JPS6136973A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6136973A
JPS6136973A JP15965484A JP15965484A JPS6136973A JP S6136973 A JPS6136973 A JP S6136973A JP 15965484 A JP15965484 A JP 15965484A JP 15965484 A JP15965484 A JP 15965484A JP S6136973 A JPS6136973 A JP S6136973A
Authority
JP
Japan
Prior art keywords
diffusion layer
drain
gate electrode
oxide film
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15965484A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takenaka
竹中 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP15965484A priority Critical patent/JPS6136973A/en
Publication of JPS6136973A publication Critical patent/JPS6136973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To restrain the generation of hot electrons by alleviating the electric field concentration in the vicinity of a drain by forming a MIS diode of depression mode which is composed of the second gate electrode and an N<-> diffusion layer in the vicinity of a side wall of a gate electrode. CONSTITUTION:After forming the first gate oxide film 13, the first gate electrode 14 in the region which is isolated by a field oxide film 12 formed on a P type silicon substrate, an N<-> diffusion layer 16 is formed on the substrate 11. Next, a side wall 18 is formed on a side wall of the first gate electrode 14 through an oxide film 15. Subsequently, ion implantation is done with using the side wall 18 as a mask to form a source 20 and a drain 21 composed of an N<+> diffusion layer. As a result, the side wall 18 and the N<-> diffusion layer 16 right under said wall 18 function as a MIS diode of depression mode so that the generation of hot electrons can be restrained by diminishing the strength of electric field in the vicinity of the drain 21.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はMIS型電界効果トランジスタ(MISFET
)に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applied to MIS field effect transistors (MISFETs).
) regarding.

従来例の構成とその問題点 従来のnチャンネル−MISFETは、第1図にその要
部の断面形状を示すように、P型シリコン基板1上K、
各素子間を分離するフィールド酸化膜2と、フィールド
酸化膜2で囲まれたシリコ2 /・ / ン基板1の表面に形成されたゲート酸化膜3と、ゲート
酸化膜3上に形成されたゲート電極4と、ゲート電極4
に自己整合に形成されたn+拡散層からなるソース5お
よびドレイン6とで構成されている。この構造のMIS
FETでは、ドレイン6側の空乏層内の電界によって発
生したホットエレクトロンによるデバイス劣化の問題が
あった。
Structure of the conventional example and its problems A conventional n-channel MISFET, as shown in FIG.
A field oxide film 2 separating each element, a silicon 2 surrounded by the field oxide film 2, a gate oxide film 3 formed on the surface of the substrate 1, and a gate formed on the gate oxide film 3. electrode 4 and gate electrode 4
The source 5 and drain 6 are composed of an n+ diffusion layer formed in a self-aligned manner. MIS of this structure
The FET has the problem of device deterioration due to hot electrons generated by the electric field in the depletion layer on the drain 6 side.

この対策として、ドレイン領域6をn−拡散層と♂拡散
層とで形成したライトリ−ドープトドレイン構造(Li
ghtly−Doped−Drain、以下、LDDと
略す)のMISFETが提案されている。LDD−MI
SFETは第2図(、)に断面形状を示すようK、ゲー
ト電極に自己整合的に形成された長さ10分の数μmの
が拡散層5a 、6aと、このn−拡散層5a、6aに
隣接した♂拡散層6b 、ebとでソース、ドレイン各
領域を形成している。LDD−MISFETでは、i拡
散層6bでドレイン近傍の電界集中を大幅に緩和できる
ので、デバイス中のホットエレクトロンの発生を抑制す
る利点を有している。しかしながら、LDI)−MIS
FET3べ−7 では、第2図aで示したように、ホットエレクトロンの
ダメージによってi拡散層6bとその上に形成された絶
縁膜7との界面に界面電荷Nitが生成される。第2図
(b)はLDD−MI 5FETの等節回路であり、こ
のうち、i拡散層の抵抗値Rn−は(1)式で与えられ
る。
As a countermeasure to this problem, the drain region 6 has a lightly doped structure (Li
A highly-doped-drain (hereinafter abbreviated as LDD) MISFET has been proposed. LDD-MI
The cross-sectional shape of the SFET is shown in FIG. The male diffusion layers 6b and eb adjacent to each other form source and drain regions. The LDD-MISFET has the advantage of suppressing the generation of hot electrons in the device because the i-diffusion layer 6b can significantly alleviate the electric field concentration near the drain. However, LDI)-MIS
In the FET 3B-7, as shown in FIG. 2A, an interfacial charge Nit is generated at the interface between the i-diffusion layer 6b and the insulating film 7 formed thereon due to damage caused by hot electrons. FIG. 2(b) shows an equinodal circuit of LDD-MI 5FET, in which the resistance value Rn- of the i diffusion layer is given by equation (1).

Δ■。Δ■.

ここで、ΔLはn−拡散層の長さ、qは単位電荷、Wは
チャンネル幅、llnは電子移動度、Qn−はぎ拡散層
の面電荷である。したがって、LDD−MISFETで
は、ホットエレクトロンによってNitが増大し、その
結果Rn−が増大するため、MISFETのソース、ド
レイン間の直列抵抗が増大し、FETの伝達コンダクタ
ンスの劣化を速める欠点があった。
Here, ΔL is the length of the n-diffusion layer, q is the unit charge, W is the channel width, lln is the electron mobility, and Qn is the surface charge of the strip-diffusion layer. Therefore, in the LDD-MISFET, hot electrons increase Nit, and as a result, Rn- increases, resulting in an increase in series resistance between the source and drain of the MISFET, which has the disadvantage of accelerating deterioration of the FET's transfer conductance.

発明の目的 本発明は上記の欠点を除去するためになされたもので、
ホットエレクトロンの発生を抑制すると同時に、界面電
荷の影響を小さくできるMISFETを提供することに
ある。
OBJECT OF THE INVENTION The present invention has been made to eliminate the above-mentioned drawbacks.
An object of the present invention is to provide a MISFET that can suppress the generation of hot electrons and at the same time reduce the influence of interfacial charges.

発明の構成 本発明は、−導電形の半導体基板−4−に、第1のMI
S型ダイオードと、同第1のMIS型ダイオードに自己
整合的に隣接して第2のMIS型ダイオードが形成され
ており、さらに同第2のMIS型ダイオードの導電膜の
一端が前記半導体基板中に形成された不純物拡散層と電
気的に接触していることを特徴としており、上記不純物
拡散層をドレインとするダブルゲ−1−Ml5FETの
構造となっており、上記第2Ml5ダイオード直下の空
乏層又は拡散層で電界強度の緩和を行なって、ホットキ
ャリアの発生を抑制すると共に、第2MIF5ゲートの
存在によって、界面電荷の影響を小さくすることが可能
となる。
Structure of the Invention The present invention provides a first MI on a conductive type semiconductor substrate-4.
A second MIS type diode is formed adjacent to the S type diode and the first MIS type diode in a self-aligned manner, and one end of the conductive film of the second MIS type diode is formed in the semiconductor substrate. It is characterized in that it is in electrical contact with the impurity diffusion layer formed in the second Ml5 diode, and has a double-gauge-1-Ml5FET structure with the impurity diffusion layer as the drain, and the depletion layer directly under the second Ml5 diode or The electric field intensity is relaxed in the diffusion layer to suppress the generation of hot carriers, and the presence of the second MIF5 gate makes it possible to reduce the influence of interfacial charges.

実施例の説明 以下に、本発明の半導体装置の一実施例を示す第3図お
よび、その製造方法を示した第4図を参照して本発明の
詳細な説明する。
DESCRIPTION OF EMBODIMENTS The present invention will be described in detail below with reference to FIG. 3 showing an embodiment of a semiconductor device of the present invention and FIG. 4 showing a method of manufacturing the same.

本発明のMISFETは、第3図にその断面形5へ一/ 状を示すように、p型シリコン基板11に形成されたフ
ィールド酸化膜12と、第1ゲート絶縁膜13と、その
上に形成された多結晶シリコン膜からなる第1ゲート電
極14と、同第1ゲート電極14に自己整合に形成され
たi拡散層16と、同n−拡散層16上に形成された第
2ゲート絶縁膜17と、絶縁膜15を介して第1ゲート
電極14の側壁に形成された第2ゲート電極となる多結
晶シリコン膜のサイドウオール18と、同サイドウオー
ルに自己整合に形成されたソース2oおよびドレイン2
1と、同ソース20.  ドレイン21と前記サイドウ
オール18上にのみ選択的に形成されたタングステン膜
19とで構成されている。
The MISFET of the present invention, as shown in its cross-sectional shape 5 in FIG. A first gate electrode 14 made of a polycrystalline silicon film, an i diffusion layer 16 formed in self-alignment with the first gate electrode 14, and a second gate insulating film formed on the n- diffusion layer 16. 17, a sidewall 18 of a polycrystalline silicon film that becomes a second gate electrode formed on the sidewall of the first gate electrode 14 via an insulating film 15, and a source 2o and a drain formed in self-alignment with the sidewall. 2
1 and the same source 20. It consists of a drain 21 and a tungsten film 19 selectively formed only on the sidewall 18.

上述したように、本発明によるMISFETはサイドウ
オール18がゲート電極としての機能を有し、さらにそ
の電位がソース電位とドレイン電位に固定されている所
に特徴がある。
As described above, the MISFET according to the present invention is characterized in that the sidewall 18 has a function as a gate electrode, and furthermore, the potential thereof is fixed to the source potential and drain potential.

また、本実施例の場合、サイドウオール18の下ジョン
モードになっている。第3図に示したMISFETでは
、ドレイン21近傍の電界強度は、このサイドウォール
ゲー)MISダイオードによって小さくなるので、ホッ
トエレクトロンの発生を抑制することができる。また、
第2図で示したLDD−MISFETで問題となった界
面電荷の悪影響も、サイドウオールゲート18によって
除去できる。
Further, in this embodiment, the sidewall 18 is in the lower side mode. In the MISFET shown in FIG. 3, the electric field strength near the drain 21 is reduced by the sidewall MIS diode, so that generation of hot electrons can be suppressed. Also,
The sidewall gate 18 can also eliminate the adverse effects of interfacial charges, which were a problem in the LDD-MISFET shown in FIG.

次に本発明のMISFETの製造方法を第4図の(−)
〜(、)を参照して説明する。
Next, the method for manufacturing the MISFET of the present invention is shown in (-) in Fig. 4.
This will be explained with reference to ~(,).

捷ず、第4図(−)で示すようにP型シリコン基板11
に、通常の選択酸化法で膜厚約8000人のフィールド
酸化膜12を形成し、続いてフィールド酸化膜12で分
離されたシリコン基板表面に膜厚約200人の第1ゲー
ト酸化膜13を形成し、さらに、この上に周知のCVD
法でリンを約1020.、−3ドープした膜厚約500
0人の多結晶シリコン膜からなる第1ゲート電極14を
パターニングし、ゲート電極以外のゲート酸化膜を除去
した後、ゲート電極14をマスクにして、シリコン基板
11中にリンイオンを加速エネルギ30 KeV、ドー
ズ量1x10mの条件でイオン注入する。
As shown in FIG. 4 (-), the P-type silicon substrate 11 is
Then, a field oxide film 12 with a thickness of about 8,000 thick is formed using a normal selective oxidation method, and then a first gate oxide film 13 with a thickness of about 200 thick is formed on the silicon substrate surface separated by the field oxide film 12. Furthermore, on top of this, the well-known CVD
Approximately 1020. , -3 doped film thickness approximately 500
After patterning the first gate electrode 14 made of a polycrystalline silicon film and removing the gate oxide film other than the gate electrode, using the gate electrode 14 as a mask, phosphorus ions are accelerated into the silicon substrate 11 at an energy of 30 KeV. Ion implantation is performed at a dose of 1×10 m.

次に第4図(b)に示すように、シリコン基板11に熱
処理を施してリンイオンを活性化させてn−拡散層16
を形成した後、900°Cのウェット酸素酸化によって
、シリコン基板上に膜厚約400への第2ゲート酸化膜
17を形成すると同時に、多結晶シリコン14上にも膜
厚約1000人の酸化膜16を形成する。この時、シリ
コン基板より多結晶シリコン膜の方が酸化速度が速いの
は、多結晶シリコン膜に高濃度のリンがドープされてい
ることが原因している。
Next, as shown in FIG. 4(b), the silicon substrate 11 is heat-treated to activate the phosphorus ions and the n- diffusion layer 16 is heated.
After forming the second gate oxide film 17 to a thickness of about 400 nm on the silicon substrate by wet oxygen oxidation at 900°C, at the same time an oxide film of about 1000 nm thick is formed on the polycrystalline silicon 14. form 16. At this time, the oxidation rate of the polycrystalline silicon film is faster than that of the silicon substrate because the polycrystalline silicon film is doped with phosphorus at a high concentration.

続いて、第4図(C)に示すように、周知のCVD法で
リンを約1o20ctn−3ドープした膜厚約5000
人の多結晶シリコン膜を全面に形成し、さらに反応性イ
オンエツチングによって、多結晶シリコン膜を異方性エ
ッチし、酸化膜16を介して第1ゲート電極14の側壁
にサイドウオ−ル18を形成する。
Subsequently, as shown in FIG. 4(C), a film with a thickness of about 5,000 doped with about 1020 ctn-3 of phosphorus was formed using the well-known CVD method.
A polycrystalline silicon film is formed on the entire surface, and the polycrystalline silicon film is anisotropically etched by reactive ion etching to form a sidewall 18 on the side wall of the first gate electrode 14 via an oxide film 16. do.

次に第4図(d)に示すように、第2ゲート酸化膜17
を除去した後、サイドウオール18をマスクにして、シ
リコン基板中にヒソイオンを加速エネルギ40 KeV
 、  ドーズ量6×10crn の条件でイオン注入
し、熱処理によって注入イオンを活性化させて、n+拡
散層からなるソース20およびドレイン21を形成する
Next, as shown in FIG. 4(d), the second gate oxide film 17
After removing, using the sidewall 18 as a mask, hiso ions are accelerated into the silicon substrate at an energy of 40 KeV.
, Ion implantation is performed at a dose of 6×10 crn, and the implanted ions are activated by heat treatment to form a source 20 and a drain 21 made of n+ diffusion layers.

最後に、第4図(、)に示したように、減圧CVD法で
、水素と67ノ化タングステンの混合ガスを用いて、タ
ングステン膜19を、サイドウオール18上と、ソース
およびドレイン上にのみ選択的に成長させることによっ
て、本発明のMISFETが完成する。
Finally, as shown in FIG. 4(,), a tungsten film 19 is formed only on the sidewall 18 and on the source and drain using a mixed gas of hydrogen and tungsten 67 nitride using a low pressure CVD method. By selectively growing, the MISFET of the present invention is completed.

発明の効果 本発明の半導体装置によれば、MISFETのドレイン
近傍の電界を緩和できるので、ホットエレクトロンの発
生を抑制でき、さらに、ドレイン側のサイドウオールゲ
ートが、ドレイン電位にな9ぺ−7
Effects of the Invention According to the semiconductor device of the present invention, since the electric field near the drain of the MISFET can be relaxed, the generation of hot electrons can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMISFETの構造を示す要部の断面図
、第2図(−)はLDD−MISFETの断面図、同図
(b)は同図(、)の等価回路図、第3図は本発明に係
るMISFETの構造を示す要部の断面図、第4図(−
) −(e)は本発明のMISFETの製造方法を説明
するための図である。 11、、、、、、p型シリコン基板、12・・・・フィ
ールド酸化膜、13 ・−第1ゲート酸化膜、14−・
・第1ゲート電極、16−・・酸化膜、16・・・・n
1散層、7・・・第2ゲート酸化膜、18・・・サイド
ウオール、19・・・・タングステン膜、20−・−ソ
ース、21・・・ドレイン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第3図 第4図
Figure 1 is a cross-sectional view of the main parts showing the structure of a conventional MISFET, Figure 2 (-) is a cross-sectional view of an LDD-MISFET, Figure (b) is an equivalent circuit diagram of the same figure (,), and Figure 3. is a cross-sectional view of the main part showing the structure of the MISFET according to the present invention, and FIG.
)-(e) are diagrams for explaining the method for manufacturing the MISFET of the present invention. 11,..., p-type silicon substrate, 12...field oxide film, 13...first gate oxide film, 14-...
・First gate electrode, 16-... oxide film, 16...n
1 diffused layer, 7... second gate oxide film, 18... side wall, 19... tungsten film, 20-- source, 21... drain. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  一導電形の半導体基板上に、第1のMIS型ダイオー
ドと、同第1のMIS型ダイオードに自己整合的に隣接
して第2のMIS型ダイオードが形成された構造を有し
、さらに同第2のMIS型ダイオードの導電膜の一端が
前記半導体基板中に形成された不純物拡散層と電気的に
接触していることを特徴とする半導体装置。
It has a structure in which a first MIS diode and a second MIS diode are formed adjacent to the first MIS diode in a self-aligned manner on a semiconductor substrate of one conductivity type. A semiconductor device characterized in that one end of the conductive film of the second MIS type diode is in electrical contact with an impurity diffusion layer formed in the semiconductor substrate.
JP15965484A 1984-07-30 1984-07-30 Semiconductor device Pending JPS6136973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15965484A JPS6136973A (en) 1984-07-30 1984-07-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15965484A JPS6136973A (en) 1984-07-30 1984-07-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6136973A true JPS6136973A (en) 1986-02-21

Family

ID=15698427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15965484A Pending JPS6136973A (en) 1984-07-30 1984-07-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6136973A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168050A (en) * 1986-12-29 1988-07-12 Hitachi Ltd Semiconductor device
JPH02276251A (en) * 1989-04-18 1990-11-13 Oki Electric Ind Co Ltd Semiconductor device
WO1997041604A1 (en) * 1996-04-29 1997-11-06 Siemens Aktiengesellschaft Lightly doped drain (ldd) mosfet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582066A (en) * 1981-06-26 1983-01-07 Toshiba Corp High withstand-voltage mos transistor
JPS59200465A (en) * 1983-04-27 1984-11-13 Toshiba Corp Mis-type transistor and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582066A (en) * 1981-06-26 1983-01-07 Toshiba Corp High withstand-voltage mos transistor
JPS59200465A (en) * 1983-04-27 1984-11-13 Toshiba Corp Mis-type transistor and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168050A (en) * 1986-12-29 1988-07-12 Hitachi Ltd Semiconductor device
JPH02276251A (en) * 1989-04-18 1990-11-13 Oki Electric Ind Co Ltd Semiconductor device
WO1997041604A1 (en) * 1996-04-29 1997-11-06 Siemens Aktiengesellschaft Lightly doped drain (ldd) mosfet

Similar Documents

Publication Publication Date Title
JP2835216B2 (en) Method for manufacturing semiconductor device
JPH0216020B2 (en)
JPH09181307A (en) Semiconductor device and manufacturing method therefor
JP3448546B2 (en) Semiconductor device and manufacturing method thereof
EP0187260B1 (en) Process for fabricating a semiconductor integrated circuit device having misfets
JP2001007325A (en) Field-effect transistor
JPS6136975A (en) Semiconductor device
JP3106757B2 (en) Method for manufacturing MOS field effect semiconductor device
JPS6136973A (en) Semiconductor device
JPH0234936A (en) Semiconductor device and its manufacture
JPH0519979B2 (en)
JPH0656855B2 (en) Insulated gate type field effect transistor
JP4186247B2 (en) Method for manufacturing semiconductor device and method for forming conductive silicon film
JPH0346238A (en) Manufacture of semiconductor device
JPH09312397A (en) Semiconductor device and method of fabricating the same
JPH0575045A (en) Manufacture of semiconductor device
JP3802331B2 (en) Semiconductor device and manufacturing method thereof
JPH07273212A (en) Semiconductor device and its manufacture
JPH06105715B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0348428A (en) Semiconductor device
JPH04255233A (en) Semiconductor device and manufacture thereof
JP2896960B2 (en) Semiconductor device and manufacturing method thereof
JPH02266533A (en) Manufacture of semiconductor device
JPH06204456A (en) Semiconductor device
EP0355691A2 (en) Semiconductor device and process for producing the same