JPS6344769A - Field effect transistor and manufacture of the same - Google Patents

Field effect transistor and manufacture of the same

Info

Publication number
JPS6344769A
JPS6344769A JP18881686A JP18881686A JPS6344769A JP S6344769 A JPS6344769 A JP S6344769A JP 18881686 A JP18881686 A JP 18881686A JP 18881686 A JP18881686 A JP 18881686A JP S6344769 A JPS6344769 A JP S6344769A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
diffusion layer
gate insulating
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18881686A
Other languages
Japanese (ja)
Inventor
Shinichi Sato
真一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18881686A priority Critical patent/JPS6344769A/en
Publication of JPS6344769A publication Critical patent/JPS6344769A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid a hot electron effect and gm deterioration and obtain a highly reliable field effect transistor by a method wherein both end parts of a gate insulating film are made thicker than the other parts and source and drain diffused layers composed of double-layer structures are provided so as not to overlap the part of the gate insulating film where the thickness is thin. CONSTITUTION:Low concentration layers 4 are provided closer to a gate electrode 3 than high concentration layers 6 and those two types of layers form double-layer diffused structures. Hot oxidation is applied form the outside of the gate electrode 3 to make the side end parts of a gate insulating film 2 provided between the gate electtrode 3 and a substrate 1 thicker than the other parts. At that time, conditions such as oxidation time and temperature are so selected as to make the oxide film 2 growing thicker gradually from the upper parts of the side ends of the low concentration layers 4 toward the outside parts. With this constitution, as both the end parts of the gate insulating film are made thicker than the other parts and the source and drain diffused layers have double-layer diffused structures, the electric field intensity near the drain is relaxed by the low concentration layer 4 and, moreover, even if created hot electrons are trapped by the gate insulating film 2, the negative potential of the electrons can be neutralized by the positive potential of the gate electrode above the insulating film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はホントキャリヤ効果を抑制するための電界効果
型トランジスタ(通称MO3Tr)の謙−” ゲート電
極及 びソース・ドレイン拡散層の構造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure of the gate electrode and source/drain diffusion layer of a field effect transistor (commonly known as MO3Tr) for suppressing the real carrier effect. be.

〔従来の技術〕[Conventional technology]

第2図は従来の通称LDD :ライトリー ドープト 
ドレイン (Lightly Doped Drain
)といわれるM OS T rの断面構造を工程順に示
したものである。図中、1はシリコン基キ反、2はゲー
トへ色縁膜、3はゲート電極、4は低濃度ソース・ドレ
イン拡散層、5はサイドウオール、6は高濃度ソース・
ドレイン拡散層である。
Figure 2 shows the conventional name LDD: Lightly Doped.
Lightly Doped Drain
) shows the cross-sectional structure of MOSTr in the order of steps. In the figure, 1 is a silicon base film, 2 is a color border film to the gate, 3 is a gate electrode, 4 is a low concentration source/drain diffusion layer, 5 is a side wall, and 6 is a high concentration source/drain layer.
This is a drain diffusion layer.

次に製造方法について説明する。Next, the manufacturing method will be explained.

基板1上にゲート絶縁膜2を介して例えば多結晶シリコ
ンあるいは高融点金属のような導電材料を形成した後、
該導電材料をプラズマ反応を利用して公知の方法で選択
的に加工し、ゲート電極3を形成する(第2図[51)
After forming a conductive material such as polycrystalline silicon or high melting point metal on the substrate 1 via the gate insulating film 2,
The conductive material is selectively processed by a known method using a plasma reaction to form the gate electrode 3 (FIG. 2 [51])
.

次いで基板1と逆導電型の不に物をlXl0”/aj〜
l X I Q ”/’cd程度の濃度でイオン注入等
の方法で基板10表面に入射する。このとき、ゲート電
極3をマスクとして自己整合的にゲート電極3の両側に
、例えばN型であればN−の拡散層4が形成される。
Next, a non-conductor of the opposite conductivity type to the substrate 1 is
Ion implantation is applied to the surface of the substrate 10 at a concentration of about lXIQ''/'cd. At this time, ions, for example of N type Then, an N- diffusion layer 4 is formed.

次いで例えばシリコン酸化膜等の絶縁膜を一定の厚さで
全面に形成した後、イオンエツチング等の方向性を有す
るいわゆる異方性エツチングを全面に行って、垂直なゲ
ート電極3の側壁に、サイドウオール5と呼ばれるシリ
コン酸化膜を形成する。
Next, after forming an insulating film such as a silicon oxide film on the entire surface with a constant thickness, so-called anisotropic etching with directionality such as ion etching is performed on the entire surface to form sidewalls on the vertical side walls of the gate electrode 3. A silicon oxide film called wall 5 is formed.

この後、その全面に、基板と逆導電4型の不純物を高濃
度(I X 10 ”/ci以上)イオン注入し、高温
の熱処理を加えることによって活性化した高濃度ソース
・ドレイン拡散層6を形成する(第2図(ト)))。
Thereafter, a high concentration source/drain diffusion layer 6 is formed by ion-implanting impurities of type 4 with conductivity opposite to that of the substrate at a high concentration (I x 10''/ci or more) over the entire surface and by applying high temperature heat treatment. form (Figure 2 (g))).

このとき、高濃度ソース・ドレイン拡散層6はサイドウ
オール5をマスクに自己整合的に形成されるため、上記
低濃度不純物拡散層4の端からはみ出さないように形成
され、2重拡散層構造が得られる。この構造のMO3T
rでは、ドレイン近傍での強電界を弱め、ホットエレク
トロン効果を抑制することができる。
At this time, the high concentration source/drain diffusion layer 6 is formed in a self-aligned manner using the sidewall 5 as a mask, so that it is formed so as not to protrude from the edge of the low concentration impurity diffusion layer 4, resulting in a double diffusion layer structure. is obtained. MO3T with this structure
With r, the strong electric field near the drain can be weakened and the hot electron effect can be suppressed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、サイドウオール形成のための工程が増加する。 However, the number of steps required to form the sidewalls increases.

サイドウオール巾の制御が困難である等の問題に加えて
、最近この構造によるgm劣化の問題点が明らかになっ
てきた。すなわち第2図(C)に模式的に示すようにド
レイン近傍での強電界によって発生したホットエレクト
ロンがゲート3側壁のサイドウオール5にトラップされ
、このトラップ電子によって低4度のソース・ドレイン
層4の表面がP型に反転しやすくなり、実行的にN−濃
度がより低くなり、M OS T rのソース抵抗の増
大となってgm等が劣化する現象である。
In addition to problems such as difficulty in controlling the sidewall width, the problem of GM deterioration due to this structure has recently become clear. That is, as schematically shown in FIG. 2(C), hot electrons generated by a strong electric field near the drain are trapped in the sidewall 5 on the side wall of the gate 3, and these trapped electrons cause the low-4 degree source/drain layer 4 to be trapped. This is a phenomenon in which the surface of the MOS transistor becomes more likely to be inverted to P type, effectively lowering the N- concentration, increasing the source resistance of the MOS transistor, and deteriorating the gm, etc.

本発明は上記のような欠点に観みてなされたもので、ホ
ットエレクトロン効果及びgm劣化を防止できる信鎖性
の高い電界効果型トランジスタ及びその製造方法を得る
ことを目的とする。
The present invention was made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a field effect transistor with high signal chain properties that can prevent the hot electron effect and GM deterioration, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本願の第1の発明のかかる電界効果型トランジスタは、
ゲート絶縁膜の両側端部を厚くし、ゲー・ト絶縁膜の薄
い部分と重ならない#テ形城透土造2重拡散ソース・ド
レイン層を設けたものである。
The field effect transistor according to the first invention of the present application includes:
Both ends of the gate insulating film are made thicker, and double diffusion source/drain layers are provided in a T-shaped transparent earthen structure that do not overlap with the thinner parts of the gate insulating film.

本願の第2の発明にかかる電界効果型トランジスタの製
造方法は、基板上に絶縁膜を介してゲート電極を形成し
た後、同種又は異種のイオンを注入して2重ソース・ド
レイン拡散層を形成し、その後、ゲート電極の外側から
熱酸化して上記ゲート絶縁膜の両側端部を厚く成長させ
るようにしたものである。
In the method for manufacturing a field effect transistor according to the second invention of the present application, after forming a gate electrode on a substrate via an insulating film, ions of the same type or different types are implanted to form a double source/drain diffusion layer. Then, the gate electrode is thermally oxidized from the outside to grow thicker both ends of the gate insulating film.

〔作用〕[Effect]

本願の第1の発明においては、ゲート絶縁膜の両側端部
を厚くし22、ケ゛−ト絶縁膜の薄い部分と重ならない
よりニ形成〜ぎ上方2重拡散ソース・ドレイン層を設け
たから、ゲートとソース・ドレイン間の付加容量はなく
ドレイン近傍での電界強度は緩和され、またホットエレ
クトロンがゲート絶縁膜にトラップされてもゲート電極
の正電位により電子の負電位を中和できる。
In the first invention of the present application, both end portions of the gate insulating film are thickened22, and the upper double diffusion source/drain layers are provided so as not to overlap with the thin portions of the gate insulating film. There is no additional capacitance between the source and the drain, so the electric field strength near the drain is relaxed, and even if hot electrons are trapped in the gate insulating film, the negative potential of the electrons can be neutralized by the positive potential of the gate electrode.

本願の第2の発明においては、ゲート電極の外側からゲ
ート絶縁膜を酸化するようにしたから、容易にかつ確実
にゲート絶縁膜の側部を厚(することができる。
In the second invention of the present application, since the gate insulating film is oxidized from the outside of the gate electrode, the side portions of the gate insulating film can be easily and reliably thickened.

〔実施例〕〔Example〕

以下、本発明の一実施例を図について説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例によるM OS T rの断
面構造を工程順に示し、図において、1はシリコン基板
、2は側端部が厚いゲート絶縁膜、3は該ゲート屯縁膜
2上に形成されたゲート電極、4は低23度ソース・ド
レイン拡散層、6はゲート電極3に対して核層4より外
側に核層4と連続して形成された高濃度ソース・ドレイ
ン拡散層である。
FIG. 1 shows the cross-sectional structure of an MOS transistor according to an embodiment of the present invention in the order of steps. The gate electrode formed above, 4 is a low 23 degree source/drain diffusion layer, and 6 is a high concentration source/drain diffusion layer formed continuously with the nucleus layer 4 outside the nucleus layer 4 with respect to the gate electrode 3. It is.

次に製造方法について説明する。Next, the manufacturing method will be explained.

シリコン基vi1の上にゲート絶縁膜2を形成した後、
ゲー)を極3用材籾を形成する。この材料は例えば多結
晶シリコンあるいは高融点金属等の単一層膜あるいは両
者を含む2層以上の複数層膜のいづれでもよい。
After forming the gate insulating film 2 on the silicon base vi1,
Ge) is used to form paddy for pole 3. This material may be either a single layer film of polycrystalline silicon or a high melting point metal, or a multilayer film of two or more layers containing both.

この電極材料を公知のエツチング方法で加工してゲート
電極3を形成した後、基板1と逆導電型の不純物を低濃
度(1×10+2/cIa〜1×10′4/−)にイオ
ン注入して低濃度拡散層4を形成しく第1図fan)、
続いて上記不純物と同導電型の不純物を高濃度(5X1
01〜lXl01b/cut)にイオン注入して高濃度
拡散層6を形成する(第1図(ト)))。この時、低濃
度層4と高濃度層6とは互いに連続し、かつ低濃度層4
が高4度層6の内側となるよう、すなわち低濃度N4が
高濃度層よりゲート電極3側に近い2重拡散構造となる
よう、不純物元素及び熱処理等の条件を設定している。
After forming the gate electrode 3 by processing this electrode material using a known etching method, impurities of the opposite conductivity type to the substrate 1 are ion-implanted at a low concentration (1×10+2/cIa to 1×10'4/-). to form a low concentration diffusion layer 4 (see FIG. 1),
Next, impurities of the same conductivity type as the above impurities were added at a high concentration (5X1
01 to lXl01b/cut) to form a high concentration diffusion layer 6 (FIG. 1(g))). At this time, the low concentration layer 4 and the high concentration layer 6 are continuous with each other, and the low concentration layer 4
Conditions such as impurity elements and heat treatment are set so that N4 is inside the high-4 degree layer 6, that is, a double diffusion structure is formed in which the low concentration N4 is closer to the gate electrode 3 than the high concentration layer.

次いで、ゲート電極3の外側から熱酸化してゲート電極
3と基板1との間のゲート絶縁膜2の側端部分を厚く成
長させる(第1図(C))。ここで酸化時間、’IA度
等は酸化膜2が低4度拡散層4の側端上部から外側すな
わち高濃度層6側に向かってしだいに厚くなるよう選択
している。その結果MO3Trの特性を決める実効チャ
ネル長(Leff)に相当する部分のゲート絶縁膜2の
厚さは、当初設定した膜厚と変わらず、gm等の基本特
性は設計値通りの値を得ることができる。
Next, thermal oxidation is performed from the outside of the gate electrode 3 to thicken the side end portions of the gate insulating film 2 between the gate electrode 3 and the substrate 1 (FIG. 1(C)). Here, the oxidation time, IA degree, etc. are selected so that the oxide film 2 gradually becomes thicker from the upper side end of the low 4 degree diffusion layer 4 toward the outside, that is, toward the high concentration layer 6 side. As a result, the thickness of the gate insulating film 2 corresponding to the effective channel length (Leff), which determines the characteristics of MO3Tr, remains the same as the initially set thickness, and basic characteristics such as gm can be obtained as designed values. Can be done.

このように本実施例ではゲート絶縁膜の両側端部を厚く
し、ソース・ドレイン拡散層を2重拡散構造としたので
、ドレイン近傍での電界強度は低濃度層4で緩和され、
また発生したホットエレクトロンがゲート絶縁膜2にト
ラップされても、その上にゲート電極3があるため、ゲ
ート電))の正電位によって電子の負電位を中和するこ
とができ、従来問題となったトラップ電子によるgm劣
化を防止することができる。またゲート電極の外側から
ゲート絶縁膜を酸化するようにしたから、容易にかつ確
実にゲート絶縁膜の側部を厚くすることができる。
In this way, in this embodiment, both ends of the gate insulating film are thickened and the source/drain diffusion layers have a double diffusion structure, so the electric field strength near the drain is relaxed by the low concentration layer 4.
Furthermore, even if the generated hot electrons are trapped in the gate insulating film 2, since the gate electrode 3 is located above it, the negative potential of the electrons can be neutralized by the positive potential of the gate electrode), which has been a problem in the past. It is possible to prevent gm deterioration due to trapped electrons. Furthermore, since the gate insulating film is oxidized from the outside of the gate electrode, the side portions of the gate insulating film can be easily and reliably thickened.

なお、本発明はN型あるいはP型のいずれのMO3Tr
にも適用でき、また、単一基板上のみならず、エピタキ
シャル層、あるいはウェハ上に形成されたMO3Trに
も適用できこの場合も、上記実施例と同様の効果が得ら
れる。又本発明はシリコン半導体以外の化合物半導体に
おいても適用できるのは勿論である。
Note that the present invention applies to either N-type or P-type MO3Tr.
Furthermore, it can be applied not only to a single substrate but also to an epitaxial layer or MO3Tr formed on a wafer, and in this case, the same effects as in the above embodiment can be obtained. It goes without saying that the present invention can also be applied to compound semiconductors other than silicon semiconductors.

また上記実施例ではソース・ドレイン層が2重拡散構造
である場合について述べたが、高濃度ソース・ドレイン
層はソース・ドレイン抵抗を低くし、かつソース・ドレ
イン電極との接触抵抗を下げるために形成するもので、
例えば表面をシリサイド化する等の低抵抗化手段を用い
た場合、あるいは低抵抗化の必要のない場合等において
は高濃度ソース・ドレイン層は不要となり、これらの場
合にはソース・ドレイン拡散層は低濃度ソース・ドレイ
ン拡散層の単一層構造でもよい。
Furthermore, in the above embodiment, the case where the source/drain layer has a double diffusion structure has been described, but the highly doped source/drain layer is used to lower the source/drain resistance and the contact resistance with the source/drain electrode. It forms
For example, if a low resistance method such as siliciding the surface is used, or if there is no need to reduce the resistance, the high concentration source/drain layer is not necessary.In these cases, the source/drain diffusion layer is A single layer structure of low concentration source/drain diffusion layers may be used.

〔発明の効果〕〔Effect of the invention〕

以上のように本願の第1の発明によれば、ゲート電極下
のゲート絶縁膜の側端部を厚くし、ゲート絶縁膜の厚い
分の下に低濃度拡散層を、その外側に高濃度拡散層を連
続的に形成したので、ドレイン近傍でのホットキャリヤ
の発生を抑えることができるだけでな(、絶縁膜中にト
ラップされたキャリヤによるgm劣化等を防止でき信頼
性の高い電界効果型トランジスタを得ることができる。
As described above, according to the first invention of the present application, the side edges of the gate insulating film under the gate electrode are thickened, a low concentration diffusion layer is provided under the thick part of the gate insulating film, and a high concentration diffusion layer is provided outside the thick part of the gate insulating film. Since the layers are formed continuously, it is possible to not only suppress the generation of hot carriers near the drain (but also prevent GM deterioration caused by carriers trapped in the insulating film, making it possible to create a highly reliable field effect transistor. Obtainable.

また、本願の第2の発明によれば、ゲート電極の外側か
らゲート絶縁膜を酸化するようにしたので、ゲート絶縁
膜の側端部の厚いMOS)ランジスタを容易にかつ確実
に製造できる。
Further, according to the second invention of the present application, since the gate insulating film is oxidized from the outside of the gate electrode, it is possible to easily and reliably manufacture a MOS transistor with thick side edges of the gate insulating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例によるMO3rの断面構造
を工程順に示す図、第2図は従来のLDD型M OS 
T rの断面構造を工程順に示す図である。 図中、1はシリコン基板、2はゲート絶縁膜、3はゲー
ト電極、4は低1度ソース・ドレイン拡散層、6は高濃
度ソース・ドレイン拡散層である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a diagram showing the cross-sectional structure of MO3r according to an embodiment of the present invention in the order of steps, and FIG. 2 is a diagram showing a conventional LDD type MOS.
It is a figure which shows the cross-sectional structure of T r in order of process. In the figure, 1 is a silicon substrate, 2 is a gate insulating film, 3 is a gate electrode, 4 is a low-1 degree source/drain diffusion layer, and 6 is a high concentration source/drain diffusion layer. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (6)

【特許請求の範囲】[Claims] (1)電界効果型トランジスタにおいて、 基板上の所定の領域に形成され、その側端部が中央部に
より厚いゲート絶縁膜と、 該ゲート絶縁膜上に形成されたゲート電極と、該ゲート
電極両側の基板表面にゲート絶縁膜の薄い部分と重なら
ないよう形成されたソース・ドレイン拡散層とを備えた
ことを特徴とする電界効果型トランジスタ。
(1) In a field effect transistor, a gate insulating film is formed in a predetermined region on a substrate, and its side edges are thicker in the center, a gate electrode formed on the gate insulating film, and both sides of the gate electrode. 1. A field effect transistor characterized by comprising a source/drain diffusion layer formed on the surface of a substrate so as not to overlap with a thin portion of a gate insulating film.
(2)上記ゲート電極は、多結晶シリコンもしくは高融
点金属またはそのシリサイドからなる単一層構造あるい
は多結晶シリコン及び高融点金属の両者もしくはこれら
のシリサイドからなる二層構造であることを特徴とする
特許請求の範囲第1項記載の電界効果型トランジスタ。
(2) A patent characterized in that the gate electrode has a single-layer structure made of polycrystalline silicon, a high-melting point metal, or a silicide thereof, or a two-layer structure made of both polycrystalline silicon and a high-melting point metal, or their silicides. A field effect transistor according to claim 1.
(3)上記ソース・ドレイン層は、ゲート電極に近接さ
せて形成された低濃度拡散層及び該低濃度拡散層より厚
くこれと連続してかつゲート電極からやや離して形成さ
れた高濃度拡散層からなる2重拡散層構造であることを
特徴とする特許請求の範囲第1項または第2項記載の電
界効果型トランジスタ。
(3) The source/drain layer includes a low-concentration diffusion layer formed close to the gate electrode and a high-concentration diffusion layer thicker than the low-concentration diffusion layer and continuous with the low-concentration diffusion layer and slightly separated from the gate electrode. 3. The field effect transistor according to claim 1, wherein the field effect transistor has a double diffusion layer structure.
(4)上記低濃度拡散層の不純物濃度は1×10^1^
2/cm^2〜4×10^1^4/cm^2の範囲であ
り、上記高濃度拡散層の不純物濃度は、5×10^1^
4/cm^2〜1×10^1^6/cm^2の範囲であ
ることを特徴とする特許請求の範囲第3項記載の電界効
果型トランジスタ。
(4) The impurity concentration of the above low concentration diffusion layer is 1×10^1^
2/cm^2 to 4 x 10^1^4/cm^2, and the impurity concentration of the high concentration diffusion layer is 5 x 10^1^
4/cm^2 to 1x10^1^6/cm^2.
(5)電界効果型トランジスタの製造方法において、 半導体基板上にゲート絶縁膜を形成した後、その上にゲ
ート電極材料を形成する第1の工程、次にゲート電極材
料を選択的にエッチングしてゲート電極を形成した後、
ゲート電極両側の基板上に不純物を注入してソース・ド
レイン拡散層を形成する第2の工程、 その後、ゲート電極の外側から熱酸化して上記ゲート絶
縁膜の側端部を中央部より厚く成長させる第3の工程を
含むことを特徴とする電界効果型トランジスタの製造方
法。
(5) In a method for manufacturing a field effect transistor, a first step of forming a gate insulating film on a semiconductor substrate, forming a gate electrode material thereon, and then selectively etching the gate electrode material. After forming the gate electrode,
The second step is to form source/drain diffusion layers by injecting impurities onto the substrate on both sides of the gate electrode, and then thermal oxidation is performed from the outside of the gate electrode to grow the side edges of the gate insulating film thicker than the center. A method for manufacturing a field effect transistor, comprising a third step of:
(6)上記第2の工程はゲート電極両側の基板上に同種
又は異種のイオンを注入して、低濃度拡散層をゲート電
極に近接させて形成するとともに、高濃度拡散層をゲー
ト電極からやや離して形成し、これにより2重拡散ソー
ス・ドレイン層を形成する工程であることを特徴とする
特許請求の範囲第5項記載の電界効果型トランジスタの
製造方法。
(6) In the second step, ions of the same or different types are implanted into the substrate on both sides of the gate electrode to form a low concentration diffusion layer close to the gate electrode, and a high concentration diffusion layer slightly away from the gate electrode. 6. The method of manufacturing a field effect transistor according to claim 5, further comprising forming double diffused source/drain layers separately from each other.
JP18881686A 1986-08-12 1986-08-12 Field effect transistor and manufacture of the same Pending JPS6344769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18881686A JPS6344769A (en) 1986-08-12 1986-08-12 Field effect transistor and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18881686A JPS6344769A (en) 1986-08-12 1986-08-12 Field effect transistor and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS6344769A true JPS6344769A (en) 1988-02-25

Family

ID=16230316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18881686A Pending JPS6344769A (en) 1986-08-12 1986-08-12 Field effect transistor and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS6344769A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302297A (en) * 1991-02-12 1993-11-16 Agency Of Ind Science & Technol Synthetic pulp and product using the same
US5510648A (en) * 1994-01-04 1996-04-23 Motorola, Inc. Insulated gate semiconductor device and method of fabricating
US5541132A (en) * 1995-03-21 1996-07-30 Motorola, Inc. Insulated gate semiconductor device and method of manufacture
US5612244A (en) * 1995-03-21 1997-03-18 Motorola, Inc. Insulated gate semiconductor device having a cavity under a portion of a gate structure and method of manufacture
US5661048A (en) * 1995-03-21 1997-08-26 Motorola, Inc. Method of making an insulated gate semiconductor device
US5679968A (en) * 1990-01-31 1997-10-21 Texas Instruments Incorporated Transistor having reduced hot carrier implantation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215273A (en) * 1975-07-28 1977-02-04 Hitachi Ltd Semiconductor device
JPS5326683A (en) * 1976-08-25 1978-03-11 Hitachi Ltd Manufacture of semiconductor devic e
JPS5492183A (en) * 1977-12-29 1979-07-21 Fujitsu Ltd Manufacture of mis type semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215273A (en) * 1975-07-28 1977-02-04 Hitachi Ltd Semiconductor device
JPS5326683A (en) * 1976-08-25 1978-03-11 Hitachi Ltd Manufacture of semiconductor devic e
JPS5492183A (en) * 1977-12-29 1979-07-21 Fujitsu Ltd Manufacture of mis type semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679968A (en) * 1990-01-31 1997-10-21 Texas Instruments Incorporated Transistor having reduced hot carrier implantation
JPH05302297A (en) * 1991-02-12 1993-11-16 Agency Of Ind Science & Technol Synthetic pulp and product using the same
US5510648A (en) * 1994-01-04 1996-04-23 Motorola, Inc. Insulated gate semiconductor device and method of fabricating
US5541132A (en) * 1995-03-21 1996-07-30 Motorola, Inc. Insulated gate semiconductor device and method of manufacture
US5612244A (en) * 1995-03-21 1997-03-18 Motorola, Inc. Insulated gate semiconductor device having a cavity under a portion of a gate structure and method of manufacture
US5661048A (en) * 1995-03-21 1997-08-26 Motorola, Inc. Method of making an insulated gate semiconductor device

Similar Documents

Publication Publication Date Title
US5677214A (en) Raised source/drain MOS transistor with covered epitaxial notches and fabrication method
JPH04269873A (en) Transistor provided with inverted silicide t-shaped gate structure
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
JPH0923010A (en) Semiconductor element and its preparation
KR0180310B1 (en) Method for manufacturing cmos transistor
JPS6344770A (en) Field effect transistor and manufacture of the same
JPH04321269A (en) Mos type semiconductor device and manufacture thereof
JPS6344768A (en) Field effect transistor and manufacture of the same
JPS6344769A (en) Field effect transistor and manufacture of the same
US6621118B2 (en) MOSFET, semiconductor device using the same and production process therefor
JPH0519979B2 (en)
JP3049496B2 (en) Method of manufacturing MOSFET
JPH0923013A (en) Semiconductor element and its preparation
JP4186247B2 (en) Method for manufacturing semiconductor device and method for forming conductive silicon film
JPS63227059A (en) Semiconductor device and manufacture thereof
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
JP3394562B2 (en) MOSFET manufacturing method
JP3260200B2 (en) Method for manufacturing semiconductor device
US7169655B2 (en) Field effect transistors and methods for manufacturing field effect transistors
JPH03112165A (en) Manufacture of semiconductor device
JP2003115585A (en) Method for manufacturing semiconductor device
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
KR100222898B1 (en) Thin film transistor and method for manufacturing the same
JPH0878698A (en) Method of manufacturing semiconductor device
JPH0321074A (en) Semiconductor integrated circuit device