JPH0629527A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0629527A
JPH0629527A JP18367992A JP18367992A JPH0629527A JP H0629527 A JPH0629527 A JP H0629527A JP 18367992 A JP18367992 A JP 18367992A JP 18367992 A JP18367992 A JP 18367992A JP H0629527 A JPH0629527 A JP H0629527A
Authority
JP
Japan
Prior art keywords
semiconductor region
semiconductor
region
forming
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18367992A
Other languages
Japanese (ja)
Inventor
Shinji Katsuragi
慎司 葛城
Takashi Katono
隆 上遠野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Microsystems Co Ltd
Asahi Kasei Microdevices Corp
Original Assignee
Asahi Kasei Microsystems Co Ltd
Asahi Kasei Microdevices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Microsystems Co Ltd, Asahi Kasei Microdevices Corp filed Critical Asahi Kasei Microsystems Co Ltd
Priority to JP18367992A priority Critical patent/JPH0629527A/en
Publication of JPH0629527A publication Critical patent/JPH0629527A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To obtain a high-breakdown strength semiconductor device by a method wherein the breakdown strength of the semiconductor device in the vertical direction in addition to an electric-field relaxation effect in a channel direction is enhanced. CONSTITUTION:A conductive layer 14 is formed, via an insulating film 13, on the main face part of a first first-conductivity-type semiconductor region 11; second second-conductivity-type regions 15 are formed on the main face part of the first semiconductor region 11 on both sides of the conductive layer 14; third second-conductivity-type regions 16 whose impurity concentration is lower than that of the second semiconductor regions are formed so as to come into contact with the second semiconductor regions 15 and in parts on the main face part of the first semiconductor region. Fourth second-conductivity-type semiconductor regions 17 whose impurity concentration is lower than that of the second semiconductor regions are formed along the boundary between the second semiconductor regions 15 and the first semiconductor region 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置およびその
製造方法に関するものであり、特に高耐圧のMISFE
T(金属−絶縁層−半導体型電界効果トランジスタ)に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and particularly to a high breakdown voltage MISFE.
The present invention relates to T (metal-insulating layer-semiconductor field effect transistor).

【0002】[0002]

【従来の技術】近年、半導体集積装置は微細化が非常に
進んでいる。このような微細化に伴い、素子に用いられ
るゲートや配線の線幅が小さくなっている。このような
高集積化によって、そのゲート絶縁膜が薄膜化し、チャ
ネル長が短縮化するために、ドレイン領域近傍に高電界
が生じる。このためホットエレクトロンの発生が著しく
なり、基板に流れる電流、所謂基板電流の増大を招いて
いた。その結果、MISFETのしきい値電圧に経時的
な電気的特性の劣化を生じていた。
2. Description of the Related Art In recent years, semiconductor integrated devices have been extremely miniaturized. With such miniaturization, the line width of gates and wirings used in the device has become smaller. Due to such high integration, the gate insulating film is thinned and the channel length is shortened, so that a high electric field is generated in the vicinity of the drain region. For this reason, hot electrons are remarkably generated, causing an increase in current flowing through the substrate, that is, so-called substrate current. As a result, the threshold voltage of the MISFET deteriorates with time in its electrical characteristics.

【0003】また、半導体集積装置の微細化に伴い、ソ
ース・ドレイン間耐圧の低下等ドレイン付近の電界に起
因する問題が起きていた。ゲートの線幅が小さくなるこ
とにより生じるショートチャネル効果等を軽減するもの
として、特公昭62−31506号公報には、TEOS
(テトラエトキシシラン)の熱分解等によるCVD(Che
mical Vapor Deposition) により絶縁膜を形成し、異方
性ドライエッチングによりサイドウォールを形成し、ソ
ースおよびドレインのチャネル部分を2重構造として、
不純物濃度の高い領域と低い領域を形成する、いわゆる
LDD(Lightly Dopod Drain)構造が記載されている。
Further, with the miniaturization of semiconductor integrated devices, there have been problems such as reduction of breakdown voltage between source and drain, which are caused by an electric field near the drain. In order to reduce the short channel effect and the like caused by the reduction of the gate line width, Japanese Patent Publication No. 62-31506 discloses a TEOS.
CVD (Che) by thermal decomposition of (tetraethoxysilane)
mical vapor deposition) to form an insulating film, anisotropic dry etching to form sidewalls, and the source and drain channel parts to have a double structure.
A so-called LDD (Lightly Dopod Drain) structure for forming a region having a high impurity concentration and a region having a low impurity concentration is described.

【0004】あるいは、不純物濃度の高い半導体領域と
不純物濃度の低い半導体領域とでダブルドレイン構造を
形成するDDD(Double Difused Drain) 構造が知られ
ており、MISFETのドレイン領域近傍における高電
界を緩和する方法が提案されている。ダブルドレイン構
造を形成するには、拡散係数の異なる2種類の不純物例
えば、リンをイオン注入して熱拡散させ、低濃度の不純
物領域を形成し、次にヒ素をイオン注入して高濃度の不
純物領域を形成するか、或いはリンとヒ素をほぼ同時に
イオン注入し、拡散係数の違いから不純物濃度の高い半
導体領域と不純物濃度の低い半導体領域とを形成してい
る。
Alternatively, a DDD (Double Difused Drain) structure is known in which a semiconductor region having a high impurity concentration and a semiconductor region having a low impurity concentration form a double drain structure, and a high electric field near the drain region of a MISFET is relaxed. A method has been proposed. To form a double drain structure, two types of impurities having different diffusion coefficients, for example, phosphorus are ion-implanted and thermally diffused to form a low-concentration impurity region, and then arsenic is ion-implanted to form a high-concentration impurity. A region is formed, or phosphorus and arsenic are ion-implanted almost simultaneously to form a semiconductor region having a high impurity concentration and a semiconductor region having a low impurity concentration due to the difference in diffusion coefficient.

【0005】このようなLDD構造やDDD構造のいず
れかを用いることにより、微細化に伴う半導体装置の劣
化を低減していた。
By using either the LDD structure or the DDD structure, deterioration of the semiconductor device due to miniaturization has been reduced.

【0006】[0006]

【発明が解決しようとする課題】一般に、LDD構造で
は、DDD構造に比較してチャネル方向への低濃度不純
物領域が長く、かつ低濃度に形成可能であるために、約
1μm以下のMISFETに用いられている。 ところ
で、LDD構造ではサイドウォール形成後、高濃度の砒
素が打ち込まれて拡散されるが、チャネル水平方向の電
界緩和効果に比較して、垂直方向の電界緩和効果が小さ
いのである。このため、高電圧を使用するデバイスにお
いて、例えばMISFETのパンチスルー特性を利用
し、レギュレータとして使用する場合、12〜13V程
度以上の電圧をえることは困難であった。
Generally, in the LDD structure, the low-concentration impurity region in the channel direction is longer than that in the DDD structure and can be formed at a low concentration. Therefore, the LDD structure is used for a MISFET of about 1 μm or less. Has been. By the way, in the LDD structure, after the sidewall is formed, a high concentration of arsenic is implanted and diffused, but the electric field relaxation effect in the vertical direction is smaller than the electric field relaxation effect in the horizontal direction of the channel. Therefore, in a device using a high voltage, it is difficult to obtain a voltage of about 12 to 13 V or higher when using the punch-through characteristic of MISFET and using it as a regulator.

【0007】以上の点に鑑み、本発明はチャネル方向の
電界緩和効果に加え、垂直方向の耐圧を向上させる半導
体装置およびそのの製造方法を提供することを課題とす
るものである。
In view of the above points, it is an object of the present invention to provide a semiconductor device which improves the breakdown voltage in the vertical direction in addition to the effect of relaxing the electric field in the channel direction, and a method for manufacturing the same.

【0008】[0008]

【課題を解決する為の手段】本発明の請求項1は、第1
導電型の第1半導体領域の主面部に絶縁膜を介して導電
層が設けられ、該導電層の両側における前記第1半導体
領域の主面部に第2導電型の第2半導体領域が設けられ
た半導体装置において、前記第2半導体領域に接し、前
記第1半導体領域の主面部の一部に該第2半導体領域よ
りも不純物濃度が低い第2導電型の第3半導体領域が設
けられ、且つ前記第2半導体領域と前記第1半導体領域
の境界に沿って前記第2半導体領域よりも不純物濃度が
低い第2導電型の第4半導体領域が設けられたことを特
徴とする半導体装置である。
According to claim 1 of the present invention,
A conductive layer is provided on the main surface portion of the conductive type first semiconductor region via an insulating film, and a second conductive type second semiconductor region is provided on the main surface portions of the first semiconductor region on both sides of the conductive layer. In the semiconductor device, a third semiconductor region of a second conductivity type, which is in contact with the second semiconductor region and has a lower impurity concentration than that of the second semiconductor region, is provided in a part of the main surface portion of the first semiconductor region, and The semiconductor device is characterized in that a fourth semiconductor region of a second conductivity type having a lower impurity concentration than that of the second semiconductor region is provided along a boundary between the second semiconductor region and the first semiconductor region.

【0009】また本発明の請求項2は、第1導電型の第
1半導体領域の主面部に絶縁膜を形成し、該絶縁膜上に
導電層を設ける工程と、第2導電型の第3半導体領域を
形成するための第1の不純物を導入する工程と、CVD
により絶縁層を形成する工程と、異方性エッチングによ
り該絶縁層をエッチングする工程と、第2導電型の第2
半導体領域を形成するための第2の不純物と第2導電型
の第4半導体領域を形成するための第3の不純物とを導
入する工程と、前記導入された第1、第2及び第3の不
純物を拡散して第2半導体領域、第3半導体領域及び第
4半導体領域を形成する工程とを備えたことを特徴とす
る半導体装置の製造方法である。
According to a second aspect of the present invention, a step of forming an insulating film on the main surface portion of the first semiconductor region of the first conductivity type and providing a conductive layer on the insulating film; A step of introducing a first impurity for forming a semiconductor region, and CVD
Forming an insulating layer by etching, a step of etching the insulating layer by anisotropic etching, and a second conductivity type second
Introducing a second impurity for forming a semiconductor region and a third impurity for forming a fourth semiconductor region of the second conductivity type, and introducing the introduced first, second and third impurities. And a step of diffusing impurities to form a second semiconductor region, a third semiconductor region, and a fourth semiconductor region.

【0010】[0010]

【作用】本発明によれば、第3半導体領域によりチャネ
ル方向の電界緩和効果が得られるのに加え、第4半導体
領域により垂直方向の耐圧を向上させることができる。
従って、従来に比べ高耐圧の半導体装置を得ることがで
きる。
According to the present invention, the electric field relaxing effect in the channel direction can be obtained by the third semiconductor region, and the vertical breakdown voltage can be improved by the fourth semiconductor region.
Therefore, it is possible to obtain a semiconductor device having a higher breakdown voltage than the conventional one.

【0011】[0011]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。第1図は本発明の半導体装置の実施例を模式的に
示す図である。以下各図において同じ構成を示すものに
は同じ数字を付与し繰り返しの説明は省略する。第1図
において、10は半導体基板、11は第1半導体領域、
12はフィールド絶縁膜、13は絶縁膜、14は導電
層、15は第2半導体領域、16は第3半導体領域、1
7は第4半導体領域である。
EXAMPLES The present invention will be described in detail below based on examples. FIG. 1 is a diagram schematically showing an embodiment of a semiconductor device of the present invention. In the following figures, the same numeral is given to the same configuration in each figure, and repeated description is omitted. In FIG. 1, 10 is a semiconductor substrate, 11 is a first semiconductor region,
12 is a field insulating film, 13 is an insulating film, 14 is a conductive layer, 15 is a second semiconductor region, 16 is a third semiconductor region, 1
7 is a fourth semiconductor region.

【0012】半導体基板10は例えば、N型のシリコン
基板で4〜12Ωcmのものが使用できる。半導体基板
10に第1半導体領域11が形成される。第1半導体領
域11はP型の半導体領域であり、所謂P−wellと
呼ばれているものであり、周知の方法でボロン等の不純
物を導入拡散して形成される。P型の半導体基板を用い
た場合は、well構造とする必要はなく、半導体基板
10が第1半導体領域となる。
As the semiconductor substrate 10, for example, an N type silicon substrate having a thickness of 4 to 12 Ωcm can be used. The first semiconductor region 11 is formed on the semiconductor substrate 10. The first semiconductor region 11 is a P-type semiconductor region, which is a so-called P-well, and is formed by introducing and diffusing impurities such as boron by a known method. When a P-type semiconductor substrate is used, it is not necessary to have a well structure, and the semiconductor substrate 10 serves as the first semiconductor region.

【0013】第1半導体領域11の上面部にはMISF
ETを電気的に分離するためのフィールド絶縁膜12が
LOCOS法等の周知の技術により形成されている。ま
た、第1半導体領域11の主面部のMISFETを形成
する領域には第1半導体領域11を熱酸化して形成され
る絶縁膜13が設けられ、MISFETのゲート絶縁膜
として用いられる。さらに絶縁膜13を介して導電層1
4が設けられており、導電層14は多結晶シリコン層を
形成し、次いでリンをドープした後、周知のエッチング
技術により形成されるものであり、MISFETのゲー
ト電極として用いられる。
MISF is formed on the upper surface of the first semiconductor region 11.
The field insulating film 12 for electrically separating ET is formed by a well-known technique such as the LOCOS method. Further, an insulating film 13 formed by thermally oxidizing the first semiconductor region 11 is provided in a region of the main surface portion of the first semiconductor region 11 where the MISFET is formed, and is used as a gate insulating film of the MISFET. Further, the conductive layer 1 is provided through the insulating film 13.
4 is provided, and the conductive layer 14 is formed by a well-known etching technique after forming a polycrystalline silicon layer and then doping phosphorus, and is used as a gate electrode of a MISFET.

【0014】第2半導体領域15は例えばヒ素をイオン
注入して形成され、不純物濃度の高いN型の領域であ
り、所謂N+ 領域である。また、第2半導体領域15は
MISFETのドレイン・ソース領域である。第3半導
体領域16は第2半導体領域に接し、第1半導体領域1
1の主面部の一部に設けられ、第2半導体領域15より
も不純物濃度が低いN- 型の領域である。
The second semiconductor region 15 is an N type region having a high impurity concentration, which is formed by ion-implanting arsenic, for example, and is a so-called N + region. The second semiconductor region 15 is the drain / source region of the MISFET. The third semiconductor region 16 is in contact with the second semiconductor region, and the first semiconductor region 1
This is an N type region which is provided in a part of the main surface portion 1 and has an impurity concentration lower than that of the second semiconductor region 15.

【0015】第4半導体領域17は 第2半導体領域1
5と第1半導体領域11の境界に沿って設けられ、第2
半導体領域11よりも不純物濃度が低いN- 型の領域で
ある。第3半導体領域16及び第4半導体領域17は例
えばリンが導入拡散され形成される。
The fourth semiconductor region 17 is the second semiconductor region 1
5 provided along the boundary between the first semiconductor region 11 and the second semiconductor region 11.
This is an N type region having an impurity concentration lower than that of the semiconductor region 11. The third semiconductor region 16 and the fourth semiconductor region 17 are formed by introducing and diffusing phosphorus, for example.

【0016】第2図に上記のような構造を有するMIS
FETを有する半導体装置の製造方法を示す。まず、図
2Aに示すように、周知の方法で半導体基板10に第1
半導体領域11を形成し、フィールド酸化膜12を形成
する。次に絶縁膜13を形成したのち、例えば多結晶シ
リコン膜をCVDで形成し、リンをドープして、公知の
リソグラフィ技術により導電層14を形成し、表面を薄
く酸化する。
FIG. 2 shows an MIS having the above structure.
A method for manufacturing a semiconductor device having a FET will be described. First, as shown in FIG. 2A, a first method is performed on the semiconductor substrate 10 by a known method.
A semiconductor region 11 is formed and a field oxide film 12 is formed. Next, after forming the insulating film 13, for example, a polycrystalline silicon film is formed by CVD, phosphorus is doped, a conductive layer 14 is formed by a known lithography technique, and the surface is thinly oxidized.

【0017】次に、第3半導体領域16を形成する不純
物、例えばリンを50keVのエネルギーで1.5×1
13cm-2の量をイオン注入する。次に図2Bに示すよう
に例えばTEOS(テトラエトキシシラン)の熱分解に
よるCVD(Chemical Vapour Deposition) 法で酸化シ
リコン層20を形成する。
Next, an impurity for forming the third semiconductor region 16, for example, phosphorus is applied at an energy of 50 keV at 1.5 × 1.
An amount of 0 13 cm -2 is ion-implanted. Next, as shown in FIG. 2B, a silicon oxide layer 20 is formed by a CVD (Chemical Vapor Deposition) method by thermal decomposition of TEOS (tetraethoxysilane), for example.

【0018】この酸化シリコン層20を異方性ドライエ
ッチングし、表面を軽く酸化して、図2Cに示すごとく
なる。このエッチングは、いわゆるサイドウォールエッ
チングであり、導電層14の両側に酸化シリコンの層を
形成するものである。次に、 第2半導体領域15を形
成するための不純物、例えばヒ素を75keVのエネル
ギーで5×1015cm-2の量をイオン注入し、第4半導体
領域17を形成するための不純物、例えばリンを50k
eVのエネルギーで2×1014cm-2の量をイオン注入す
る。第4半導体領域17を形成するための不純物のエネ
ルギー及び濃度はそれぞれ独立にコントロールすること
が可能である。
This silicon oxide layer 20 is anisotropically dry-etched to lightly oxidize the surface, as shown in FIG. 2C. This etching is so-called sidewall etching, and forms a silicon oxide layer on both sides of the conductive layer 14. Next, an impurity for forming the second semiconductor region 15, for example, arsenic is ion-implanted at an energy of 75 keV in an amount of 5 × 10 15 cm −2 , and an impurity for forming the fourth semiconductor region 17, for example, phosphorus. 50k
An amount of 2 × 10 14 cm −2 is ion-implanted with an energy of eV. The energy and concentration of impurities for forming the fourth semiconductor region 17 can be independently controlled.

【0019】このイオン注入の後、例えば1000℃の
炉中でイオン注入された不純物を20分間熱拡散させ
る。それぞれの不純物は拡散係数の違いから第2図Dに
示すように第2半導体領域15と第4半導体領域17を
形成する。この拡散温度や拡散時間を調整することによ
り、第4半導体領域17の接合深さを制御できる。以上
のようにして図1に示すようなチャネル方向の電界緩和
効果に加え、垂直方向の耐圧を向上させるMISFET
を得ることができた。従来のLDD構造によるMISF
ETのパンチスルー耐圧が約12Vであったのに対し、
上述の製造方法により得られたMISFETのパンチス
ルー耐圧は17Vであった。上述したように、不純物の
濃度、注入エネルギー、あるいは拡散条件を適宜に変更
することにより広い範囲でパンチスルー耐圧の制御が可
能であり、高耐圧のMISFETが実現できた。
After the ion implantation, the ion-implanted impurities are thermally diffused for 20 minutes in a furnace at 1000 ° C., for example. The respective impurities form the second semiconductor region 15 and the fourth semiconductor region 17 due to the difference in diffusion coefficient, as shown in FIG. 2D. The junction depth of the fourth semiconductor region 17 can be controlled by adjusting the diffusion temperature and the diffusion time. As described above, in addition to the effect of relaxing the electric field in the channel direction as shown in FIG. 1, the MISFET which improves the breakdown voltage in the vertical direction.
I was able to get MISF with conventional LDD structure
Whereas the ET punch-through breakdown voltage was about 12V,
The punch-through breakdown voltage of the MISFET obtained by the above manufacturing method was 17V. As described above, the punch-through breakdown voltage can be controlled in a wide range by appropriately changing the impurity concentration, implantation energy, or diffusion condition, and a high breakdown voltage MISFET can be realized.

【0020】[0020]

【発明の効果】本発明によれば、第3半導体領域により
チャネル方向の電界緩和効果が得られるのに加え、第4
半導体領域により垂直方向の耐圧を向上させることがで
きる。従って、従来に比べ高耐圧の半導体装置を得るこ
とができる。
According to the present invention, in addition to the effect of relaxing the electric field in the channel direction by the third semiconductor region,
The breakdown voltage in the vertical direction can be improved by the semiconductor region. Therefore, it is possible to obtain a semiconductor device having a higher breakdown voltage than the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置を示す図である。FIG. 1 is a diagram showing a semiconductor device of the present invention.

【図2】本発明の半導体装置を製造する工程を示す図で
ある。
FIG. 2 is a diagram showing steps of manufacturing a semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

10 基板 11 第1半導体領域 12 フィールド絶縁膜 13 絶縁膜 14 導電層 15 第2半導体領域 16 第3半導体領域 17 第4半導体領域 10 substrate 11 first semiconductor region 12 field insulating film 13 insulating film 14 conductive layer 15 second semiconductor region 16 third semiconductor region 17 fourth semiconductor region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の第1半導体領域の主面部に
絶縁膜を介して導電層が設けられ、該導電層の両側にお
ける前記第1半導体領域の主面部に第2導電型の第2半
導体領域が設けられた半導体装置において、 前記第2半導体領域に接し、前記第1半導体領域の主面
部の一部に該第2半導体領域よりも不純物濃度が低い第
2導電型の第3半導体領域が設けられ、且つ前記第2半
導体領域と前記第1半導体領域の境界に沿って前記第2
半導体領域よりも不純物濃度が低い第2導電型の第4半
導体領域が設けられたことを特徴とする半導体装置。
1. A conductive layer is provided on a main surface portion of a first semiconductor region of the first conductivity type via an insulating film, and a main surface portion of the first semiconductor region on both sides of the conductive layer has a second conductivity type second surface. In a semiconductor device having two semiconductor regions, a second semiconductor of the second conductivity type, which is in contact with the second semiconductor region and has an impurity concentration lower than that of the second semiconductor region in a part of a main surface portion of the first semiconductor region. A region is provided, and the second semiconductor region is provided along a boundary between the second semiconductor region and the first semiconductor region.
A semiconductor device comprising a fourth semiconductor region of the second conductivity type having an impurity concentration lower than that of the semiconductor region.
【請求項2】 第1導電型の第1半導体領域の主面部に
絶縁膜を形成し、該絶縁膜上に導電層を設ける工程と、 第2導電型の第3半導体領域を形成するための第1の不
純物を導入する工程と、 CVDにより絶縁層を形成する工程と、 異方性エッチングにより該絶縁層をエッチングする工程
と、 第2導電型の第2半導体領域を形成するための第2の不
純物と第2導電型の第4半導体領域を形成するための第
3の不純物とを導入する工程と、 前記導入された第1、第2及び第3の不純物を拡散して
第2半導体領域、第3半導体領域及び第4半導体領域を
形成する工程とを備えたことを特徴とする半導体装置の
製造方法。
2. A step of forming an insulating film on a main surface of a first semiconductor region of the first conductivity type and providing a conductive layer on the insulating film; and a step of forming a third semiconductor region of the second conductivity type. A step of introducing a first impurity; a step of forming an insulating layer by CVD; a step of etching the insulating layer by anisotropic etching; and a second step for forming a second semiconductor region of the second conductivity type. And the third impurity for forming the fourth semiconductor region of the second conductivity type, and the second semiconductor region by diffusing the introduced first, second and third impurities. And a step of forming a third semiconductor region and a fourth semiconductor region, the method for manufacturing a semiconductor device.
JP18367992A 1992-07-10 1992-07-10 Semiconductor device and its manufacture Withdrawn JPH0629527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18367992A JPH0629527A (en) 1992-07-10 1992-07-10 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18367992A JPH0629527A (en) 1992-07-10 1992-07-10 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0629527A true JPH0629527A (en) 1994-02-04

Family

ID=16140031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18367992A Withdrawn JPH0629527A (en) 1992-07-10 1992-07-10 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0629527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261349B1 (en) * 1996-03-06 2000-07-01 마찌다 가쯔히꼬 Active type solid-state imaging device and method for fabricating the same
JP2002530889A (en) * 1998-11-25 2002-09-17 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Peripheral transistor of nonvolatile memory
JP4708563B2 (en) * 1998-03-30 2011-06-22 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for reducing the effective channel length of a lightly doped drain transistor and method for forming a transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261349B1 (en) * 1996-03-06 2000-07-01 마찌다 가쯔히꼬 Active type solid-state imaging device and method for fabricating the same
JP4708563B2 (en) * 1998-03-30 2011-06-22 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for reducing the effective channel length of a lightly doped drain transistor and method for forming a transistor
JP2002530889A (en) * 1998-11-25 2002-09-17 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Peripheral transistor of nonvolatile memory

Similar Documents

Publication Publication Date Title
US6426279B1 (en) Epitaxial delta doping for retrograde channel profile
JP2000260987A (en) Semiconductor device and its manufacture
JP2001298184A (en) Semiconductor device and manufacturing method thereof
US6150698A (en) Semiconductor device and method of forming semiconductor device having non-uniformly doped well
JPH10200111A (en) Manufacture of dmos transistor
JP2000312002A (en) Semiconductor device and manufacture thereof
JPH08153873A (en) Semiconductor device and fabrication thereof
KR20010076369A (en) Semiconductor deⅴice and method of manufacturing the same
JP2002124671A (en) Semiconductor device and its manufacturing method
JP3448546B2 (en) Semiconductor device and manufacturing method thereof
JPH0653232A (en) Semiconductor device and its manufacture
JPH0457337A (en) Semiconductor device and manufacture thereof
JPH1187704A (en) Semiconductor device and fabrication thereof
JPH05267327A (en) Misfet and its manufacture
JPH04259258A (en) Manufacture of mis field effect semiconductor device
JP2834058B2 (en) Method for manufacturing semiconductor device
JPH0629527A (en) Semiconductor device and its manufacture
JPH10116983A (en) Semiconductor device and its manufacture
JP3363810B2 (en) Semiconductor device and manufacturing method thereof
US5215936A (en) Method of fabricating a semiconductor device having a lightly-doped drain structure
JP2000068499A (en) Semiconductor device and manufacture of the same
JP2900698B2 (en) Manufacturing method of insulated field effect transistor
JPH1012870A (en) Semiconductor device and its manufacture
JP3423230B2 (en) Method for manufacturing semiconductor device
JPH04255233A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005