JPS61254619A - Epoxy resin composition for encapsulation of semiconductor - Google Patents

Epoxy resin composition for encapsulation of semiconductor

Info

Publication number
JPS61254619A
JPS61254619A JP9645085A JP9645085A JPS61254619A JP S61254619 A JPS61254619 A JP S61254619A JP 9645085 A JP9645085 A JP 9645085A JP 9645085 A JP9645085 A JP 9645085A JP S61254619 A JPS61254619 A JP S61254619A
Authority
JP
Japan
Prior art keywords
epoxy resin
powder
quartz
phenol
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9645085A
Other languages
Japanese (ja)
Other versions
JPS6326128B2 (en
Inventor
Toshio Shiobara
利夫 塩原
Kazutoshi Tomiyoshi
富吉 和俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP9645085A priority Critical patent/JPS61254619A/en
Publication of JPS61254619A publication Critical patent/JPS61254619A/en
Publication of JPS6326128B2 publication Critical patent/JPS6326128B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To provide the titled composition exhibiting extremely high fluidity in the forming of a semiconductor device, giving little burr, and capable of forming a molded article having low thermal expansion coefficient, by adding a quartz filler to a phenol-curable epoxy resin at a specific ratio. CONSTITUTION:The objective composition can be produced by compounding (A) 100pts. (wt.) of a phenol-curable epoxy resin with (B) 100-500pts. of a quartz filler composed of (i) 20-99% spherical quartz powder having an average particle diameter of 1-25mum and (ii) 1-80% fine quartz powder wherein the powder having particle diameter of <=1mum accounts for >=90%. Preferably, the component A is composed of an epoxy resin having >=2 epoxy groups in one molecule and a phenolic hardener (e.g. phenol novolac), and the component (i) is powder produced by melting quartz powder in a flame of combustible gas and oxygen gas.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明は半導体封止用エポキシ樹脂組成物、特には半導
体装置成形時に極めて高い流動性を示すと共にパリの発
生が少なく、さらには熱膨張係数の小さい成形物を与え
る半導体封止用エポキシ樹脂組成物に関するものである
Detailed Description of the Invention (Industrial Field of Application) The present invention provides an epoxy resin composition for semiconductor encapsulation, in particular, which exhibits extremely high fluidity during semiconductor device molding, has little generation of flakes, and has a low thermal expansion coefficient. The present invention relates to an epoxy resin composition for semiconductor encapsulation that provides small molded products.

(従来の技術〕 半導体封止用樹脂についてはすでに各種のものが知られ
ており、これKはエポキシ樹脂、シリコーン樹脂、ジア
リルフタレート樹脂、フェノール樹脂、ポリフェニレン
サルファイド樹脂などを主剤とする組成物が用いられて
いるが、耐湿性、m械特性、生産性1価格などの面から
フェノール硬化性エポキシ樹脂が最も多く便用されてい
る。
(Prior art) Various types of resins for semiconductor encapsulation are already known, and K uses compositions based on epoxy resins, silicone resins, diallyl phthalate resins, phenol resins, polyphenylene sulfide resins, etc. However, phenol-curable epoxy resins are most commonly used due to their moisture resistance, mechanical properties, productivity, and cost.

しかし、最近における低圧トランスファー成形用金型は
キャピテイ数の増加に伴なって金型寸法が大型化してき
ており、このような金型で半導体装置の成形を行なうと
一部に樹脂が未充填となるという事故が発生するおそれ
があるため、この封止用樹jliiJlfL成物には流
動性のよいものとすることが求められている。
However, the dimensions of recent low-pressure transfer molding molds have become larger as the number of cavities has increased, and when semiconductor devices are molded using such molds, some parts may not be filled with resin. Since there is a risk that an accident may occur, this sealing tree jliiJlfL composition is required to have good fluidity.

七のため、フェノール硬化性エポキシ81脂についても
l)溶融粘度の低い樹脂を使用するか、低分子の希釈剤
を混合する。2)硬化触媒の置を減量する。3)無機質
充填剤量を減量する−という方法が提案されているが、
この1)の方法では流動性は向上しても成形時のパリの
発生が大吉くな11、希釈剤を使用すると成形物表面に
ニジミが出たり、揮発分が多くなるので寸法変化が大き
くなるという不利があり、さらkはアルミニウム配線の
腐蝕が速くなるという欠点も発生する。また。
7) For phenol-curing epoxy 81 resins, l) Use resins with low melt viscosity or mix low-molecular-weight diluents. 2) Reduce the amount of curing catalyst. 3) Reducing the amount of inorganic filler has been proposed, but
Although method 1) improves fluidity, it often causes cracks during molding11, and if a diluent is used, smudges appear on the surface of the molded product, and the volatile content increases, resulting in large dimensional changes. In addition, k has the disadvantage that the aluminum wiring corrodes more quickly. Also.

この2)の方法では樹脂組成物の硬化性がわるくなるた
めに生産性向上のために速硬化性にするという要求に逆
行するといつ不利があり、3)の方法には樹脂組成物の
熱膨張係数や応力が太き(なって耐クラツク性が低下し
、さらKはシリコンチップ表面のアルミニウム配線やパ
ッシベーション膜に加わる力が太きくな13.耐湿性も
低下するという不利が発生する。
In method 2), the curability of the resin composition deteriorates, so if it goes against the demand for rapid curing in order to improve productivity, there is a disadvantage in method 3). The coefficient and stress are large (as a result, crack resistance is reduced), and the force applied to the aluminum wiring and passivation film on the surface of the silicon chip is also large.

また、このエポキシ樹脂組成物についてはこ\に添加さ
れる無機質充填剤として球状石英粉末を用いることが知
られており、これについては球状石英を配合すると応力
が低下するということから樹脂組成物に平均粒子径が1
〜6011mの球状溶融シリカを30〜80frii%
添加することも提案されている(特開昭58−1387
40号公報参照)が、これKは流動性が十分満足すべき
ものでないために大型化した成形金型を用いたときに未
充填が発生するほか樹脂モレ、パリの発生が多いという
問題点がある。
In addition, it is known that spherical quartz powder is used as an inorganic filler in this epoxy resin composition, and this is because adding spherical quartz reduces stress. Average particle size is 1
30-80 frii% of ~6011m spherical fused silica
It has also been proposed to add
(Refer to Publication No. 40) However, since this K does not have sufficiently satisfactory fluidity, there are problems such as underfilling occurs when a larger mold is used, and resin leakage and flaking occur frequently. .

(発明の構成) 本発明はこのような不利を解決することのできる半導体
封止用エポキシ樹脂組成物に関するもので、これはl)
フェノール硬化性エポキシ樹脂100重量部、2)平均
粒径1〜25μmの球状石英粉末20〜99重量%と、
90重量%以上が粒径111m R下の粉末である微細
石英粉末1〜80[31%とからなる石英質充填剤10
0〜500重量部とからなることを特徴とするものであ
る。
(Structure of the Invention) The present invention relates to an epoxy resin composition for semiconductor encapsulation that can solve the above-mentioned disadvantages.
100 parts by weight of a phenol-curable epoxy resin, 2) 20-99% by weight of spherical quartz powder with an average particle size of 1-25 μm;
Quartz filler 10 consisting of fine quartz powder 1 to 80 [31%] of which 90% by weight or more is powder with a particle size of 111 m R or less
0 to 500 parts by weight.

すなわち1本発明者らは流動性が高(、パリの発生も少
ない半導体封止用エポキシ樹脂組成物について種々検討
した結果、これにはエポキシ樹脂に添加する無機質充填
剤として石英粉末を使用するが、この石英粉末を特に粒
径が1μm以下の微細石英粉末を含んだものとすると流
動性が増大するし、パリの発生も減少することができる
ということを見出し、この)微細石英粉末についてはそ
の9oi1%以上が粒径1μm以下のものとし、これを
平均粒径が1〜25μmである球状石英粉末と混合して
使用すればよいということ、またこれKよればフェノー
ル硬化性エポキシ樹脂に対する石英粉末の高充填が可能
となるのでこの組成物から作られた成形物の熱膨張係数
を小さくすることができるということを確認し、こ\に
使用する石英粉末の種類、配合比などについての研究を
進めて本発明を完成させた。
In other words, the present inventors have conducted various studies on epoxy resin compositions for semiconductor encapsulation that have high fluidity (and less generation of paris), and have found that quartz powder is used as an inorganic filler added to the epoxy resin. found that when this quartz powder contains fine quartz powder with a particle size of 1 μm or less, the fluidity increases and the occurrence of paris can be reduced. According to K, 1% or more of 9oi should have a particle size of 1 μm or less, and this should be used by mixing it with spherical quartz powder having an average particle size of 1 to 25 μm. We confirmed that it was possible to reduce the coefficient of thermal expansion of molded products made from this composition by allowing high filling of quartz powder, and conducted research on the type of quartz powder to be used and the blending ratio. We proceeded to complete the present invention.

つぎに本発明の組成物を構成する各成分について説明す
る。
Next, each component constituting the composition of the present invention will be explained.

まず1本発明において使用される第1成分としてのフェ
ノール硬化性エポキシ樹脂は、1分子中に2個以上のエ
ポキシ基を有するエポキシ樹脂とフェノール系硬化剤と
からなる硬化可能なエポキシ樹脂であり、このものは後
述するフェノール系硬化剤によって硬化されるものであ
ればその分子構造1分子量などに特に制限はなく、従来
から知られている種々のものを使用することができ、こ
れには例えばエピクロルヒドリンとビスフェノールをは
じめとする各棟のノボラック樹脂から合成されるエポキ
シ樹脂、脂環式エポキシ樹脂あるいは塩素や臭素などの
ハロゲン原子を導入したエポキシ樹脂などがあげられる
。このエポキシ樹脂にモノエポキシ化合物を適宜併用す
ることは差支えなく−このモノエポキシ化合物としては
スチレンオキシド−シクロヘキセンオキシド、プロピレ
ンオキシド、メチルグリシジルエーテル、エチルグリシ
ジルエーテル、フェニルグリシジルエーテル。
First, the phenol-curable epoxy resin as the first component used in the present invention is a curable epoxy resin consisting of an epoxy resin having two or more epoxy groups in one molecule and a phenolic curing agent, This material is not particularly limited in its molecular structure and molecular weight as long as it can be cured with the phenolic curing agent described later, and various conventionally known products can be used, such as epichlorohydrin. Examples include epoxy resins synthesized from various novolac resins such as and bisphenol, alicyclic epoxy resins, and epoxy resins into which halogen atoms such as chlorine and bromine are introduced. There is no problem in appropriately using a monoepoxy compound in combination with this epoxy resin; examples of the monoepoxy compound include styrene oxide-cyclohexene oxide, propylene oxide, methyl glycidyl ether, ethyl glycidyl ether, and phenyl glycidyl ether.

アリルグリシジルエーテルーオクチレンオキシド。Allyl glycidyl ether-octylene oxide.

ドデセンオキシドなどが例示される。Examples include dodecene oxide.

また、このフェノール系硬化剤としては従来公知の種々
のものを使用することができ、これKは例えばフェノー
ルノボラック、クレゾールノボラックなどのようK1分
子中に2個以上の水酸基を有するものをあげることがで
きる。
In addition, various conventionally known phenolic curing agents can be used, and examples of K include those having two or more hydroxyl groups in each K molecule, such as phenol novolac and cresol novolac. can.

なお、このエポキシ樹脂には上記した硬化剤とエポキシ
樹脂との反応を促進させる目的で各種の硬化促進剤1例
えばイミダゾールあるいはその誘導体、第三級アミン誘
導体、ホスフィン系誘導体。
The epoxy resin may contain various curing accelerators 1, such as imidazole or its derivatives, tertiary amine derivatives, and phosphine derivatives, for the purpose of promoting the reaction between the above-mentioned curing agent and the epoxy resin.

シクロアミジン誘導体などを併用することは任意とされ
る。
It is optional to use a cycloamidine derivative or the like in combination.

つぎにこの組成物に使用される第2成分としての石英系
充填剤は平均粒径が1〜25μmの球状石英と90重量
%以上が1μrrL以下の微細石英粉末とからなるもの
とされる。
Next, the quartz-based filler as the second component used in this composition is made of spherical quartz having an average particle size of 1 to 25 μm and 90% by weight or more of fine quartz powder having a size of 1 μrrL or less.

この平均粒径が1〜25μmの球状石英はアスペクト比
が1〜1.3とされるものであるが、このものは例えば
合成あるいは天然の石英粉末を水素またはグロパンなど
の可燃ガスと酸素ガスとを用いて火炎中で溶融するか一
テトラエトキシシランやテトラメトキシシランを加水分
解することKよって得たものあるいは加水分解後に焼結
処理または溶融したものとすればよい。
This spherical quartz with an average particle size of 1 to 25 μm has an aspect ratio of 1 to 1.3, and is produced by mixing synthetic or natural quartz powder with combustible gas such as hydrogen or glopane and oxygen gas. It may be obtained by melting in a flame using a silane, by hydrolyzing monotetraethoxysilane or tetramethoxysilane, or by sintering or melting after hydrolysis.

また、この微細石英粉末は天然あるいは合成の石英塊を
粉砕するか、粉砕後さらに分級することKよって得たも
のとすればよいが、このものは1μrrL以下の粒径を
もつものが90重童%以下ではこれを添Wしたエポキシ
樹脂組成物に十分満足すべき流動性が与えられず、さら
Kは樹脂モレ、パリの発生が太き(なるので90!it
%以上が1pWLa下の粒径のものとする必要がある。
In addition, this fine quartz powder may be obtained by crushing a natural or synthetic quartz lump, or by further classifying it after crushing. % or less, the epoxy resin composition to which it is added will not have sufficiently satisfactory fluidity, and further K will cause resin leakage and flaking (because it will become 90!
It is necessary that at least % of the particles have a particle size below 1 pWLa.

この第2成分における上記した球状石英と微細石英粉末
との配合比は微細石英粉末が全祉の1重量%以下では本
発明のエポキシ樹脂組成物に流動性向上、パリの減少と
いう目的が達成されず。
When the blending ratio of the above-mentioned spherical quartz and fine quartz powder in this second component is such that the fine quartz powder is less than 1% by weight of the total weight, the purpose of improving fluidity and reducing paris in the epoxy resin composition of the present invention is achieved. figure.

80重惜%以上とするとこの組成物から作られる成形体
が樹脂クラックの発生し易いものとなるので、微細石英
粉末を1〜80重量%含有するものとすることが必要と
される。
If the content is more than 80% by weight, molded articles made from this composition will be prone to resin cracks, so it is necessary to contain 1 to 80% by weight of fine quartz powder.

なお、この第2成分としての石英充填剤の配合量は第1
成分としてのエポキシ樹脂100重量部に対し、100
重蓼部以下とするとこの組成物から作られる成形品が線
膨張係数の大きいものとなり、耐クラツク性も満足する
ものにならないし。
The amount of the quartz filler as the second component is the same as the first component.
100 parts by weight of epoxy resin as a component
If the weight is less than the weight, the molded product made from this composition will have a large coefficient of linear expansion and its crack resistance will not be satisfactory.

500重量部以上とするとこれのエポキシ樹脂への分散
性がわるくなり−この組成物の流動性もわるくなるので
、これは100〜5001ffi部の範囲とする必要が
あるが、この好ましい範囲は200〜350重量部とさ
れる。
If it exceeds 500 parts by weight, the dispersibility in the epoxy resin will be poor, and the fluidity of the composition will also be poor, so it needs to be in the range of 100 to 5001 parts by weight, but the preferred range is 200 to 5001 parts by weight. The amount is 350 parts by weight.

本発明のエポキシ樹脂組成物は上記した第1〜第2成分
の所定量を均一に混合することKよって。
The epoxy resin composition of the present invention is produced by uniformly mixing predetermined amounts of the first and second components described above.

得ることができるが、この石英系充填剤は予じめその表
面をカーボンファンクショナルシランなどで処理したも
のとしてもよく、これにはまた必要に応じ各種の添加剤
1例えばカーボンブラックなどの顔料、天然ワラ身スな
どの離型剤、難燃剤。
However, the surface of this quartz-based filler may be treated with carbon functional silane or the like in advance, and if necessary, various additives 1, such as pigments such as carbon black, Mold release agents and flame retardants such as natural straw.

オルガノポリシロキサン、オルガノポリシロキサンとフ
ェノールノボラック樹脂とのブロック共重合体−変性ポ
リブタジェンなどの可撓性付与剤。
Flexibility imparting agents such as organopolysiloxane and block copolymer-modified polybutadiene of organopolysiloxane and phenol novolac resin.

カーボンファンクショナルシランなどを添加してもよい
Carbon functional silane or the like may be added.

つぎに本発明の実施例をあげるが1例中の部は奮量部を
示したものであり、各表中における物性値は下記の方法
による試験結果を示したものである。
Next, examples of the present invention will be given, and the part in each example indicates the active part, and the physical property values in each table show the test results according to the following method.

l)スパイラルフロー エポキシ樹脂組成物の粉末20.Fを、EMMI−1−
66に準じた金型な用いて金型温度175℃、プランジ
ャー圧カフ0Kt/−で成形したときの値を測定した。
l) Powder of spiral flow epoxy resin composition 20. F, EMMI-1-
The values were measured when molding was performed using a mold according to No. 66 at a mold temperature of 175°C and a plunger pressure cuff of 0 Kt/-.

2)樹脂もれ、パリ エポキシ樹脂組成物の粉末2(lを、10μm30μm
のスリットをもつパリ測定用金型を用いて金型温度17
5℃、プランジャー圧カフ0Kf/−で成形し、このと
きのスリットに洩れた樹脂の長さをノギスで測定した。
2) Resin leakage, Paris epoxy resin composition powder 2 (l, 10 μm 30 μm
The mold temperature was set to 17 using a Paris measurement mold with a slit of
Molding was carried out at 5° C. with a plunger pressure cuff of 0 Kf/−, and the length of the resin leaking into the slit at this time was measured with a caliper.

3)熱膨張係数 エポキシ樹脂組成物を175℃、2分の成形条件で、4
igmpX高さ15mmの円柱状に成形し、180℃で
4時間アフターキュアーしてからアグネDL1500(
真空瑚化社製商品名〕を用いて25℃から120℃まで
の熱膨張係数を測定した。
3) Thermal expansion coefficient The epoxy resin composition was molded at 175°C for 2 minutes.
igmp
The thermal expansion coefficient was measured from 25° C. to 120° C. using a product manufactured by Shinku Goka Co., Ltd. (trade name).

4)曲げ弾性率 エポキシ樹脂組成物を175℃、2分の成形条件で11
00X10X4の抵抗棒に成形し、180℃で4時間ア
フターキュアーしてからJI8に6911の方法に準じ
て曲げ弾性率を測定した。
4) Flexural modulus The epoxy resin composition was molded at 175°C for 2 minutes at 11
It was molded into a 00x10x4 resistance bar, after-cured at 180°C for 4 hours, and then its flexural modulus was measured according to the method of JI8/6911.

5)耐クラツクテスト 9、OX4.5X0.5mのシリコンチップ40個を1
4PXNIOフレームに貼も)付け、これにエポキシ樹
脂組成物を175℃、2分の成形条件で成形し、180
℃で4時間アフターキュアーしてから、−196℃(1
分)〜+300℃(1分)の温度サイクルテストを行な
い、10サイクル後における樹脂クラック発生率を測定
した。
5) Crack resistance test 9, 40 silicon chips of OX4.5x0.5m
4PXNIO frame) and molded the epoxy resin composition on it at 175°C for 2 minutes.
After cure for 4 hours at -196°C (1
A temperature cycle test of 1 minute) to +300°C (1 minute) was conducted, and the resin crack occurrence rate after 10 cycles was measured.

実施例1〜3.比較例1〜3 クレゾールノボラック型エポキシ樹脂・EON−127
0(チパ社製商品名)600部、フェノールノボラック
樹脂・TD2093(大日本インキ社製商品名〕300
部に一藁1表に示した量の石英系充填剤とシリコーンオ
イル変性エポキシ樹脂(シリコーン変性率30%)10
0部、トリフェニルホスフィンlO部、カルナバワック
スlO部、三酸化アンチモン100部、γ−グリシドキ
シグロビルトリメトキシシランlO部およびカーボンブ
ラソフ10部を配合し、ヘンシェルミキサーで〒備ブレ
ンドしてから押出機で混練し、冷却後粉砕してフェノー
ル硬化性エポキシ樹脂組成物6種を作1)、ついで、こ
れKついての物性をしろべたところ、第2表に示したと
おりの結果が得られた。
Examples 1-3. Comparative Examples 1 to 3 Cresol novolac type epoxy resin/EON-127
0 (trade name manufactured by Chipa Co., Ltd.) 600 parts, phenol novolac resin TD2093 (trade name manufactured by Dainippon Ink Co., Ltd.) 300 parts
quartz filler and silicone oil-modified epoxy resin (silicone modification rate 30%) in the amounts shown in the table.
0 parts, 10 parts of triphenylphosphine, 10 parts of carnauba wax, 100 parts of antimony trioxide, 10 parts of γ-glycidoxyglobyltrimethoxysilane, and 10 parts of carbonbrasof were blended in a Henschel mixer. Six types of phenol-curable epoxy resin compositions were prepared by kneading them in an extruder, cooling and pulverizing them1).Then, when the physical properties of these K were investigated, the results shown in Table 2 were obtained. .

実施例4〜7.比較例4〜5 クレゾールノボラック型エポキシ樹脂・KOCN102
(日本化薬社製商品名)650部、フェノールノボラッ
ク樹脂・TD2093(前出ン300部、プロふ化エポ
キシ樹脂・YDB 340(東部化成社製商品名)50
部に、第3表に示した量の石英系充填剤と実施例1〜3
で使用したものと同じ種類、量の硬化触媒、離型剤、シ
ランカップリング剤を配合して一上記と同様に処理して
フェノール硬化性エポキシ樹脂組成物6棟を作り一つい
でこれについての物性をしらべたところ、第4表に示し
たとおI】の結果が得られた。
Examples 4-7. Comparative Examples 4-5 Cresol novolac type epoxy resin/KOCN102
(Product name manufactured by Nippon Kayaku Co., Ltd.) 650 parts, Phenol novolak resin TD2093 (300 parts of the above mentioned product), Professional epoxy resin YDB 340 (Product name manufactured by Tobu Kasei Co., Ltd.) 50
quartz-based filler in the amount shown in Table 3 and Examples 1 to 3.
The same types and amounts of curing catalyst, mold release agent, and silane coupling agent as those used in were mixed and treated in the same manner as above to prepare six phenol-curable epoxy resin compositions and the physical properties thereof were determined. The results shown in Table 4 were obtained.

Claims (1)

【特許請求の範囲】 1、1)フェノール硬化性エポキシ樹脂 100重量部 2)平均粒径1〜25μmの球状石英粉末20〜99重
量%と、90重量%以上が粒径1μm以下の粉末である
微細石英粉末1〜80重量とからなる石英質充填剤 100〜500重量部 とからなることを特徴とする半導体封止用エポキシ樹脂
組成物。
[Claims] 1.1) 100 parts by weight of a phenol-curing epoxy resin 2) 20-99% by weight of spherical quartz powder with an average particle size of 1-25 μm, and 90% by weight or more of powder having a particle size of 1 μm or less An epoxy resin composition for semiconductor encapsulation, comprising 1 to 80 parts by weight of fine quartz powder and 100 to 500 parts by weight of a quartz filler.
JP9645085A 1985-05-07 1985-05-07 Epoxy resin composition for encapsulation of semiconductor Granted JPS61254619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9645085A JPS61254619A (en) 1985-05-07 1985-05-07 Epoxy resin composition for encapsulation of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9645085A JPS61254619A (en) 1985-05-07 1985-05-07 Epoxy resin composition for encapsulation of semiconductor

Publications (2)

Publication Number Publication Date
JPS61254619A true JPS61254619A (en) 1986-11-12
JPS6326128B2 JPS6326128B2 (en) 1988-05-28

Family

ID=14165354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9645085A Granted JPS61254619A (en) 1985-05-07 1985-05-07 Epoxy resin composition for encapsulation of semiconductor

Country Status (1)

Country Link
JP (1) JPS61254619A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268750A (en) * 1985-05-22 1986-11-28 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing use
JPS6440518A (en) * 1987-08-07 1989-02-10 Nitto Denko Corp Semiconductor device
JPS6465116A (en) * 1987-09-04 1989-03-10 Toray Industries Resin composition for semiconductor sealing
JPH01263131A (en) * 1988-04-15 1989-10-19 Nippon Steel Chem Co Ltd Silica for filling sealing resin
JPH01294765A (en) * 1988-05-20 1989-11-28 Nippon Retsuku Kk Epoxy resin composition
JPH02228354A (en) * 1989-03-01 1990-09-11 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing and cured product thereof
JPH08259671A (en) * 1996-01-29 1996-10-08 Nitto Denko Corp Semiconductor device
EP0716118A3 (en) * 1994-08-05 1997-04-09 Sasib Spa Filled epoxy resin composition and process for moulding static components for machines therefrom

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102361A (en) * 1977-02-18 1978-09-06 Toray Silicone Co Ltd Thermosetting resin composition
JPS5443021A (en) * 1977-09-12 1979-04-05 Minolta Camera Co Ltd F/stop digital value display device of cameras
JPS56122145A (en) * 1980-02-29 1981-09-25 Shin Etsu Chem Co Ltd Resin composition for sealing semiconductor device
JPS57195117A (en) * 1981-05-27 1982-11-30 Sumitomo Bakelite Co Ltd Epoxy resin composition and its preparation
JPS58138740A (en) * 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk Resin composition
JPS59108026A (en) * 1982-12-10 1984-06-22 Toshiba Chem Corp Epoxy resin composition for sealing
JPS59204633A (en) * 1983-05-06 1984-11-20 Denki Kagaku Kogyo Kk Resin composition with low radioactivity
JPS6051613A (en) * 1983-07-26 1985-03-23 チバ−ガイギ− アクチエンゲゼルシヤフト Spherical fused silica and use as filler and resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102361A (en) * 1977-02-18 1978-09-06 Toray Silicone Co Ltd Thermosetting resin composition
JPS5443021A (en) * 1977-09-12 1979-04-05 Minolta Camera Co Ltd F/stop digital value display device of cameras
JPS56122145A (en) * 1980-02-29 1981-09-25 Shin Etsu Chem Co Ltd Resin composition for sealing semiconductor device
JPS57195117A (en) * 1981-05-27 1982-11-30 Sumitomo Bakelite Co Ltd Epoxy resin composition and its preparation
JPS58138740A (en) * 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk Resin composition
JPS59108026A (en) * 1982-12-10 1984-06-22 Toshiba Chem Corp Epoxy resin composition for sealing
JPS59204633A (en) * 1983-05-06 1984-11-20 Denki Kagaku Kogyo Kk Resin composition with low radioactivity
JPS6051613A (en) * 1983-07-26 1985-03-23 チバ−ガイギ− アクチエンゲゼルシヤフト Spherical fused silica and use as filler and resin composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268750A (en) * 1985-05-22 1986-11-28 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing use
JPH0329259B2 (en) * 1985-05-22 1991-04-23 Shinetsu Chem Ind Co
JPS6440518A (en) * 1987-08-07 1989-02-10 Nitto Denko Corp Semiconductor device
JPS6465116A (en) * 1987-09-04 1989-03-10 Toray Industries Resin composition for semiconductor sealing
JPH01263131A (en) * 1988-04-15 1989-10-19 Nippon Steel Chem Co Ltd Silica for filling sealing resin
JPH01294765A (en) * 1988-05-20 1989-11-28 Nippon Retsuku Kk Epoxy resin composition
JPH02228354A (en) * 1989-03-01 1990-09-11 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing and cured product thereof
EP0716118A3 (en) * 1994-08-05 1997-04-09 Sasib Spa Filled epoxy resin composition and process for moulding static components for machines therefrom
JPH08259671A (en) * 1996-01-29 1996-10-08 Nitto Denko Corp Semiconductor device

Also Published As

Publication number Publication date
JPS6326128B2 (en) 1988-05-28

Similar Documents

Publication Publication Date Title
US4701479A (en) Epoxy resin-based composition for encapsulation of semiconductor devices
JP3175979B2 (en) Resin-sealed semiconductor device
JPS61254619A (en) Epoxy resin composition for encapsulation of semiconductor
JPH0511125B2 (en)
JPS6263453A (en) Semiconductor device
JP4627208B2 (en) Pre-kneading composition, epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP2004115747A (en) Resin composition for forming heat sink and device for encapsulating electronic part
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JPH02219814A (en) Epoxy resin composition
JPH08269167A (en) Epoxy resin composition for semiconductor sealing use
JPH07118505A (en) Epoxy resin composition
JPS63160254A (en) Semiconductor device
JPH08337634A (en) Epoxy resin composition and semiconductor device sealed therewith
JPS61101523A (en) Sealing resin composition
JPH03131057A (en) Semiconductor device
JP2716962B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2003176336A (en) Resin composition for ball-grid-array
JP2000169675A (en) Epoxy resin composition and semiconductor apparatus
JPH03167250A (en) Epoxy resin composition
JPH01299816A (en) Epoxy resin composition
JPS6310616A (en) Sealing resin composition
JPH05105739A (en) Resin composition for sealing semiconductor
JPS61101520A (en) Sealing resin composition
JP3506423B2 (en) Sealing resin composition and semiconductor sealing device
JPH0232116A (en) Epoxy resin composition for sealing semiconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term