JPH0519979B2 - - Google Patents

Info

Publication number
JPH0519979B2
JPH0519979B2 JP60083134A JP8313485A JPH0519979B2 JP H0519979 B2 JPH0519979 B2 JP H0519979B2 JP 60083134 A JP60083134 A JP 60083134A JP 8313485 A JP8313485 A JP 8313485A JP H0519979 B2 JPH0519979 B2 JP H0519979B2
Authority
JP
Japan
Prior art keywords
gate electrode
gate
silicide
sidewall
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60083134A
Other languages
Japanese (ja)
Other versions
JPS61241974A (en
Inventor
Kyoto Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8313485A priority Critical patent/JPS61241974A/en
Priority to DE3530065A priority patent/DE3530065C2/en
Priority to US06/768,374 priority patent/US4727038A/en
Publication of JPS61241974A publication Critical patent/JPS61241974A/en
Priority to US07/358,491 priority patent/US4971922A/en
Publication of JPH0519979B2 publication Critical patent/JPH0519979B2/ja
Priority to US08/193,912 priority patent/US5869377A/en
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の製造方法に係り、特
にLightly Doped Drain(以下LDDと称す)構造
の絶縁ゲート(MOS)電界効果半導体装置の製
造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing an insulated gate (MOS) field effect semiconductor device having a Lightly Doped Drain (hereinafter referred to as LDD) structure. It is related to.

〔従来の技術〕 第2図aないしcは従来のこの種の半導体装置
の製造方法の主要段階における状態を示す断面図
である。まず、第2図aに示すように、p形シリ
コン基板1にゲート絶縁膜2及びゲート電極3を
形成し、このゲート電極をマスクとして、図示矢
印のように低濃度のn形不純物をイオン注入す
ることで、ソース・ドレインの低濃度n形領域4
を形成する。次に、第2図bに示すように、減圧
CVD(Low Pressure Chemical Vapour
Deposition)で酸化膜9を堆積する。さらに、第
2図cに示すように、RIE(Reactive Ion
Etching)の異方性エツチングによつて、ゲート
側壁(side wall)にだけ酸化膜10を残し、そ
の後、ゲート電極とゲート側壁残部10をマスク
にして、図示矢印のように、高濃度のn形不純
物をイオン注入し、高濃度n形領域5を形成する
ことで、所望の幅の低濃度n形領域4と高濃度n
形領域5とをもつLDD構造が形成される。
[Prior Art] FIGS. 2a to 2c are cross-sectional views showing the main stages of a conventional method for manufacturing a semiconductor device of this type. First, as shown in FIG. 2a, a gate insulating film 2 and a gate electrode 3 are formed on a p-type silicon substrate 1, and using this gate electrode as a mask, a low concentration of n-type impurity is ion-implanted as shown by the arrow in the figure. By doing so, the low concentration n-type region 4 of the source/drain
form. Next, as shown in Figure 2b, the pressure is reduced.
CVD (Low Pressure Chemical Vapor)
An oxide film 9 is deposited using a method (deposition). Furthermore, as shown in Figure 2c, RIE (Reactive Ion)
The oxide film 10 is left only on the gate side wall by anisotropic etching (etching), and then, using the gate electrode and the remaining gate side wall 10 as a mask, as shown by the arrow in the figure, a high concentration n-type oxide film is formed. By ion-implanting impurities and forming the high concentration n-type region 5, the low concentration n-type region 4 and the high concentration n-type region 4 having a desired width are formed.
An LDD structure having a shaped region 5 is formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のLDD構造では、ゲート側壁に酸化膜1
0を用いていたので、MOSFET動作中にホツト
キヤリアが、ドレイン側のゲート側壁の酸化膜1
0に注入され、これによつて、低濃度n形(n-
形)領域4が空乏化し、そのn-形領域4の抵抗
が上昇し、MOSFETのトランスコンダクタンス
が劣化するという問題点があつた。
In the conventional LDD structure, an oxide film 1 is placed on the gate sidewalls.
0 was used, so during MOSFET operation, hot carriers were transferred to the oxide film 1 on the sidewall of the gate on the drain side.
0, thereby creating a low concentration n-type (n -
There was a problem in that the n - type region 4 became depleted, the resistance of the n - type region 4 increased, and the transconductance of the MOSFET deteriorated.

この発明は上記のような問題点を解消するため
になされたもので、ホツトキヤリアがゲート側壁
部に注入されてもトランスコンダクタンスの低下
のないMOS電界効果半導体装置を得る製造方法
を提供することを目的としている。
This invention was made to solve the above-mentioned problems, and an object thereof is to provide a manufacturing method for obtaining a MOS field-effect semiconductor device in which the transconductance does not decrease even when hot carriers are injected into the gate sidewall. It is said that

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体装置の製造方法は、
LDD構造を得るためのイオン注入用マスクを、
ゲート電極と、高融点金属またはそのシリサイド
からなるサイドウオールとから構成し、イオン注
入後に上記サイドウオールを残存させるようにし
たものである。
The method for manufacturing a semiconductor device according to the present invention includes:
The ion implantation mask to obtain the LDD structure is
It consists of a gate electrode and a sidewall made of a high melting point metal or its silicide, and the sidewall is left to remain after ion implantation.

〔作用〕[Effect]

この発明においては、ゲート電極側壁部に高融
点金属またはそのシリサイドからなるサイドウオ
ールを残存させるようにしたから、ゲート電極と
低不純物濃度領域とがオーバラツプした構造とな
り、低不純物濃度領域の抵抗値がゲート電圧によ
つて変化し、LDDの電流駆動能力を向上させる
ことができる。
In this invention, since a side wall made of a high melting point metal or its silicide is left on the side wall of the gate electrode, the gate electrode and the low impurity concentration region overlap, resulting in a structure in which the resistance value of the low impurity concentration region is reduced. It changes depending on the gate voltage and can improve the current driving ability of the LDD.

〔実施例〕〔Example〕

第1図aないしdはこの発明の一実施例方法の
主要段階での状態を示す断面図で、まず、第1図
aに示すようにp形シリコン基板1の上にゲート
酸化膜2と多結晶シリコンゲート電極3とからな
るゲート電極層11を形成し、このゲート電極3
をマスクとして、例えばリン・イオン(p+)を
50keVの加速電圧でゲート絶縁膜2を通して1×
1013(個/cm2)注入することによつてn-形領域4
を形成する。次に、第1図bに示すように、例え
ばスパツタリング法で、高融点金属であるタング
ステン層12を4000Åの厚さに堆積形成する。次
に、第1図cに示すように、RIE異方性エツチン
グによつてゲート側壁にのみタングステンのゲー
ト側壁残部13を残す。そしてゲート酸化膜2の
露出部を除去する。このゲート側壁残部13は第
1図cに示すように、滑らかなコンフオーマルな
形となり、ゲート電極の垂直段差が小さくなつて
いる。その後ゲート電極層11とタングステンの
ゲート側壁残部13とをマスクとしてヒ素イオン
(As+)を50keVの加速電圧で4×1015(個/cm2
注入し、n+形領域5を形成してLDD構造を得る。
以下、第1図dに示すように、保護絶縁膜14を
形成し、これに所要のコンタクト孔を開孔した
後、電極配線15を形成して素子は完成する。
FIGS. 1A to 1D are cross-sectional views showing the main stages of a method according to an embodiment of the present invention. First, as shown in FIG. A gate electrode layer 11 consisting of a crystalline silicon gate electrode 3 is formed, and this gate electrode 3
For example, using phosphorus ions (p + ) as a mask,
1× through the gate insulating film 2 at an accelerating voltage of 50 keV.
10 13 (pcs/cm 2 ) n - type area 4 by implanting
form. Next, as shown in FIG. 1b, a tungsten layer 12, which is a high melting point metal, is deposited to a thickness of 4000 Å by, for example, sputtering. Next, as shown in FIG. 1c, RIE anisotropic etching is performed to leave the remaining gate sidewall portion 13 of tungsten only on the gate sidewall. Then, the exposed portion of gate oxide film 2 is removed. As shown in FIG. 1c, this gate sidewall remaining portion 13 has a smooth conformal shape, and the vertical step of the gate electrode is reduced. After that, using the gate electrode layer 11 and the remaining tungsten gate sidewall portion 13 as a mask, arsenic ions (As + ) are added at 4×10 15 (pieces/cm 2 ) at an accelerating voltage of 50 keV.
The LDD structure is obtained by implanting and forming an n + type region 5.
Thereafter, as shown in FIG. 1d, a protective insulating film 14 is formed, required contact holes are formed therein, and then electrode wirings 15 are formed to complete the device.

上記実施例では、nチヤネルMOS電界効果半
導体装置の場合について説明したが、勿論、n形
基板を用いてp形不純物イオンを注入するp形チ
ヤネルMOS電界効果半導体装置の製造にも適用
できる。また、実施例における高融点金属の代り
にそのシリサイドを用いてもよい。
In the above embodiments, the case of an n-channel MOS field-effect semiconductor device has been described, but of course the present invention can also be applied to the manufacture of a p-type channel MOS field-effect semiconductor device in which p-type impurity ions are implanted using an n-type substrate. Moreover, the silicide may be used instead of the high melting point metal in the embodiment.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、LDD構造
を得るためのゲート側壁残部を高融点金属または
そのシリサイドで形成し、これを残存させるよう
にしたから、ゲート電極と低不純物濃度領域とが
オーバラツプした構成となり、ホツトキヤリアの
一部をゲート電極側から引出すことが可能であ
り、ホツトキヤリアの注入にもとづくトランスコ
ンダクタンスの低下の生じないMOS電界効果半
導体装置が得られる。
As described above, according to the present invention, the remaining part of the gate sidewall for obtaining the LDD structure is formed of a high melting point metal or its silicide and left to remain, so that the gate electrode and the low impurity concentration region overlap. With this configuration, a part of the hot carrier can be drawn out from the gate electrode side, and a MOS field effect semiconductor device can be obtained in which the transconductance does not decrease due to injection of the hot carrier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜dはこの発明の一実施例方法の主要
工程段階での状態を示す断面図、第2図a〜cは
従来のLDD構造のMOS電界効果半導体装置の製
造方法の主要工程段階での状態を示す断面図であ
る。 図において、1はシリコン基板、2はゲート絶
縁膜、3はゲート電極、4は低不純物濃度のソー
ス・ドレイン領域、5はソース・ドレインの高不
純物濃度領域、11はゲート電極層、12は高融
点金属またはそのシリサイドの層、13は高融点
金属またはそのシリサイドのゲート側壁残部であ
る。なお、図中、同一符合は同一または相当部分
を示す。
1A to 1D are cross-sectional views showing the main process steps of a method according to an embodiment of the present invention, and FIGS. 2A to 2C are main process steps of a conventional method for manufacturing a MOS field effect semiconductor device having an LDD structure. FIG. In the figure, 1 is a silicon substrate, 2 is a gate insulating film, 3 is a gate electrode, 4 is a low impurity concentration source/drain region, 5 is a source/drain high impurity concentration region, 11 is a gate electrode layer, 12 is a high impurity concentration region The layer of melting point metal or its silicide, 13, is the gate sidewall remainder of the refractory metal or its silicide. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 第1導電形のシリコン基板上にゲート絶縁膜
とゲート電極とを形成する第1の工程、 上記ゲート電極をマスクとして上記シリコン基
板の表面部に第2導電形の不純物をイオン注入し
て低不純物濃度のソース・ドレイン領域を形成す
る第2の工程、 上記シリコン基板上の全面に高融点金属または
そのシリサイドの層を形成する第3の工程、 上記高融点金属またはそのシリサイドの層に異
方性エツチングを施し、上記ゲート絶縁膜上にゲ
ート電極の一部をなすサイドウオールを形成する
第4の工程、 並びに上記ゲート電極と上記サイドウオールを
マスクとして第2導電形の不純物をイオン注入し
て上記ソース・ドレイン領域内に高不純物濃度領
域を形成する第5の工程とを有することを特徴と
する半導体装置の製造方法。
[Claims] 1. A first step of forming a gate insulating film and a gate electrode on a silicon substrate of a first conductivity type; using the gate electrode as a mask, impurities of a second conductivity type are formed on the surface of the silicon substrate; a second step of ion-implanting to form source/drain regions with low impurity concentration; a third step of forming a layer of a high melting point metal or its silicide on the entire surface of the silicon substrate; a third step of forming a layer of the high melting point metal or its silicide; A fourth step of performing anisotropic etching on the silicide layer to form a sidewall forming a part of the gate electrode on the gate insulating film, and etching a second conductivity type using the gate electrode and the sidewall as a mask. a fifth step of ion-implanting impurities to form high impurity concentration regions in the source/drain regions.
JP8313485A 1984-08-22 1985-04-18 Manufacture of semiconductor device Granted JPS61241974A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8313485A JPS61241974A (en) 1985-04-18 1985-04-18 Manufacture of semiconductor device
DE3530065A DE3530065C2 (en) 1984-08-22 1985-08-22 Process for the production of a semiconductor
US06/768,374 US4727038A (en) 1984-08-22 1985-08-22 Method of fabricating semiconductor device
US07/358,491 US4971922A (en) 1984-08-22 1989-05-30 Method of fabricating semiconductor device
US08/193,912 US5869377A (en) 1984-08-22 1994-02-03 Method of fabrication LDD semiconductor device with amorphous regions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8313485A JPS61241974A (en) 1985-04-18 1985-04-18 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS61241974A JPS61241974A (en) 1986-10-28
JPH0519979B2 true JPH0519979B2 (en) 1993-03-18

Family

ID=13793727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8313485A Granted JPS61241974A (en) 1984-08-22 1985-04-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61241974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945667B2 (en) * 2009-05-22 2015-02-03 Envirotech Services, Inc. Alkylcellulose and salt compositions for dust control applications

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115377A (en) * 1986-11-04 1988-05-19 Matsushita Electronics Corp Manufacture of semiconductor device
JPS63144574A (en) * 1986-12-09 1988-06-16 Nec Corp Mos type semiconductor device
JP2506963B2 (en) * 1988-07-26 1996-06-12 松下電器産業株式会社 Semiconductor device
KR100296126B1 (en) 1998-12-22 2001-08-07 박종섭 Gate electrode formation method of highly integrated memory device
KR100299386B1 (en) 1998-12-28 2001-11-02 박종섭 Gate electrode formation method of semiconductor device
JP3988342B2 (en) 1998-12-29 2007-10-10 株式会社ハイニックスセミコンダクター Method for forming gate electrode of semiconductor element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121878A (en) * 1982-12-28 1984-07-14 Toshiba Corp Manufacture of semiconductor device
JPS60113472A (en) * 1983-11-24 1985-06-19 Toshiba Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121878A (en) * 1982-12-28 1984-07-14 Toshiba Corp Manufacture of semiconductor device
JPS60113472A (en) * 1983-11-24 1985-06-19 Toshiba Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945667B2 (en) * 2009-05-22 2015-02-03 Envirotech Services, Inc. Alkylcellulose and salt compositions for dust control applications

Also Published As

Publication number Publication date
JPS61241974A (en) 1986-10-28

Similar Documents

Publication Publication Date Title
JPH09135025A (en) Fabrication of semiconductor device
JPH053751B2 (en)
JP2925008B2 (en) Method for manufacturing semiconductor device
EP0459398B1 (en) Manufacturing method of a channel in MOS semiconductor devices
JPH0519979B2 (en)
JPH09219520A (en) Transistor and manufacture thereof
US6312999B1 (en) Method for forming PLDD structure with minimized lateral dopant diffusion
JP4186247B2 (en) Method for manufacturing semiconductor device and method for forming conductive silicon film
JPH0234936A (en) Semiconductor device and its manufacture
JPS6344769A (en) Field effect transistor and manufacture of the same
JPH09312397A (en) Semiconductor device and method of fabricating the same
JP2757491B2 (en) Method for manufacturing semiconductor device
JP2904081B2 (en) Method for manufacturing semiconductor device
JP3366709B2 (en) Method for manufacturing MOS transistor
JPS61101077A (en) Manufacture of semiconductor device
JPH06204456A (en) Semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPH07249761A (en) Semiconductor device and its fabrication
JPH0964361A (en) Manufacture of semiconductor device
JPH021941A (en) Manufacture of semiconductor device
JPH11224945A (en) Semiconductor device
JPH05291569A (en) Insulation gate type fet and its manufacture
JPS59175161A (en) Insulated gate semiconductor device and manufacture thereof
JPS62159470A (en) Manufacture of mosfet
JPH05343677A (en) Semiconductor device and manufacturing method thereof