461985A JPH0638427B2 (en) 1985-06-20 1985-06-20 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13461985A JPH0638427B2 (en) 1985-06-20 1985-06-20 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61292372A true JPS61292372A (en) 1986-12-23
JPH0638427B2 JPH0638427B2 (en) 1994-05-18

Family

ID=15132619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13461985A Expired - Lifetime JPH0638427B2 (en) 1985-06-20 1985-06-20 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0638427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962853B2 (en) 2000-01-20 2005-11-08 Matsushita Electronic Industrial Co., Ltd. Semiconductor device and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962853B2 (en) 2000-01-20 2005-11-08 Matsushita Electronic Industrial Co., Ltd. Semiconductor device and method for fabricating the same

Also Published As

Publication number Publication date
JPH0638427B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US20080160706A1 (en) Method for fabricating semiconductor device
JPS62113474A (en) Manufacture of semiconductor integrated circuit
JP3122403B2 (en) Semiconductor device and manufacturing method thereof
JP2000174135A (en) Semiconductor device and manufacture thereof
JP2004022769A (en) Lateral high breakdown voltage semiconductor device
JPH0234936A (en) Semiconductor device and its manufacture
JP3744438B2 (en) Semiconductor device
JPS61292372A (en) Semiconductor device
JPH0346238A (en) Manufacture of semiconductor device
JPH04212467A (en) Semiconductor device and manufacture thereof
JPH0656855B2 (en) Insulated gate type field effect transistor
JPH01196176A (en) Mis type semiconductor device
JP2000068499A (en) Semiconductor device and manufacture of the same
JP2757491B2 (en) Method for manufacturing semiconductor device
JPS61294868A (en) Semiconductor device
JP2537649B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH05267338A (en) Manufacture of semiconductor device
JPH01108774A (en) Semiconductor device
JPH04255233A (en) Semiconductor device and manufacture thereof
JPH0630390B2 (en) Method for manufacturing CMOS semiconductor device
JPH02219237A (en) Mis type semiconductor device
JPS6254959A (en) Manufacture of mis semiconductor device
JPS6136973A (en) Semiconductor device
JPH0629527A (en) Semiconductor device and its manufacture
JPH0438834A (en) Manufacture of mos transistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term