JPS61294868A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61294868A
JPS61294868A JP13643385A JP13643385A JPS61294868A JP S61294868 A JPS61294868 A JP S61294868A JP 13643385 A JP13643385 A JP 13643385A JP 13643385 A JP13643385 A JP 13643385A JP S61294868 A JPS61294868 A JP S61294868A
Authority
JP
Japan
Prior art keywords
layer
gate electrode
phosphorus
diffusion layer
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13643385A
Other languages
Japanese (ja)
Other versions
JPH0638428B2 (en
Inventor
Nobuyuki Takenaka
竹中 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP13643385A priority Critical patent/JPH0638428B2/en
Publication of JPS61294868A publication Critical patent/JPS61294868A/en
Publication of JPH0638428B2 publication Critical patent/JPH0638428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the resistance value of an N<-> layer, by forming a low-concentration impurity diffused layer having a reverse conducting type with respect to a semiconductor substrate at a lower part of a side wall on one side, and forming a high- concentration impurity diffused layer having the same impurity as that in the low- concentration diffused layer at a lower part of a side wall on the source side. CONSTITUTION:On a P-type 100 substrate 1, a gate oxide film 2 is formed. A polysilicon film is formed. Phosphorus is doped by thermal diffusion. Then, with a photoresist film 7 as a mask, anisotropic etching is performed. Thus a gate electrode 3, whose side surface is approximately vertical is formed. With the gate electrode 3 as a mask, phosphorus is implanted in the silicon substrate at a slant angle of about 10 deg. to the drain side. The phosphorus-ion implanted layer is formed so that the layer is separated from the end part of the gate electrode. An oxide film 4' is formed by a plasma CVD method. Thereafter, anisotropic etching is performed until the surface of the silicon substrate 1 is exposed, and a side wall 4 is formed. Arsenic is implanted at a slant angle of about 10 deg. to the source side, which is opposite with respect to the phosphorus-ion implanting direction. Thus, the arsenic-ion implanted layer is formed. Therefore, suppression of a hot carrier effect and the suppression of increase in channel resistance can be simultaneously realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はMOS型電界効果トランジスタ(以下MOSF
ETと記す)、特に二重拡散ドレイン(Lightly
 Doped Drain)構造の半導体装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a MOS field effect transistor (hereinafter referred to as MOSF).
ET), especially double diffused drains (Lightly
The present invention relates to a semiconductor device having a doped drain structure.

従来の技術 MOSFETの微細化にともない、素子内部の電界強度
が高くなり、発生したホットキャリアによる素子特性の
劣化及びドレイン耐圧の低下が問題となってくる。
BACKGROUND OF THE INVENTION As MOSFETs become smaller, the electric field strength inside the device increases, causing problems such as deterioration of device characteristics and reduction of drain breakdown voltage due to generated hot carriers.

この問題を解決するだめの構・造として、例えばアイイ
ーイーイートランズアクションズ オブエレクトロン 
デバイス、イーデー29巻、4号。
As a structure to solve this problem, for example, IEE Transactions of Electron
Device, Eday Volume 29, No. 4.

1982年、69o頁(I E E E Transa
ctionsof Electron Devices
、ED−29巻、4号、 1982年、P590)に記
載されているLDD構造のMOSFETがある。
1982, p. 69o (I E E E Transa
ctions of Electron Devices
There is an LDD structure MOSFET described in ED-29, No. 4, 1982, P590).

従来のLDD構造をnチャンネルMOSFETに適用し
た例を第3図aの断面図に示す。LDD−MOSFET
はp型シリコン基板11上に形成されたゲート酸化膜1
2と、ゲート電極13と、同ゲート電極13の両側壁に
形成された絶縁物からなるサイドウオール14と、前記
ゲート電極13をマスクにしてイオン注入法で形成され
たn型の低濃度拡散層(n一層)15と、前記サイドウ
オールをマスクにして同様に形成されたn型の高濃度拡
散層(n+層)16とからなっており、とのn一層がM
OSFET内部の電界強度を弱める働きをすることによ
シホットキャリアの発生を抑制し、かつドレイン耐圧を
高めていた。
An example in which a conventional LDD structure is applied to an n-channel MOSFET is shown in the cross-sectional view of FIG. 3a. LDD-MOSFET
is a gate oxide film 1 formed on a p-type silicon substrate 11
2, a gate electrode 13, a side wall 14 made of an insulator formed on both side walls of the gate electrode 13, and an n-type low concentration diffusion layer formed by ion implantation using the gate electrode 13 as a mask. (n layer) 15, and an n-type high concentration diffusion layer (n+ layer) 16 formed in the same manner using the sidewall as a mask, and the n layer is made of M
By acting to weaken the electric field strength inside the OSFET, the generation of hot carriers was suppressed and the drain breakdown voltage was increased.

発明が解決しようとする問題点 しかしながら、従来のLDD−MOSFETでは第3図
すの等価回路図に示すようにn一層の抵抗Rn−がソー
ス・ドレイン間に直列に入るため、MOSFETのオン
抵抗が2Rn−高くなり電流駆動能力が低下する欠点が
あった。
Problems to be Solved by the Invention However, in the conventional LDD-MOSFET, as shown in the equivalent circuit diagram in Figure 3, n layers of resistance Rn- are connected in series between the source and drain, so the on-resistance of the MOSFET is 2Rn- becomes high, which has the disadvantage of lowering the current driving ability.

また、n一層のホットキャリア発生防止能力及びドレイ
ン耐圧増大能力と抵抗Rn−は逆比例の関係にあるため
、n一層の長さLn−及び不純物濃度の最適値を求める
ことは難しかった。
Further, since the ability to prevent hot carrier generation and the ability to increase the drain breakdown voltage of the n-layer are inversely proportional to the resistance Rn-, it has been difficult to determine the optimal values for the length Ln- and the impurity concentration of the n-layer.

問題点を解決するだめの手段 本発明は、上記欠点を解決するためになされたものであ
り、半導体基板上に形成されたMOSFETのゲート電
極の両側壁に、絶縁物からなる等しい厚さのサイドウオ
ールが形成されており、さらに一方の側のサイドウオー
ルの下部には前・記半導体基板と逆伝導型の低濃度の不
純物拡散層が形成されており、かつソース側のサイドウ
オールの下部には低濃度拡散層と同種の不純物の高濃度
拡散層が形成された半導体装置である。
Means for Solving the Problems The present invention has been made in order to solve the above-mentioned drawbacks.The present invention has been made in order to solve the above-mentioned drawbacks. A wall is formed, and a low concentration impurity diffusion layer of the opposite conductivity type to the semiconductor substrate is formed at the bottom of the sidewall on one side, and a low concentration impurity diffusion layer of the opposite conductivity type to the semiconductor substrate is formed at the bottom of the sidewall on the source side. This is a semiconductor device in which a high concentration diffusion layer of the same type of impurity as the low concentration diffusion layer is formed.

作  用 本発明に係るMOSFETではドレイン側にのみn一層
が形成されているので、ソース・ドレイン間に付加され
るn一層の抵抗値が従来のLDD−MOSFETの場合
の半分に低減できる作用がある。
Function: Since the MOSFET according to the present invention has an n-layer formed only on the drain side, the resistance value of the n-layer added between the source and drain can be reduced to half that of a conventional LDD-MOSFET. .

実施例 本発明をnチャンネル型MOSFETに適用した時の一
実施例を第1図に示す。
Embodiment FIG. 1 shows an embodiment in which the present invention is applied to an n-channel MOSFET.

本発明のMOSFETは、第1図にその要部の断面図を
示すように、p型シリコン基板1と同基板上に形成され
たゲート酸化膜2と同酸化膜上に形成されたリンをドー
プしたポリシリコンからなるゲート電極3と、同ゲート
電極の両側壁に形成されたCVD酸化膜からなるサイド
ウオール4と、同サイドウオール下部に形成されたドレ
イン側の低濃度n型(n)拡散層5−aと、同ドレイン
側のn−拡散層5−aに接して形成されたドレイン側の
高濃度n型(n+)拡散層6− aとサイドウオール下
部に形成されたソース側のn+拡散層6−すとで構成さ
れている。
The MOSFET of the present invention, as shown in a cross-sectional view of its main parts in FIG. A gate electrode 3 made of polysilicon, a sidewall 4 made of a CVD oxide film formed on both side walls of the gate electrode, and a low concentration n-type (n) diffusion layer on the drain side formed at the bottom of the sidewall. 5-a, a high concentration n-type (n+) diffusion layer 6-a on the drain side formed in contact with the n- diffusion layer 5-a on the drain side, and an n+ diffusion layer on the source side formed at the bottom of the sidewall. The layer consists of six layers.

さらに、サイドウオールはソース側とドレイン側で等し
く形成されており、かつn−拡散層6−aはドレイン側
(Ln−D)にのみ形成されており、ホットキャリアの
発生はドレイン側のn−拡散層5− aによって、大幅
に抑制でき、またMOSFETのチャンネル抵抗の増大
に対してはソース側に低濃度の不純物拡散層を設けない
ことで対処した。
Furthermore, the sidewalls are formed equally on the source side and the drain side, and the n-diffusion layer 6-a is formed only on the drain side (Ln-D), so hot carriers are generated on the n-drain side. This can be largely suppressed by the diffusion layer 5-a, and the increase in channel resistance of the MOSFET was dealt with by not providing a low concentration impurity diffusion layer on the source side.

次に本発明のLDD−MOSFETの製造方法の一実施
例を第2図を参照して説明する。
Next, an embodiment of the method for manufacturing an LDD-MOSFET of the present invention will be described with reference to FIG.

第2図aに示すようにp型1oo基板1上に900℃の
熱酸化によって厚さ約300人のゲート酸化膜2を形成
する。
As shown in FIG. 2a, a gate oxide film 2 having a thickness of approximately 300 wafers is formed on a p-type 1000 substrate 1 by thermal oxidation at 900°C.

次に周知の減圧CVD法によって厚さ約600゜Aのポ
リシリコン膜を形成し、熱拡散によってリンを約1o2
0crn−3程度ドープした後、フォトレジスト7をマ
スクにして異方性エツチングを行ない、第2図aに示す
ような側面がほぼ垂直なゲート電極3を形成する。
Next, a polysilicon film with a thickness of about 600°A is formed by the well-known low pressure CVD method, and phosphorus is absorbed by about 1o2 by thermal diffusion.
After doping to about 0 crn-3, anisotropic etching is performed using the photoresist 7 as a mask to form a gate electrode 3 with substantially vertical sides as shown in FIG. 2a.

次に、ゲート電極3をマスクにしてイオン注入法によっ
て、リンを加速エネルギ’%60 Kev 、  ドー
ズ量6×10 crn  の条件でシリコン基板1中に
注入する。このリン注入時に注入方向を第2図すに示す
ようにドレイン側に約100傾けて注入する。すると、
ゲート電極3のシャドウ効果によシ、ソース側のリンイ
オン注入層はゲート電極端部から約0.1μm離間して
形成される。この離間長はゲート電極の厚さX tan
 (注入傾斜角)にほぼ等しくなる。リンイオン注入後
、シリコン基板に900℃、30分間の熱処理を施して
、注入したリンを活性化及び拡散させて、第2図すに示
したような、ドレイン側とソース側で非対称なn−拡散
層5− aとs−bを形成する。第2図すではソース側
のn−拡散層s−bがゲート電極下部に達している状態
を示したが、ソース側のn−拡散層s−bはゲート電極
3とオーバーラツプしなくても良い。
Next, using the gate electrode 3 as a mask, phosphorus is implanted into the silicon substrate 1 by ion implantation at an acceleration energy of 60 Kev and a dose of 6×10 crn. During this phosphorus injection, the injection direction is tilted approximately 100 degrees toward the drain side as shown in FIG. Then,
Due to the shadow effect of the gate electrode 3, the phosphorus ion-implanted layer on the source side is formed at a distance of about 0.1 μm from the end of the gate electrode. This separation length is the thickness of the gate electrode
(injection inclination angle). After implanting phosphorus ions, the silicon substrate is heat-treated at 900°C for 30 minutes to activate and diffuse the implanted phosphorus, resulting in asymmetric n-diffusion between the drain and source sides, as shown in Figure 2. Form layers 5-a and s-b. Although Figure 2 shows the state in which the n-diffusion layer s-b on the source side reaches the bottom of the gate electrode, the n-diffusion layer s-b on the source side does not have to overlap with the gate electrode 3. .

次に第2図Cに示すように、プラズマCVD法によって
、厚さ約300o人の酸化膜4′を形成し、その後反応
性イオンエツチング法によって、シリコン基板1の表面
が露出するまで異方性エツチングを行ない、第2図dに
示したようなサイドウオール4を形成する。この時形成
されるサイドウオールの幅は、ゲート電極の形状、プラ
ズマ酸化膜のステップカバージ、エツチングの異方度に
よって影響を受けるが、本実施例の場合、サイドウオー
ルの幅は1soO人であった。
Next, as shown in FIG. 2C, an oxide film 4' with a thickness of approximately 300 μm is formed by plasma CVD, and then anisotropic etching is performed by reactive ion etching until the surface of silicon substrate 1 is exposed. Etching is performed to form the sidewall 4 as shown in FIG. 2d. The width of the sidewall formed at this time is influenced by the shape of the gate electrode, the step coverage of the plasma oxide film, and the degree of anisotropy of etching, but in the case of this example, the width of the sidewall was 1soO. Ta.

次に、第2図dに示すように、サイドウオール4をマス
クにしてイオン注入法によってヒ素を加速エネルギ40
 Kev 、ドーズ量5×1o rIn の条件でシリ
コン基板1中に注入する。この時、ヒ素イオンの注入方
向を、す/イオンの注入方向と逆のソース側に約100
傾けて注入する。今度は、サイドウオール4のシャドウ
効果により、ドレイン側のヒ素イオン注入層はゲート電
極端部から約0.1μm程度離間して形成される。この
離間長はサイドウオールの高さxtan(注入傾斜角)
にほぼ等しくなる。ヒ素イオン注入後、シリコン基板1
に1000tl: 、20分間の熱処理を施して、注入
されたヒ素原子を活性化及び拡散させて、n+拡散層6
− aとe−bを形成する。この時、ソース側のn+拡
散層e−bがn−拡散層s−bを包含し、かつゲート電
極3とオーバーラツプすることによって、サイドウオー
ルはソース側とドレイン側で等しく形成され、かつn−
拡散層はドレイン側だけに形成されたLDD−MOSF
ETが完成する。
Next, as shown in FIG. 2d, using the sidewall 4 as a mask, arsenic is ion-implanted using an acceleration energy of 40.
Kev and a dose of 5×1orIn into the silicon substrate 1. At this time, the arsenic ion implantation direction is about 100 mm toward the source side, which is opposite to the arsenic ion implantation direction.
Tilt and inject. This time, due to the shadow effect of the sidewall 4, the arsenic ion-implanted layer on the drain side is formed at a distance of about 0.1 μm from the end of the gate electrode. This separation length is the height of the sidewall xtan (injection inclination angle)
is approximately equal to . Silicon substrate 1 after arsenic ion implantation
1000 tl: , 20 minutes of heat treatment is performed to activate and diffuse the implanted arsenic atoms, forming the n+ diffusion layer 6.
- form a and eb. At this time, the n+ diffusion layer eb on the source side includes the n- diffusion layer sb and overlaps with the gate electrode 3, so that the sidewalls are formed equally on the source side and the drain side, and the n-
LDD-MOSF where the diffusion layer is formed only on the drain side
ET is completed.

本実施例の製造方法ではリン及びヒ素の両元素とも傾け
て注入したが、注入角度、ゲート電極の厚さ、サイドウ
オールの高さ、熱処理条件等々を適当な値に設定すれば
、リーンまたはヒ素のどちらか一方のみを傾けて注入し
ても本発明のLDD−MOSFETを製造することがで
きる。
In the manufacturing method of this example, both phosphorus and arsenic elements were implanted at an angle, but if the implantation angle, gate electrode thickness, sidewall height, heat treatment conditions, etc. are set to appropriate values, lean or arsenic elements can be implanted. The LDD-MOSFET of the present invention can be manufactured even if only one of them is implanted at an angle.

また、この実施例のようにイオン注入の注入角を傾ける
方法に限らず、たとえばサイドウオールを片方づつ形成
してドレイン領域にのみn−拡散層を設ける方法など、
いかなる方法であっても、本発明の構造を実現できるも
のであれば、本発明の主旨を妨げるものでないことは勿
論である。
In addition to the method of tilting the implantation angle of ion implantation as in this embodiment, for example, a method of forming sidewalls on one side at a time and providing an n-diffusion layer only in the drain region, etc.
Of course, any method that can realize the structure of the present invention does not impede the spirit of the present invention.

発明の効果 ・本発明によると、電界の強いドレイン側にのみn−拡
散層が形成されているので、ホットキャリア効果の抑制
及びチャンネル抵抗増大の抑制が同時に実現できる効果
を有する。
Effects of the Invention According to the present invention, since the n-diffusion layer is formed only on the drain side where the electric field is strong, it is possible to simultaneously suppress the hot carrier effect and the increase in channel resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体装置の要部の断
面図、第2図a −dはその製造方法を説明するだめの
図、第3図a、bは従来のLDD−MOSFETの断面
図および等価回路である。 1・・・・・・p型シリコン基板、2・・・・・・ゲー
ト酸化膜、3・・・・・・ゲート電極、4・・・・・・
サイドウオール、5−a、5−b・・・・・・ドレイン
側とソース側のn−拡散層、e−a、6−b・・・・・
・ドレイン側とソース側のn+拡散層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−Pをシリコン蚤枚 2−−ケ“−ト駿イ乙辰 3−m−ゲートを壱ν 1−”−−−n’4L青()髪(ドレインづ11□りン
6−b−−−rI一体tJ(ソース長すンース側   
             Fレイ/預り第2図 ンースl!J               F糾イン
櫃す第2図 第3図 島−島−
FIG. 1 is a cross-sectional view of the main parts of a semiconductor device according to an embodiment of the present invention, FIGS. 2 a - d are diagrams for explaining the manufacturing method thereof, and FIGS. These are a cross-sectional view and an equivalent circuit. 1...p-type silicon substrate, 2...gate oxide film, 3...gate electrode, 4...
Side wall, 5-a, 5-b... N-diffusion layer on drain side and source side, e-a, 6-b...
・N+ diffusion layer on drain side and source side. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--P silicon flea sheet 2--ke "-to-sun-i-otatsu 3-m-gate 1-ν 1-"---n'4L blue () hair (drain 11□rin 6-b- --rI integrated tJ (source length
F Ray/Deposit Diagram 2 Nsu l! Figure 2 Figure 3 Island-Island-

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に形成されたMOS型電界効果トラ
ンジスタのゲート電極の両側壁に、絶縁物からなる等し
い厚さのサイドウォールが形成され、前記サイドウォー
ルの片方の下部にのみ前記半導体基板と逆の伝導型を示
す低濃度の不純物拡散層が形成され、かつ、もう一方の
サイドウォールの下部には前記不純物と同族の不純物の
高濃度拡散層が形成されていることを特徴とする半導体
装置。
(1) Sidewalls of equal thickness made of an insulating material are formed on both sidewalls of a gate electrode of a MOS field effect transistor formed on a semiconductor substrate, and only the lower part of one sidewall is connected to the semiconductor substrate. A semiconductor device characterized in that a low concentration impurity diffusion layer having an opposite conductivity type is formed, and a high concentration diffusion layer of an impurity of the same group as the impurity is formed under the other sidewall. .
(2)低濃度拡散層がMOS型電界効果トランジスタの
ドレイン側のサイドウォール下部に、さらに高濃度拡散
層がソース側のサイドウォール下部に形成されているこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
(2) A low concentration diffusion layer is formed under the sidewall on the drain side of the MOS field effect transistor, and a high concentration diffusion layer is formed under the sidewall on the source side. 1. Semiconductor device described in Section 1.
JP13643385A 1985-06-21 1985-06-21 Method for manufacturing semiconductor device Expired - Lifetime JPH0638428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13643385A JPH0638428B2 (en) 1985-06-21 1985-06-21 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13643385A JPH0638428B2 (en) 1985-06-21 1985-06-21 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61294868A true JPS61294868A (en) 1986-12-25
JPH0638428B2 JPH0638428B2 (en) 1994-05-18

Family

ID=15175022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13643385A Expired - Lifetime JPH0638428B2 (en) 1985-06-21 1985-06-21 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0638428B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215075A (en) * 1987-03-04 1988-09-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH0214530A (en) * 1988-06-30 1990-01-18 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215075A (en) * 1987-03-04 1988-09-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH0214530A (en) * 1988-06-30 1990-01-18 Mitsubishi Electric Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0638428B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US5510279A (en) Method of fabricating an asymmetric lightly doped drain transistor device
US6297104B1 (en) Methods to produce asymmetric MOSFET devices
US20080160706A1 (en) Method for fabricating semiconductor device
KR100237117B1 (en) Semiconductor device having ldd structure with pocket on drain side and method for fabricating the same
JPH0783119B2 (en) Field effect transistor
JPH03262130A (en) Manufacture of semiconductor element
JP2781918B2 (en) Method for manufacturing MOS type semiconductor device
JPH05267327A (en) Misfet and its manufacture
JP2004022769A (en) Lateral high breakdown voltage semiconductor device
JPH0234936A (en) Semiconductor device and its manufacture
JP2003347545A (en) Vertical field effect transistor
JPS61294868A (en) Semiconductor device
JP2549689B2 (en) MOS transistor and manufacturing method thereof
JPH0519979B2 (en)
JP2000068499A (en) Semiconductor device and manufacture of the same
JP2757491B2 (en) Method for manufacturing semiconductor device
JPH01196176A (en) Mis type semiconductor device
JPH10321871A (en) Semiconductor device having soi structure and manufacture thereof
JPS6269562A (en) Field effect transistor device and manufacture thereof
JPH0638427B2 (en) Method for manufacturing semiconductor device
JP2830366B2 (en) Method for manufacturing semiconductor device
JP3307972B2 (en) Method for manufacturing field effect transistor and field effect transistor
JPH01108774A (en) Semiconductor device
JPH02219237A (en) Mis type semiconductor device
JPH04255233A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term