JPS60113472A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60113472A
JPS60113472A JP22097683A JP22097683A JPS60113472A JP S60113472 A JPS60113472 A JP S60113472A JP 22097683 A JP22097683 A JP 22097683A JP 22097683 A JP22097683 A JP 22097683A JP S60113472 A JPS60113472 A JP S60113472A
Authority
JP
Japan
Prior art keywords
gate electrode
film
mask
ion implantation
impurity region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22097683A
Other languages
Japanese (ja)
Inventor
Masaki Sato
正毅 佐藤
Kazuyoshi Shinada
品田 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22097683A priority Critical patent/JPS60113472A/en
Priority to US06/670,010 priority patent/US4597824A/en
Publication of JPS60113472A publication Critical patent/JPS60113472A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode

Abstract

PURPOSE:To form impurity regions with good accuracy by a method wherein a low concentration impurity region is formed by the ion implantation using the gate electrode as a mask, and a high concentration one is formed by the ion implantation using the gate electrode and a film as a mask. CONSTITUTION:After a field oxidation film 12 is formed on the surface of a p type Si substrate 11, a gate oxide film 13 is formed on the substrate surface surrounded by the oxide film 12. For the purpose of controlling the threshold value, B<+> is channel-ion-implanted under conditions of an acceleration energy of 25KeV and a dosage of 9X10<11>cm<-2>. After deposition of a polycrystalline Si film over the entire surface, the gate electrode 14 is formed by patterning. A shallow n<-> impurity region 15 is formed by phosphorus ion implantation with the gate electrode as a mask. Then, a p type impurity region 16 is formed by boron ion implantation with the electrode as a mask. The surface is washed after annealing in N2. A tungsten film 17 is formed by vapor phase growth with WF6 gas. An n<+> type impurity region 18 is formed by ion implantation with the electrode 14 and tungsten film as a mask.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特にMO8半導
体装置の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing an MO8 semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、LSIの集積度は年々向上し、回路を構成する素
子の寸法は益々小さくなっている。ところが、MO8半
導体装置ではチャネル長が短くなるにつれ、いわゆるシ
ョートチャネル効果によりトランジスタのスレッショル
ド電圧が著しく低下する等の欠点が生じてくる。これは
主としてドレイン電圧による空乏層がチャネル領域に侵
入することにより、チャネル領域での電荷がゲート電圧
のみならず、ドレイン電圧によつても影響されるからで
ある。
In recent years, the degree of integration of LSIs has improved year by year, and the dimensions of elements constituting circuits have become smaller and smaller. However, as the channel length of the MO8 semiconductor device becomes shorter, drawbacks arise such as a significant drop in the threshold voltage of the transistor due to the so-called short channel effect. This is mainly because the charge in the channel region is affected not only by the gate voltage but also by the drain voltage, as a depletion layer due to the drain voltage invades the channel region.

こうしたショートチャネル効果を防ぐ方法としてチャネ
ル領域へ基板さ同導電型の不純物をイオン注入してチャ
ネル領域の基板濃度を高くするとともにソース、ドレイ
ン領域の接合深さくX】)を浅くする技術が矧られてい
る。しかし、xjを浅くすることはドレイン近傍での電
界強度を大きくし、ドレイン耐圧の低下を招くたけでな
く、ホットキャリアの発生率を高め、スレッショルド電
圧の不安定性を増し、信頼性を低下させる原因となる。
As a method to prevent such short channel effects, a technique has been developed to increase the substrate concentration in the channel region by ion-implanting impurities of the same conductivity type as the substrate into the channel region, and to reduce the junction depth of the source and drain regions. ing. However, making xj shallower not only increases the electric field strength near the drain and lowers the drain breakdown voltage, but also increases the generation rate of hot carriers, increases the instability of the threshold voltage, and reduces reliability. becomes.

才だ、基g濃度を高くすることはチャネル領域の静電容
量を太きくし、サブスレッショルド特性と基板バイアス
特性を悪化させる原因となる。
However, increasing the group concentration increases the capacitance of the channel region, which causes deterioration of subthreshold characteristics and substrate bias characteristics.

上述したような欠点を解消するために、最近の新しい技
術としてP(あるいはN)ポケット形成技術が矧らnて
いる(例えば、S、 Oguraet a+ 、 ’ 
A half m1cron MOSFET usin
gdouble 1mplantecj LDD、 ”
 InternationalElectron De
vices Meeting Technical D
igest718、(1982))。この方法を第1図
(,1〜(c)を参照して説明する。
In order to overcome the above-mentioned drawbacks, there are many new P (or N) pocket formation techniques recently (for example, S, Oguraet a+, '
A half m1cron MOSFET usin
gdouble 1plantecj LDD, ”
International Electron De
vices Meeting Technical D
igest718, (1982)). This method will be explained with reference to FIGS.

まず、例えばP型シリコン基板、1表面にフィールド酸
化膜2を形成した後、フィールド酸化膜2によって囲す
れた基板1表面にゲート酸化膜3を形成する。次に、全
面に多fと晶シリコン膜を堆積した後、パターニングし
てゲート′電極4を形成する。つづいて、ゲート電極4
をマスクとしてn型不純物をイオン注入してソース。
First, a field oxide film 2 is formed on the surface of a P-type silicon substrate, for example, and then a gate oxide film 3 is formed on the surface of the substrate 1 surrounded by the field oxide film 2. Next, a polycrystalline silicon film is deposited on the entire surface and then patterned to form a gate' electrode 4. Next, gate electrode 4
Using this as a mask, n-type impurity ions are implanted into the source.

ドレイン領域の一部となる浅いn−型不純物領域5.5
を形成する。つづいて、ゲート電極4をマスクとしてp
型不純物をイオン注入してpポケットとなるp型不純物
領域6,6を形成する(第1図(a1図示)。
Shallow n-type impurity region 5.5 which becomes part of the drain region
form. Next, using the gate electrode 4 as a mask, p
P-type impurity regions 6, 6 which will become p-pockets are formed by ion implantation of type impurities (FIG. 1 (a1 diagram)).

次いで、全面に例えばCVD酸化膜7を堆積する(同図
(b1図示)。つづいて、異方性ドライエツチングによ
りCVD酸化膜7をエツニングし、ゲート電極4の側壁
にCVD酸化膜7/ 、 71を残存させる。つづいて
、ゲート電極4及び残存したCVD酸化膜7’、7′を
マスクとしてn型不純物をイオン注入して深いn 型不
純物領域8,8を形成する。この結果、チャネル領域近
傍の浅いn”−型不純物領域5,5とこれらの領域【こ
隣接する深い層型不純物領域8.8とからなるソース。
Next, for example, a CVD oxide film 7 is deposited on the entire surface (as shown in FIG. Next, using the gate electrode 4 and the remaining CVD oxide films 7', 7' as masks, n-type impurity ions are implanted to form deep n-type impurity regions 8, 8. As a result, deep n-type impurity regions 8, 8 are formed near the channel region. A source is made up of shallow n''-type impurity regions 5, 5 and an adjacent deep layer impurity region 8.8.

ドレイン領域9,10及びチャネル領域近傍の浅G)n
−型不純物価域5,5の下部に位置するp型不純物領域
(ポケット領域)6,6が形成される(同図(c)図示
)。
Shallow G)n near drain regions 9, 10 and channel region
P-type impurity regions (pocket regions) 6, 6 located below the --type impurity regions 5, 5 are formed (as shown in FIG. 13(c)).

第1図(c)図示のMO3I−ランジスタはp型不純物
領域(ポケット領域)6,6の存在によりショートチャ
ネル効果を低減することができ、またp型不純物領域(
ポケット領域)6,6の上部の浅いn−型不純物領域5
,5によりドレイン耐圧の低下を防止し、ホットキャリ
アの発生を低減することができる。更に、チャネル領域
の不純物濃度を通常行なわnるチャネルイオン注入によ
る濃度程#に低くすることができるので、サブスレッシ
ョルド特性と基板バイアス特性も同上する。
The MO3I-transistor shown in FIG. 1(c) can reduce the short channel effect due to the presence of p-type impurity regions (pocket regions) 6, 6, and the p-type impurity regions (
Shallow n-type impurity region 5 on top of pocket region) 6, 6
, 5 can prevent a decrease in drain breakdown voltage and reduce the generation of hot carriers. Furthermore, since the impurity concentration in the channel region can be made as low as the concentration by channel ion implantation which is normally performed, the subthreshold characteristics and substrate bias characteristics are also the same.

しかしながら、この方法では第1図(c)の工程でゲー
ト電極4の側壁に残存させるCVD酸化膜yL、yLの
寸法制御が極めて困難であるという欠点を有している。
However, this method has the drawback that it is extremely difficult to control the dimensions of the CVD oxide films yL, yL left on the side walls of the gate electrode 4 in the step shown in FIG. 1(c).

すなわち、CVD酸化[7’ 。That is, CVD oxidation [7'].

71の寸法精度にはCVD酸化膜7の膜厚、CVD酸化
膜7のエツチング速度、エツチングM度等の均一性、エ
ツチング前後の表面処理による酸化膜の後退等が影響す
るため、寸法の制御性が低下する。特に、ウェハの大口
径化に伴い、ウェハ面内のCVD酸化膜7の膜厚のバラ
ツキや、異方性エツチング時のエツチング速度の面内分
布は増大する傾向にある。したがって、残存させるCV
D酸化膜7/、y/の寸法が太きすぎる場合にはn−型
不純物領域5,5の抵抗が必要以上に大きくなり、電流
増幅率を低下させる。一方、残存させるCVD酸化膜7
/、7/の寸法が小さすぎる場合にはn−型不純物領域
5,5の幅が小さくなり、ドレイン耐圧の低下を抑制す
る効果が充分でなくなる。
The dimensional accuracy of 71 is affected by the thickness of the CVD oxide film 7, the etching rate of the CVD oxide film 7, the uniformity of the etching M degree, etc., and the recession of the oxide film due to surface treatment before and after etching, so the controllability of the dimension is affected. decreases. In particular, as the diameter of the wafer becomes larger, the variation in the thickness of the CVD oxide film 7 within the wafer surface and the in-plane distribution of the etching rate during anisotropic etching tend to increase. Therefore, the remaining CV
If the dimensions of the D oxide films 7/, y/ are too large, the resistance of the n-type impurity regions 5, 5 will become larger than necessary, reducing the current amplification factor. On the other hand, the CVD oxide film 7 to remain
If the dimensions of / and 7/ are too small, the widths of n-type impurity regions 5 and 5 will become small, and the effect of suppressing a decrease in drain breakdown voltage will not be sufficient.

また、異方性ドライエツチングを用いているので、エツ
チング時に基板1表面0こダメージ層が発生したり、用
いるガス(例えばCF、)の反応により基依1上にポリ
マーが堆積され、素子特性を劣化させる原因となる。
In addition, since anisotropic dry etching is used, a damaged layer may be generated on the surface of the substrate 1 during etching, and polymer may be deposited on the substrate 1 due to the reaction of the gas used (for example, CF), which may affect the device characteristics. This may cause deterioration.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなさnたものであり、簡便な
工程で上記3種の不純物領域を精度よく形成し、素子特
性の良好な半導体装置を製造し得る方法を提供しようと
するものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing a semiconductor device with good element characteristics by forming the three types of impurity regions with high precision using a simple process. be.

〔発明の概要〕[Summary of the invention]

本発明の半導体装置の製造方法は、第1導電型の半導体
基板表面にゲート絶縁膜を形成し、ゲート絶傍膜上にゲ
ート電極を形成した後、ゲート電極をマスクとするイオ
ン注入によりポケット領域となる第1導電型の不純物領
域と、ソース、ドレインの一部となる第2導電型の低濃
度不純物領域を形成し、更にゲート電極の少なくとも側
壁に被膜(例えば金属、金属半導体化合物又は半導体)
を選択成長させた後、ゲート電極及び被膜をマスクとす
るイオン注入によりソース、ドレインとなる第2導電型
の高濃度不純物領域を形成することを骨子とするもので
ある。
In the method of manufacturing a semiconductor device of the present invention, a gate insulating film is formed on the surface of a semiconductor substrate of a first conductivity type, a gate electrode is formed on a gate insulating film, and then pocket regions are formed by ion implantation using the gate electrode as a mask. An impurity region of a first conductivity type is formed, and a low concentration impurity region of a second conductivity type is formed, which becomes a part of the source and drain, and a film (for example, a metal, a metal semiconductor compound, or a semiconductor) is formed on at least the sidewalls of the gate electrode.
The gist of this method is to selectively grow the oxide and then perform ion implantation using the gate electrode and film as a mask to form highly concentrated impurity regions of the second conductivity type that will become the source and drain.

このような方法ζこよれば、ポケット領域及びソース、
ドレインの低濃度不純物領域をゲート電極の少なくとも
側壁に被膜を選択成長させた後の第2導電型の不純物の
イオン注入により自己整合的に形成することができ、こ
れらの寸法を被膜の膜厚のみζこよって決定できるので
寸法の制御性が極めて良好となる。しかも、工程が簡便
で、異方性ドライエツチングを用いないので素子特性を
劣化させることがない。
According to such a method, pocket areas and sources,
The low-concentration impurity region of the drain can be formed in a self-aligned manner by selectively growing a film on at least the sidewalls of the gate electrode and then implanting impurities of the second conductivity type, and these dimensions can be adjusted only by the thickness of the film. Since it can be determined by ζ, the controllability of dimensions is extremely good. Furthermore, the process is simple, and since anisotropic dry etching is not used, there is no deterioration of device characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をnチャネルMO8I−ランジスタの製造
に適用した実施例を第2図(al〜(d)を参朋して説
明する。
Hereinafter, an embodiment in which the present invention is applied to the manufacture of an n-channel MO8I-transistor will be described with reference to FIGS.

まず、比抵抗10〜20Ω・備のp型シリコン基板11
表面に厚さ1,2μmのフィールド酸化膜12を形成し
た後、フィールド酸化膜12によって囲まれた基板11
表面に膜厚250Xのゲート酸化膜13を形成する。次
に、しきい値制御のためにB+を加速エネルギー25 
KeV 、ドーズf9 X 10””2の条件でチャネ
ルイオン注入する。つづいて、全面に膜厚0.4μm 
、 /5=20Ω/口の多結晶シリコン膜を堆積した後
、写真蝕刻法によりパターニングしてゲート電極14を
形成する。つづいて、ゲート電標14をマスクとしてリ
ンを加速エネルギー80 KeV 。
First, a p-type silicon substrate 11 with a specific resistance of 10 to 20Ω
After forming a field oxide film 12 with a thickness of 1 to 2 μm on the surface, the substrate 11 surrounded by the field oxide film 12 is
A gate oxide film 13 with a thickness of 250× is formed on the surface. Next, for threshold control, accelerate B+ with energy 25
Channel ions are implanted under the conditions of KeV and dose f9 x 10''2. Next, a film thickness of 0.4 μm was applied to the entire surface.
After depositing a polycrystalline silicon film of . Next, using the gate voltage mark 14 as a mask, phosphorus was accelerated to an energy of 80 KeV.

ドーズ量5xlOan の条件でイオン注入してソース
、ドレインの一部となる浅いn−型不純物領域15.1
5を形成する。更に、ゲート電極14をマスクとしてボ
ロンを加速エネルギー80 KeV 、 ドーズ量5X
1012C12の条件でイオン注入してポケット領域と
なるp型不純物領域16.16を形成する(第2図(a
)図示)。
Shallow n-type impurity regions 15.1 are implanted at a dose of 5xlOan to become part of the source and drain.
form 5. Further, using the gate electrode 14 as a mask, boron was accelerated at an energy of 80 KeV and a dose of 5X.
Ion implantation is performed under the conditions of 1012C12 to form a p-type impurity region 16.16 which will become a pocket region (see Fig. 2(a)).
).

次いで、N2中、950℃で20分間アニールした後、
表面を洗浄する。つづいて、WF6ガスを用い、流量5
 CC/an 、真空度0.005 Tor、 。
Then, after annealing at 950° C. for 20 minutes in N2,
Clean surfaces. Next, using WF6 gas, flow rate 5
CC/an, degree of vacuum 0.005 Tor.

温度500℃の条件で気相成長を行ない、前記・デート
電極14の表(2)にのみ選択的lこ膜厚0.3μmの
タングステン膜17を形成する。この際、多結晶シリコ
ンからなるゲート電極14以外の絶縁膜上にはタングス
テン膜17は形成さ几ない(同図(b1図示)。
Vapor phase growth is carried out at a temperature of 500° C., and a tungsten film 17 having a thickness of 0.3 μm is selectively formed only on the table (2) of the date electrode 14. At this time, the tungsten film 17 is not formed on the insulating film other than the gate electrode 14 made of polycrystalline silicon (as shown in the figure (b1)).

次いで、ゲート電極14及びタングステン膜15をマス
クとして例えばリンを加速エネルギ100 KeV 、
ドーズ量3xlOcm の条件でイオン注入してソース
、ドレインとなる深いn+型不純物領域18.18を形
成する。、この結果、チャネル領域近傍の浅いn−型不
純物領域15.15とこれらの領域に隣接するn 型不
純物領域Ill、18とからなるソース、ドレイン領域
19.20及びチャネル領域近傍のI−型不純物領域1
5.15下部に位置するp凰不純物領域(ポケット領域
)16.16(ボロン濃度I X 1016〜5xto
17m−”)が形成される(同図(c1図示)。
Next, using the gate electrode 14 and the tungsten film 15 as a mask, for example, phosphorus is accelerated at an energy of 100 KeV,
Deep n+ type impurity regions 18.18 which will become sources and drains are formed by ion implantation at a dose of 3xlOcm. , As a result, the source and drain regions 19.20 consisting of shallow n-type impurity regions 15.15 near the channel region and the n-type impurity regions Ill and 18 adjacent to these regions and the I-type impurity near the channel region. Area 1
5.15 p-type impurity region (pocket region) located at the bottom 16.16 (boron concentration I
17m-'') is formed (shown in the same figure (c1)).

つづいて、全面にCVD酸化膜21を堆積し、アニール
を行なった後、コンタクトホールを開孔する。つづいて
、全面にAl膜を蒸着した後、パターニングしてhll
配線22.22を形成し、。
Subsequently, a CVD oxide film 21 is deposited on the entire surface, annealed, and then contact holes are formed. Next, after depositing an Al film on the entire surface, patterning is performed to form hll
Wires 22.22 are formed.

チャネルMO8I−ランジスタを製造する(同図(d)
図示)。
Manufacture channel MO8I-transistor (Figure (d))
(Illustrated).

しかして上記方法によれば、第2図(b)の工程でゲー
ト電極14の表面に選拒成長させるタングステン膜17
の膜厚のみによって同図(d1図示のn−型不純物領域
15.15及びn型不純物領域(ポケット領域)16,
16の寸法が決定されるので、寸法の制御性が極めて良
好となる。
According to the above method, the tungsten film 17 selectively grows on the surface of the gate electrode 14 in the step shown in FIG. 2(b).
The n-type impurity region 15.15 and the n-type impurity region (pocket region) 16,
Since 16 dimensions are determined, the controllability of the dimensions is extremely good.

したがって、ショートチャネル効果やドレイン耐圧の低
下を有効に防止することができる。また、気相成長法と
異方性エツチングとによりゲート11L極の側壁に絶縁
膜を残存させる従来の方法き比較して工程が簡略さなる
。更に、異方性ドライエツチングを用いることがないの
で、基板表面にダメージ層を形成することがなく、ポリ
マーの堆積に伴う素子特性の劣化を起こすこともない。
Therefore, short channel effect and reduction in drain breakdown voltage can be effectively prevented. Further, the process is simplified compared to the conventional method of leaving an insulating film on the side wall of the gate 11L using vapor phase growth and anisotropic etching. Furthermore, since anisotropic dry etching is not used, no damage layer is formed on the substrate surface, and there is no deterioration of device characteristics due to polymer deposition.

なお、上記実施例ではn−型不純物領域15を形成する
ためのリンイオン注入とn型不純物領域16を形成する
ためのボロンイオン注入とを第2図(a)の工程でゲー
ト電極14形成後に行なったが、これらのイオン注入は
同図(d)の工程でタングステン膜17を除去した後に
行なってもよい。
In the above embodiment, phosphorus ion implantation to form the n-type impurity region 15 and boron ion implantation to form the n-type impurity region 16 are performed after the gate electrode 14 is formed in the process shown in FIG. 2(a). However, these ion implantations may be performed after the tungsten film 17 is removed in the step shown in FIG.

才だ、上記実施例では第2図(d)の工程でタングステ
ン模17はアニール工程時にゲート電極14を構成する
多結晶シリコンと反応するので、ゲート電極14の表面
にはタングステンシリサイド膜23が形成される。この
ようにゲート電極14の表面にタングステンシリサイド
膜23を形成すれば、ゲート電極(配線)を低抵抗化す
ることができる。
In the above embodiment, the tungsten pattern 17 reacts with the polycrystalline silicon constituting the gate electrode 14 during the annealing process in the process shown in FIG. 2(d), so a tungsten silicide film 23 is formed on the surface of the gate electrode 14. be done. By forming the tungsten silicide film 23 on the surface of the gate electrode 14 in this manner, the resistance of the gate electrode (wiring) can be reduced.

また、上記実施例では第2図(b)の工程でゲート電極
14の側壁だけでなく上面にもタングステン膜17を選
択成長させたが、第2図(a)に対応する工程でゲート
に極14上に絶縁膜(例えばCVD酸化膜)を形成して
おけば、第2図(b>に対応する工程ではゲート電極1
4の側壁にのみタングステン膜が選択成長する。この結
果、第4図に示すようにゲート電極14上Oこは絶縁膜
、例えばCVD酸化膜24が形成され、ゲート電極14
の側壁には例えばタングステンシリサイド膜25.25
が形成された構造となる。
Furthermore, in the above embodiment, the tungsten film 17 was selectively grown not only on the sidewalls of the gate electrode 14 but also on the top surface in the process shown in FIG. 2(b), but in the process corresponding to FIG. If an insulating film (for example, a CVD oxide film) is formed on the gate electrode 14, the process corresponding to FIG.
A tungsten film is selectively grown only on the sidewalls of 4. As a result, as shown in FIG. 4, an insulating film, for example, a CVD oxide film 24, is formed on the gate electrode 14.
For example, a tungsten silicide film 25.25 is placed on the side wall of the
The structure is formed.

更に、以上の説明ではゲート電極を多結晶シリコンで形
成し、被膜としてタングステン膜を用いた場合について
述べたが、ゲート電極は金属でもよいし、被膜はタング
ステン以外の金属、金属半導体化合物あるいは半導体で
もよい。また、本発明はnチャネルのMOSトランジス
タに限らず、pチャネルのものにも同様に適用できるこ
とは勿論である。
Further, in the above explanation, the gate electrode is formed of polycrystalline silicon and a tungsten film is used as the coating, but the gate electrode may be made of metal, and the coating may be made of a metal other than tungsten, a metal-semiconductor compound, or a semiconductor. good. Furthermore, the present invention is of course applicable not only to n-channel MOS transistors but also to p-channel MOS transistors.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明の半導体装置の製造方法にま
れば、素子の微細化に伴うショートチャネル効果等を有
効に防止し得る半導体装置を極めて制御性よく、しかも
簡便な工程で製造できるものである。
As detailed above, by using the method for manufacturing a semiconductor device of the present invention, it is possible to manufacture a semiconductor device that can effectively prevent short channel effects caused by miniaturization of elements, with extremely good controllability, and in a simple process. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は従来のMOSトランジスタの製
造方法を示す断面図、第2図(a)〜(d)は本発明の
実施例におけるMO8I−ランジスタの製造方法を示す
断面図、第3図及び第4図はそれぞれ本発明の他の実施
例において製造されるMO8hランジスタの断面図であ
る。 11・・・p型シリコン基板、12・・・フィールド酸
化膜、13・・・ゲート酸化膜、14・・・ゲート電極
、15・・・n−型不純物領域、16・・・n型不純物
領域(ポケット領域)、17・・・タングステン膜、1
8・・・n型不純物領域、19.20・・・ソース。 ドレイン領域、2ノ・・・CVD酸化膜、22・・・h
e配線、23.25・・・タングステンシリサイド膜、
24・・・CVD酸化膜。
FIGS. 1(a) to (c) are cross-sectional views showing a conventional method of manufacturing a MOS transistor, and FIGS. 2(a) to (d) are cross-sectional views showing a method of manufacturing an MO8I-transistor in an embodiment of the present invention. , 3 and 4 are cross-sectional views of MO8h transistors manufactured in other embodiments of the present invention, respectively. DESCRIPTION OF SYMBOLS 11... P-type silicon substrate, 12... Field oxide film, 13... Gate oxide film, 14... Gate electrode, 15... N- type impurity region, 16... N-type impurity region (pocket region), 17... tungsten film, 1
8...n-type impurity region, 19.20...source. Drain region, 2no...CVD oxide film, 22...h
e wiring, 23.25...tungsten silicide film,
24...CVD oxide film.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基根表匍にゲート絶縁膜を形
成する工程と、該ゲート絶縁膜上にゲート電極を形成す
る工程と、該ゲート電極をマスクとして第1導電型の不
純物をイオン注入して第1導電型不純物領域を形成し、
第2導電型の不純物をイオン注入して浅い第2導電型の
低濃度不純物領域を形成する工程と、前記ゲート電極の
少なくとも側壁に被膜を選択成長させる工程と、前記ゲ
ート電極及び被成する工程とを具備したことを特徴とす
る半導体装置の製造方法。
(1) A step of forming a gate insulating film on the semiconductor base surface of the first conductivity type, a step of forming a gate electrode on the gate insulating film, and a step of forming an impurity of the first conductivity type using the gate electrode as a mask. forming a first conductivity type impurity region by ion implantation;
A step of ion-implanting a second conductivity type impurity to form a shallow second conductivity type low concentration impurity region, a step of selectively growing a film on at least the sidewalls of the gate electrode, and a step of forming the gate electrode and the gate electrode. A method for manufacturing a semiconductor device, comprising:
(2) ゲート電極を多結晶シリコンで形成し、該ゲー
ト電極の少なくとも側壁に高融点金属からなる被膜を選
択成長させた後、ゲート電極及び被膜をマスクとする第
2導電型の不純物のイオン注入を行ない、更に熱処理O
こよりゲート電極を構成する多結晶シリコンと被膜を構
成する高融点金属とを反応させてシリサイド化させるこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
の製造方法。
(2) After forming a gate electrode with polycrystalline silicon and selectively growing a film made of a high-melting point metal on at least the sidewalls of the gate electrode, ion implantation of impurities of a second conductivity type is performed using the gate electrode and the film as a mask. and further heat treatment O
2. The method of manufacturing a semiconductor device according to claim 1, wherein the polycrystalline silicon constituting the gate electrode and the high melting point metal constituting the coating are reacted to form a silicide.
JP22097683A 1983-11-11 1983-11-24 Manufacture of semiconductor device Pending JPS60113472A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22097683A JPS60113472A (en) 1983-11-24 1983-11-24 Manufacture of semiconductor device
US06/670,010 US4597824A (en) 1983-11-11 1984-11-09 Method of producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22097683A JPS60113472A (en) 1983-11-24 1983-11-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60113472A true JPS60113472A (en) 1985-06-19

Family

ID=16759513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22097683A Pending JPS60113472A (en) 1983-11-11 1983-11-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60113472A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241974A (en) * 1985-04-18 1986-10-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS62122273A (en) * 1985-11-22 1987-06-03 Hitachi Ltd Semiconductor device and manufacture thereof
JPS62224974A (en) * 1986-03-27 1987-10-02 Toshiba Corp Manufacture of semiconductor device
JPS63244884A (en) * 1987-03-31 1988-10-12 Toshiba Corp Semiconductor device and manufacture thereof
US5543340A (en) * 1993-12-28 1996-08-06 Samsung Electronics Co., Ltd. Method for manufacturing offset polysilicon thin-film transistor
US5677207A (en) * 1995-10-17 1997-10-14 Lg Electronics Inc. Method for fabricating a thin film transistor using silicide layer
KR100317642B1 (en) * 1999-05-27 2001-12-22 구본준, 론 위라하디락사 Method for manufacturing a Thin Film Transistor using a metal plating
KR20030001942A (en) * 2001-06-28 2003-01-08 동부전자 주식회사 Semiconductor Device And Manufacturing Method For the Same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241974A (en) * 1985-04-18 1986-10-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0519979B2 (en) * 1985-04-18 1993-03-18 Mitsubishi Electric Corp
JPS62122273A (en) * 1985-11-22 1987-06-03 Hitachi Ltd Semiconductor device and manufacture thereof
JPS62224974A (en) * 1986-03-27 1987-10-02 Toshiba Corp Manufacture of semiconductor device
JPS63244884A (en) * 1987-03-31 1988-10-12 Toshiba Corp Semiconductor device and manufacture thereof
US5543340A (en) * 1993-12-28 1996-08-06 Samsung Electronics Co., Ltd. Method for manufacturing offset polysilicon thin-film transistor
US5677207A (en) * 1995-10-17 1997-10-14 Lg Electronics Inc. Method for fabricating a thin film transistor using silicide layer
KR100317642B1 (en) * 1999-05-27 2001-12-22 구본준, 론 위라하디락사 Method for manufacturing a Thin Film Transistor using a metal plating
KR20030001942A (en) * 2001-06-28 2003-01-08 동부전자 주식회사 Semiconductor Device And Manufacturing Method For the Same

Similar Documents

Publication Publication Date Title
US5937315A (en) Self-aligned silicide gate technology for advanced submicron MOS devices
EP0139467B1 (en) Method of manufacturing an insulated-gate field-effect transistor
US7785974B2 (en) Methods of employing a thin oxide mask for high dose implants
JP2002501673A (en) Method of controlling dopant concentration using transient enhanced diffusion before gate formation in device
US5082796A (en) Use of polysilicon layer for local interconnect in a CMOS or BiCMOS technology incorporating sidewall spacers
KR100396692B1 (en) Method for Manufacturing of Semiconductor device
EP0459398B1 (en) Manufacturing method of a channel in MOS semiconductor devices
CA1237537A (en) Method of making mosfets using silicate glass layer as gate edge masking for ion implantation
JPS60113472A (en) Manufacture of semiconductor device
JPH03178159A (en) Formation of integrated circuit electrode
JP2002518827A (en) Method of manufacturing semiconductor device including MOS transistor
JPH0519979B2 (en)
JP3328600B2 (en) Fabrication process for bipolar and BICMOS devices
EP0535814A1 (en) Integrated circuit transistor structure and method
JPH02270335A (en) Semiconductor device and manufacture thereof
KR100212010B1 (en) Method for fabricating transistor of semiconductor device
JPH0831598B2 (en) Method for manufacturing semiconductor device
JPS59121878A (en) Manufacture of semiconductor device
JPH11243065A (en) Manufacture of semiconductor device and formation of conductive silicon film
KR960013624B1 (en) Manufacture of shallow junction semiconductor device
JPH04219928A (en) Manufacture of semiconductor device
JPH03231456A (en) Manufacture of semiconductor device
JP3231475B2 (en) Method for manufacturing semiconductor device
JPH03190221A (en) Manufacture of semiconductor device
JPS60137072A (en) Manufacture of junction type field effect transistor