JPH03167250A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH03167250A
JPH03167250A JP30878789A JP30878789A JPH03167250A JP H03167250 A JPH03167250 A JP H03167250A JP 30878789 A JP30878789 A JP 30878789A JP 30878789 A JP30878789 A JP 30878789A JP H03167250 A JPH03167250 A JP H03167250A
Authority
JP
Japan
Prior art keywords
epoxy resin
group
gel
resin
silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30878789A
Other languages
Japanese (ja)
Other versions
JP2690795B2 (en
Inventor
Masashi Nakamura
正志 中村
Masaaki Otsu
正明 大津
Masaya Tsujimoto
雅哉 辻本
Yoshihiko Nakamura
善彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1308787A priority Critical patent/JP2690795B2/en
Publication of JPH03167250A publication Critical patent/JPH03167250A/en
Application granted granted Critical
Publication of JP2690795B2 publication Critical patent/JP2690795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prepare an epoxy resin compsn. which gives a cured product having a reduced internal stress and high reliability in wet conditions after dipped in a molten solder and is suitable as a sealing resin of a semiconductor element by compounding an epoxy resin with a specific silicone polymer and a self- curable silicon rubber or(and) gel. CONSTITUTION:An epoxy resin compsn. is prepd. by mixing an epoxy resin (e.g. a bisphenol A epoxy resin), a silicone polymer of the formula (wherein R is a monovalent hydrocarbon group; X is an epoxidized group; Y is group contg. a polyoxyalkylene group; and l, m, and n are each 1 or higher), a self- curable silicone rubber or(and) gel, and a phenol resin as a curing agent of the epoxy resin. The silicon polymer, contg. polyoxyalkylene groups and having a good compatibility and dispersibility in the epoxy resin, offers a significant stress reduction, and the increase in moisture absorption caused by the addition of the silicon polymer is suppressed by the addition of the self-curable silicone rubber or(and) gel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、たとえば、トランジスタ、IC、LSI等
の半導体素子の樹脂封止等に用いられるエポキシ樹脂組
底物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epoxy resin composite used for resin sealing of semiconductor elements such as transistors, ICs, and LSIs.

〔従来の技術〕[Conventional technology]

近年、半導体素子はエポキシ樹脂封止が主流となってい
る。こ′れは、エポキシ樹脂が耐熱性、強度、接着性、
電気特性などに優れているからである.しかし、エポキ
シ樹脂には、他の多くの熱硬化性樹脂にも見られるよう
に硬化物が脆いという欠点がある。
In recent years, epoxy resin encapsulation has become mainstream for semiconductor devices. This is because epoxy resin has heat resistance, strength, adhesive properties,
This is because it has excellent electrical properties. However, epoxy resins have the disadvantage that the cured product is brittle, as is the case with many other thermosetting resins.

また、半導体パッケージが薄型化され、チップサイズは
大型化されているが、このようなものをエポキシ樹脂で
封止した場合、冷熱サイクル時にパフケージにクラソク
が発生するという問題が生じる。さらに、フラットパッ
ケージタイプでは、リードビンに半田付けするという方
法から、パッケージ全体をたとえば250℃以上の半田
に浸漬するという方法へと半田付け方法が変わってきて
いる。後者のような半田付け方法を採ると、従来のエポ
キシ樹脂封止材で封止したパンケージは、半田浸漬後の
耐湿信頼性が著しく低下するという欠点がある。これは
、パッケージ中の水分の急激な気化膨張によるパッケー
ジのクラフクが原因と考えられている。
Further, semiconductor packages are becoming thinner and chip sizes are increasing, but when such packages are sealed with epoxy resin, a problem arises in that cracks occur in the puff cage during cooling and heating cycles. Furthermore, for flat package types, the soldering method has changed from soldering to a lead bin to immersing the entire package in solder at a temperature of 250° C. or higher, for example. When the latter soldering method is adopted, a pancage sealed with a conventional epoxy resin sealing material has the disadvantage that the moisture resistance reliability after being immersed in solder is significantly reduced. This is thought to be caused by cracking of the package due to rapid vaporization and expansion of moisture in the package.

このため、上記の欠点を改良すべく、樹脂の内部応力の
低減と耐湿信頼性の向上が重大な課題となっている。
Therefore, in order to improve the above-mentioned drawbacks, reducing the internal stress of the resin and improving the moisture resistance reliability have become important issues.

最近、これらの欠点を克服すべく、様々な検討がなされ
ているが、一般にエポキシ樹脂にシリコーンゴム、シリ
コーンオイルなどの可撓性のあるシリコーン化合物を添
加することにより戒形材料の弾性率を下げ、内部応力の
低減が図られている。たとえば、シリコーンゲルまたは
シリコーンオイルをベースレジン中に分散させたり(特
開昭61−79245号公報参照)、エポキシ基および
ポリオキシアルキレン基(ポリアルキレンオキサイド基
)を持つシリコーン化合物を添加したり(特開昭60−
58425号公報参照〉するのである。
Recently, various studies have been made to overcome these drawbacks, but generally speaking, it is possible to lower the elastic modulus of the material by adding flexible silicone compounds such as silicone rubber or silicone oil to the epoxy resin. , the internal stress is reduced. For example, silicone gel or silicone oil may be dispersed in a base resin (see JP-A-61-79245), or a silicone compound having an epoxy group and a polyoxyalkylene group (polyalkylene oxide group) may be added (especially 1986-
See Publication No. 58425.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記公報で提案された樹脂封止材のうち、前者
の場合、大幅な低応力化はされず、機械強度の低下が大
きい。また、後者の場合、ポリオキシアルキレン基に起
因する耐湿性の低下が大きい。
However, among the resin sealing materials proposed in the above-mentioned publication, in the case of the former, the stress is not significantly reduced and the mechanical strength is significantly reduced. Moreover, in the latter case, the moisture resistance is greatly reduced due to the polyoxyalkylene group.

この発明は、゛上記欠点を解決するものであり、封止材
料の内部応力が大幅に低減し、かつ、半田浸漬後の耐湿
信頼性も良好な半導体封止などに用いられるエポキシ樹
脂組或物を提供することを課題とする。
This invention solves the above-mentioned drawbacks, and provides an epoxy resin composition for use in semiconductor encapsulation, etc., which significantly reduces the internal stress of the encapsulation material and also has good moisture resistance reliability after immersion in solder. The challenge is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明にかがるエポキシ
樹脂組底物は、硬化物の低応力化を図る改質剤として、
下記の戒分(自)および(自)が含まれている。
In order to solve the above problems, the epoxy resin assembly according to the present invention can be used as a modifier to reduce stress in a cured product.
The following precepts (self) and (self) are included.

(4)下式で表されるシリコーン重合体。(4) A silicone polymer represented by the following formula.

(6) 自硬化性シリコーンゴムおよび/またはゲノレ
(6) Self-curing silicone rubber and/or rubber.

上式で表されるシリコーン重合体について説明すると、
上式中、X,YおよびRで示される基はそれぞれ次のと
おりである。Xで示される基はエポキシ基を持つもので
あれば何でも良く、また、同エポキシ基はグリシジルタ
イプであっても、脂環エポキシなどのような内部エポキ
シであっても良く、特に限定はない。Yで示される基は
ボリオキシエチレン基、ボリオキシプロピレン基等や、
ボリオキシエチレン基とポリオキシプロピレン基の共重
合基等のポリオキシアルキレン基を持つ基である。Rで
示される基は、メチル基、エチル基などのアルキル基、
あるいは、フェニル基などの1価の炭化水素基を表す。
To explain the silicone polymer represented by the above formula,
In the above formula, the groups represented by X, Y and R are as follows. The group represented by X may be any group as long as it has an epoxy group, and the epoxy group may be a glycidyl type or an internal epoxy such as alicyclic epoxy, and is not particularly limited. The group represented by Y is a polyoxyethylene group, a polyoxypropylene group, etc.
It is a group having a polyoxyalkylene group such as a copolymerized group of a polyoxyethylene group and a polyoxypropylene group. The group represented by R is an alkyl group such as a methyl group or an ethyl group,
Alternatively, it represents a monovalent hydrocarbon group such as a phenyl group.

上式中のRは、すべてが同じ基であってもよく、少なく
とも1つのRが異なる基であってもよい。上式で表され
るシリコーン重合体は、ブロソク共重合体であってもラ
ンダム共重合体であっても良い。
All R's in the above formula may be the same group, or at least one R may be a different group. The silicone polymer represented by the above formula may be a brosok copolymer or a random copolymer.

上記基Xおよ゛びYの具体例は、たとえば次の構造のも
のがある。
Specific examples of the above groups X and Y include those having the following structure.

(a,bは1以上の整数) 基Yについては、吸湿性の関係からポリオキシプロピレ
ン基含有基、または、ポリオキシエチレンとボリオキシ
プロピレンの共重合体を含む基が好ましい。
(a, b are integers of 1 or more) Regarding the group Y, from the viewpoint of hygroscopicity, a group containing a polyoxypropylene group or a group containing a copolymer of polyoxyethylene and polyoxypropylene is preferable.

上式中のl,mおよびnはそれぞれ1以上の整数であり
、特に限定するものではないが、下記の範囲にあるのが
好ましい。
l, m and n in the above formula are each an integer of 1 or more, and are preferably in the following ranges, although they are not particularly limited.

e/ N! +m+n) =0.0 5 〜0.9 9
m/ (l+m+n) =0.0 0 1−0.5n/
 <It +m+n) =0.0 0 1〜0.8It
/(Il+m+n)が0.05より小さいとマトリック
ス樹脂に相溶して低弾性率化の寄与は小さいことがあり
、0.99より大きいと逆にマトリックス樹脂と完全に
は相熔しなくなり、マトリックス樹脂に分散した時にシ
リコーン粒径が大きくなり、低弾性率化の寄与は小さく
、強度低下が大きくなることがある。
e/N! +m+n) =0.0 5 ~0.9 9
m/ (l+m+n) =0.0 0 1-0.5n/
<It +m+n) =0.0 0 1~0.8It
If /(Il+m+n) is smaller than 0.05, it may be compatible with the matrix resin and its contribution to lowering the elastic modulus may be small; if it is larger than 0.99, it will not be completely compatible with the matrix resin, and the matrix When dispersed in a resin, the silicone particle size increases, the contribution to lowering the elastic modulus is small, and the strength may be significantly lowered.

m/ (1+m+n)が0.001より小さいとマトリ
ックス樹脂(または、フェノール樹脂を用いる場合には
、マトリックス樹脂のフェノール樹脂)との反応率が低
く、強度低下が大きく、シリコーンのにじみ出しが起こ
ることがある。逆に0. 5よりも大きいと、フェノー
ル樹脂を用いる場合、同フェノール樹脂で予め変性を行
う場合ゲル化しやすくなり好ましくない。
If m/(1+m+n) is less than 0.001, the reaction rate with the matrix resin (or the phenol resin of the matrix resin when using a phenol resin) will be low, the strength will be greatly reduced, and silicone will ooze out. There is. On the other hand, 0. When it is larger than 5, gelation tends to occur when a phenol resin is used and the phenol resin is modified in advance, which is not preferable.

n / ( 1 + m + n )一が0.001よ
り小さいか、または、0.8よ゛りも大きいと、同様に
低弾性率化の寄与が小さく好ましくない。
If n/(1+m+n)- is smaller than 0.001 or larger than 0.8, the contribution to lowering the elastic modulus is similarly small and undesirable.

この発明に用いる自硬化性シリコーンゴムあるいはゲル
については互いに反応可能な官能基をそれぞれ持つ2種
類のシロキサン化合物の混合物や単一構造を持つもの、
たとえば、シラノール基やアルコキシ基含有シロキサ゛
ンの自己縮合タイプ、または、ビニル基含有シロキサン
の付加重合タイプなどがある。具体的には、たとえば、
両末端ビニル基を持つポリジメチルシロキサンとSt−
H基含有ポリジメチルシロキサンを白金触媒等で硬化さ
せるタイプがあり、この発明においては、SiH基が付
加反応できるビニル基等を含有しているのが良く、Si
H付加反応タイプのシリコーンゴムおよび/またはゲル
が最も通している.なお、硬化後に、ゲル状(非常に軟
らかい)ものをゲル、弾性があり、ゴム状のものをゴム
と称している。構造的には架橋密度の差(ゲルは架橋密
度が相対的に低い)に起因すると考えられる。これらシ
リコーンゴムあるいはゲルは通常、硬化前は液状であり
、二液以上の多成分系または一液タイプである.さらに
必要に応じて、硬化速度調節のために、促進剤あるいは
遅延剤を入れたり、硬度調節のために充填材を入れたり
してもよい.この発明のエポキシ樹脂組戒物は、少なく
ともエポキシ樹脂、その硬化剤、上記低応力化のための
改質剤(自)およびω)を含む. この発明で用いるエポキシ樹脂としては、1分子中に2
個以上のエポキシ基を有する化合物であれば制限はなく
、たとえば、オルソクレゾールノボランク型エポキシ樹
脂、ビスフェノールA型エポキシ樹脂、脂環式エポキシ
樹脂、さらには難燃化のためにこれらをハロゲン化した
もの等が挙げられ、特に限定はされない。これらは単独
で、あるいは複数種を併せて使用される。
The self-curing silicone rubber or gel used in this invention is a mixture of two types of siloxane compounds each having functional groups that can react with each other, or one having a single structure;
Examples include a self-condensation type of siloxane containing a silanol group or an alkoxy group, and an addition polymerization type of a siloxane containing a vinyl group. Specifically, for example,
Polydimethylsiloxane with vinyl groups at both ends and St-
There is a type in which H group-containing polydimethylsiloxane is cured with a platinum catalyst, etc. In this invention, it is preferable that the SiH group contains a vinyl group etc. that can undergo an addition reaction.
H-addition reaction type silicone rubber and/or gel is the most permeable. Note that after curing, a gel-like (very soft) material is called a gel, and an elastic, rubber-like material is called a rubber. Structurally, this is thought to be due to the difference in crosslink density (gel has a relatively low crosslink density). These silicone rubbers or gels are usually liquid before curing, and are multi-component systems with two or more components, or one-component types. Furthermore, if necessary, an accelerator or retardant may be added to adjust the curing rate, or a filler may be added to adjust the hardness. The epoxy resin composition of the present invention contains at least an epoxy resin, a curing agent thereof, the above-mentioned modifier (self) for reducing stress, and ω). The epoxy resin used in this invention has two
There is no restriction as long as the compound has at least 2 epoxy groups, such as orthocresol novolanc epoxy resin, bisphenol A epoxy resin, alicyclic epoxy resin, and halogenated epoxy resins for flame retardation. Examples include, but are not particularly limited to. These may be used alone or in combination.

この発明に用いるエポキシ樹脂の硬化剤としては、たと
えば、フェノール系硬化剤、アミン系硬化剤、酸無水物
系硬化剤などが挙げられ、単独で用いても、2種以上を
併用しても良い。硬化物をより高Tg(高ガラス転移温
度)、高信頼性にし、成形材料を調製しやすくするとい
う点からは、硬化剤としてはフェノールノボラック樹脂
等のフェノール樹脂を用いることが好ましいが、これに
限定されることはない。さらに必要に応してイ尖ダゾー
ル類、ホスフィン類などの硬化促進剤を1種以上添加し
ても良い。
Examples of the curing agent for the epoxy resin used in this invention include phenolic curing agents, amine curing agents, and acid anhydride curing agents, which may be used alone or in combination of two or more. . From the viewpoint of making the cured product have a higher Tg (higher glass transition temperature) and higher reliability, and making it easier to prepare the molding material, it is preferable to use a phenolic resin such as a phenol novolak resin as the curing agent. It is not limited. Furthermore, one or more types of curing accelerators such as icadazoles and phosphines may be added if necessary.

この発明のエポキシ樹脂組成物には、その他必要に応じ
て、たとえば、充填材(シリカ粉末など)、カップリン
グ剤、離型剤(カルナバワックス、モンクン酸カルシウ
ム塩など)、難燃剤(二酸化ニアンチモンなど〉、顔料
(カーボンブランクなど)などを1種以上加えることが
できる。
The epoxy resin composition of the present invention may contain other materials as necessary, such as fillers (silica powder, etc.), coupling agents, mold release agents (carnauba wax, calcium monocinate, etc.), and flame retardants (niacin antimony dioxide, etc.). etc.>, one or more types of pigments (carbon blank, etc.) can be added.

この発明のエポキシ樹脂組戒物の配合は、特に限定され
ないが、たとえば、エポキシ樹脂100重量部に対して
、上式で表されるシリコーン重合体を0.Ol〜15重
量部、自硬化性シリコーンゴムおよび/またはゲルを0
.01〜15重fl部、硬化剤を20〜80重量部、充
填材を50〜95重量部とするのが好ましい。上式で表
されるシリコーン重合体が0.01重量部を下回ると低
応力化の効果が少ないおそれがあり、l5重量部を上回
ると物性(強度)の低下が著しいおそれがある。自硬性
シリコーンゴムおよび/またはゲルが0.Ol重量部を
下回ると低応力化の硬化が少ないおそれがあり、15m
jt部を上回ると強度の低下が著しいおそれがある.硬
化剤が20ffiEt部を下回ると硬化不足や強度低下
のおそれがあり、80重量部を上回ると硬化不足や強度
低下のおそれがある。
The composition of the epoxy resin composition of the present invention is not particularly limited, but for example, 0.00 parts of the silicone polymer represented by the above formula is added to 100 parts by weight of the epoxy resin. Ol ~ 15 parts by weight, 0 self-curing silicone rubber and/or gel
.. Preferably, the amount of the curing agent is 20 to 80 parts by weight, and the filler is 50 to 95 parts by weight. If the amount of the silicone polymer represented by the above formula is less than 0.01 parts by weight, the effect of reducing stress may be small, and if it exceeds 15 parts by weight, the physical properties (strength) may be significantly reduced. Self-hardening silicone rubber and/or gel is 0. If it is less than 15 m
If it exceeds the jt part, there is a risk of a significant decrease in strength. If the amount of the curing agent is less than 20 parts by weight, there is a risk of insufficient curing and a decrease in strength, and if it exceeds 80 parts by weight, there is a risk of insufficient curing and a decrease in strength.

充填材が50重量部を下回ると強度の低下のおそれがあ
り、95重量部を上回ると成形性の低下のおそれがある
If the filler content is less than 50 parts by weight, there is a risk of a decrease in strength, and if it exceeds 95 parts by weight, there is a risk of a decrease in moldability.

次に、マトリソクス樹脂に上述のシリコーン化合物を分
散させる方法であるが、たとえば、次のような方法があ
る。フェノール樹脂をその溶融温度以上にし、攪拌しな
がら上記シリコーン重合体と上記シリコーンゴムおよび
/またはゲルの原料を入れるという方法で良いが、好ま
しくは熔融したフェノール樹脂をディスパー等で高速B
2拌し、上記シリコーン重合体と上記シリコーンゴムお
よび/またはゲルの原料を混合したものを徐々に添加し
、添加終了゛後数分から数時間の間、攪拌を行えば良い
。さらに、これを戒形材料化するには、上記のシリコー
ン変性したフェノール樹脂を冷却、粉砕し、得られた粉
砕物とエポキシ樹脂、充填材、その他の、成形材料用の
原材料と配合して熱ロール等で混練し、冷却、粉砕する
Next, there is a method of dispersing the above-mentioned silicone compound in the matrix resin, for example, the following method is available. A method of heating the phenol resin to a temperature higher than its melting temperature and adding the above-mentioned silicone polymer and the above-mentioned silicone rubber and/or gel raw materials with stirring may be used, but preferably the melted phenol resin is heated to a high speed B using a disper or the like.
2. Then, a mixture of the silicone polymer and the silicone rubber and/or gel raw materials is gradually added, and stirring is continued for several minutes to several hours after the addition is complete. Furthermore, in order to turn this into a molding material, the silicone-modified phenolic resin is cooled and pulverized, and the resulting pulverized material is blended with epoxy resin, fillers, and other raw materials for molding materials, and heated. Knead with rolls, cool, and crush.

上記のシリコーン化合物をフェノール樹脂で変性する場
合、シリコーン重合体とシリコーンゴムおよび/または
ゲルの原料を混合したものをフェノール樹脂に添加し、
さらに、エポキシ樹脂の硬化促進剤を添加して数分から
数時間攪拌するのがさらに良い結果を与える。硬化促進
剤を添加することによりシリコーン重合体に含まれるエ
ポキシ基とフェノール樹脂がより反応して最終的に強度
低下が少なく、シリコーンのにじみ出しがなく、低応力
化ができるというメリットがある。この場合、用いる硬
化促進剤の種類としては、一般のエポキシ樹脂に用いら
れる促進剤であれば特に限定しないが、たとえば、トリ
フェニルホスフィン類、イミダゾール類、三級ア主ン類
などがある。中でも、トリフェニルホスフィンが耐湿性
に優れているために好ましい。
When modifying the above silicone compound with a phenolic resin, a mixture of silicone polymer and raw materials for silicone rubber and/or gel is added to the phenol resin,
Furthermore, better results can be obtained by adding an epoxy resin curing accelerator and stirring for several minutes to several hours. By adding a curing accelerator, the epoxy groups contained in the silicone polymer and the phenol resin react more, resulting in less strength loss, no oozing of silicone, and lower stress. In this case, the type of curing accelerator used is not particularly limited as long as it is an accelerator used in general epoxy resins, and examples thereof include triphenylphosphines, imidazoles, and tertiary atoms. Among them, triphenylphosphine is preferred because it has excellent moisture resistance.

硬化促進剤の添加量については特に限定しないが、フェ
ノール樹脂100重量部に対して、0.Ol〜5.0重
量部が好ましく、さらに好ましくはO.l〜1.0重量
部である。0.01重量部未満であると添加の効果が小
さく、フェノール樹脂との反応率が低くなることがある
。また、5.0重量部を越えると耐湿信頼性が低下する
ことがある。
The amount of the curing accelerator added is not particularly limited, but it is 0.00 parts by weight per 100 parts by weight of the phenol resin. O.I. to 5.0 parts by weight is preferred, more preferably O.I. 1 to 1.0 parts by weight. If the amount is less than 0.01 part by weight, the effect of addition may be small and the reaction rate with the phenol resin may be low. Moreover, if the amount exceeds 5.0 parts by weight, moisture resistance reliability may decrease.

この発明では、上記シリコーン重合体と、上記シリコー
ンゴムおよび/またはゲルの比率については特に限定は
しない。
In this invention, there is no particular limitation on the ratio of the silicone polymer to the silicone rubber and/or gel.

なお、この発明のエポキシ樹脂組成物には、この発明の
目的達成を妨げないならば、硬化物の低応力化のための
上記化合物(〜およびの)に合わせて、低応力化のため
の他の改質剤を併用することも可能である。
The epoxy resin composition of the present invention may contain other compounds for reducing stress in addition to the above-mentioned compounds (- and ) for reducing stress in the cured product, as long as they do not impede achievement of the object of the present invention. It is also possible to use a modifier in combination.

〔作   用〕[For production]

一般にエポキシ樹脂の低応力化の手法として、プタジェ
ンゴム、シリコーンオイル、シリコーンゴム等を主クロ
゛に分散させて海島構造(たとえば、低応力化のための
改質剤の微細な粒子がマトリックス樹脂中に散在してい
る構造)とすることが知られている。ここで一般のシリ
コーン化合物はエポキシ樹脂との相溶性、分散性が悪く
、海島構造における分散微粒子の粒径はせいぜい数ミク
ロンまでしか細かくならず、低応力化効果も小さい.し
かし、この発明で用いる上式のシリコーン重合体は、ポ
リオキシアルキレン基を含んでいるため、エポキシ樹脂
との相熔性、分散性が良くなり1ミクロン以下の粒径を
持つ分散微粒子とすることができ、低応力化効果も大き
くなる。さらに、この効果は、他のシリコーン化合物と
併用した時にも発揮されることを、この発明者らは見出
し、この発明でも自硬化性シリコーンゴム台よび/また
はゲルを前記シリコーン重合体と併用してl尖クロン以
下の粒径を持つ分散微粒子を実現できた。ただし、この
ポリオキシアルキレン基含有基を持ったシリコーン重合
体は、一般に他のシリコーン化合物に比べて吸湿率が高
く、半導体封止用エポキシ樹脂組底物には好ましくない
。以上の理由により、この発明では、ポリオキシアルキ
レン基含有基を持ったシリコーン重合体を用いることに
より低応力化を実現しつつ、自硬化性シリコーンゴムお
よび/またはゲルを併用することによって吸湿率を低く
抑えることができる。
In general, as a method for reducing stress in epoxy resins, ptadiene rubber, silicone oil, silicone rubber, etc. are dispersed in the main resin to create a sea-island structure (for example, fine particles of a modifier to reduce stress are added to the matrix resin). It is known to have a scattered structure). Here, general silicone compounds have poor compatibility and dispersibility with epoxy resins, and the particle size of the dispersed fine particles in the sea-island structure is only a few microns at most, and the stress reduction effect is small. However, since the silicone polymer of the above formula used in this invention contains a polyoxyalkylene group, it has good compatibility and dispersibility with the epoxy resin, and can be made into dispersed fine particles with a particle size of 1 micron or less. This increases the stress reduction effect. Furthermore, the present inventors have discovered that this effect is also exhibited when used in combination with other silicone compounds, and the present invention also uses a self-curing silicone rubber base and/or gel in combination with the silicone polymer. We were able to realize dispersed fine particles with a particle size of less than one cusp. However, this silicone polymer having a polyoxyalkylene group-containing group generally has a higher moisture absorption rate than other silicone compounds, and is therefore not preferred for use in epoxy resin composites for semiconductor encapsulation. For the above reasons, this invention uses a silicone polymer containing a polyoxyalkylene group to reduce stress, while simultaneously using self-curing silicone rubber and/or gel to reduce moisture absorption. can be kept low.

この発明では、自硬化性のシリコーンゴムおよび/また
はゲルと、エポキシ基含有基およびポリオキシアルキレ
ン基含有基を含むシリコーン重合体の微細海島構造がマ
トリソクス樹脂中に形威され、半導体封止材の弾性率を
低下させて低応力化が図られるのである. この発明に用いるシリコーン重合体は、シリコーンゴム
および/またはゲルを微粒子分散させ、低応力化に寄与
する作用を行い、かつ、エポキシ樹脂マトリックス中の
フェノール樹脂と化学的に結合してi械的強度の低下を
防止する作用を示す。この発明に用いるシリコーンゴム
および/またはゲルは、低弾性率化、低吸湿率化に寄与
する作用を示す。
In this invention, a fine sea-island structure of a self-curing silicone rubber and/or gel and a silicone polymer containing an epoxy group-containing group and a polyoxyalkylene group-containing group is formed in a matrix resin, and a semiconductor encapsulant is used. Stress is reduced by lowering the elastic modulus. The silicone polymer used in this invention has the effect of dispersing silicone rubber and/or gel into fine particles, contributing to reducing stress, and chemically bonding with the phenolic resin in the epoxy resin matrix to increase mechanical strength. shows the effect of preventing the decline of The silicone rubber and/or gel used in this invention exhibits an effect that contributes to lowering the modulus of elasticity and lowering the moisture absorption rate.

なお、硬化剤′としてフェノール樹脂を用いると、高T
g (高ガラス転移温度)、高信頼性をより高めること
ができ、また、戒形材料にしやすくなる。
Note that if phenolic resin is used as the curing agent, high T
g (high glass transition temperature), high reliability can be further improved, and it is also easier to use as a shaped material.

硬化剤としてフェノール樹脂を用いる場合、上記シリコ
ーン重合体とを予め反応させておくと、硬化物の機械的
強度の低下をより少なくすることができる。
When using a phenol resin as a curing agent, if it is reacted with the silicone polymer in advance, the decrease in mechanical strength of the cured product can be further reduced.

〔実 施 例〕〔Example〕

以下に、この発明の具体的な実施例および比較例を示す
が、この発明は下記実施例に限定されない。
Specific examples and comparative examples of the present invention are shown below, but the present invention is not limited to the following examples.

−実施例1〜1〇一 各原料の添加量を第2表に示した。-Examples 1 to 101 Table 2 shows the amount of each raw material added.

上式で表されるシリコーン重合体(4)、ならびに、自
硬化性シリコーンゴムおよび/また−はゲル(6)とし
て第1表に示すものを用いた。
The silicone polymer (4) represented by the above formula and the self-curing silicone rubber and/or gel (6) shown in Table 1 were used.

エポキシ樹脂として、住友化学工業株式会社製タレゾー
ルノボラックエポキシ樹脂rEscN195XL−4J
、同社製ブロム化エポキシ樹脂「ESB400TJを用
いた。
As the epoxy resin, Talesol novolak epoxy resin rEscN195XL-4J manufactured by Sumitomo Chemical Co., Ltd.
The company's brominated epoxy resin "ESB400TJ" was used.

エポキシ樹脂の硬化剤として、荒川化学株式会社製フェ
ノールノボラック樹脂「タマノール752」を用いた。
As a curing agent for the epoxy resin, a phenol novolac resin "Tamanol 752" manufactured by Arakawa Chemical Co., Ltd. was used.

硬化促進剤として、ナカライテスク株式会社製試薬トリ
フェニルホスフィンを、充填材として、株式会社龍森製
溶融シリカrRD−8CRS8M」を、N燃剤として、
ナカライテスク株式会社製試薬三酸化ニアンチモンを、
顔料として三菱化成工業株式会社製カーポンブラックr
MA− 1 0 0」を用いた。
As a curing accelerator, the reagent triphenylphosphine manufactured by Nacalai Tesque Co., Ltd. was used as a filler, and the fused silica rRD-8CRS8M manufactured by Tatsumori Co., Ltd. was used as an N fuel.
Nacalai Tesque Co., Ltd. reagent Niantimony trioxide,
Carpon Black R manufactured by Mitsubishi Chemical Industries, Ltd. as a pigment
MA-100'' was used.

(i)フェノール樹脂の変性手順 第2表に示す量のフェノールノボラック樹脂をステンレ
スビーカーに取り、120℃に加熱して溶融した。第1
表に示すシリコーン化合物(エポキシ基およびポリオキ
シアルキレン基を有するシリコーン重合体(4)と、シ
リコーンゴムおよび/またはゲルOa)〉を第2表に示
す量だけ添加し、攪1rした。この場合、触媒を使用し
ないものについては120℃で30分間攪拌を行って冷
却、粉砕してシリコーン変′性フェノール樹脂を取り出
した。
(i) Modification procedure of phenolic resin The amount of phenol novolac resin shown in Table 2 was placed in a stainless steel beaker and heated to 120°C to melt it. 1st
The silicone compounds shown in Table 2 (silicone polymer (4) having an epoxy group and polyoxyalkylene group, silicone rubber and/or gel Oa) were added in the amounts shown in Table 2, and the mixture was stirred for 1 hour. In this case, for those in which no catalyst was used, the mixture was stirred at 120° C. for 30 minutes, cooled, and pulverized to take out the silicone-modified phenol resin.

また、触媒を用いる場合には、トリフェニルホスフィン
を上記シリコーン化合物を添加した30分後に所定量添
加した。添加後120t’で6時間反応を行って冷却、
粉砕してシリコーン変性フェノール樹脂を取り出した。
When a catalyst was used, a predetermined amount of triphenylphosphine was added 30 minutes after the silicone compound was added. After addition, the reaction was carried out at 120 t' for 6 hours and cooled.
The silicone-modified phenol resin was taken out by pulverization.

(ii)威形材料化手順 上記(i)で作製したシリコーン変性フェノール樹脂と
第2表に示す他の原料を所定量配合し、加熱ロールで混
練し、冷却、粉砕してエポキシ樹脂m威物の成形材料を
製造した。
(ii) Steps to make an epoxy resin material: Blend the silicone-modified phenol resin prepared in (i) above with the other raw materials shown in Table 2 in predetermined amounts, knead with heated rolls, cool, and crush to form an epoxy resin material. molding material was produced.

一比較例1〜3− 比較例1については、第2表に示した添加量で配合し、
加熱ロールで混練して製造した。
Comparative Examples 1 to 3 - For Comparative Example 1, the additives were blended in the amounts shown in Table 2,
It was manufactured by kneading with heated rolls.

比較例2および3については、前記フェノール樹脂の変
性手順と同様に行い、実施例と同様にして製造した。
Comparative Examples 2 and 3 were produced in the same manner as in the Example, using the same procedure as the modification procedure for the phenol resin.

上記実施例および比較例の各エポキシ樹脂組底物につい
て、耐ヒートショック性、耐湿信頼性および曲げ強度を
下記のようにして調べ、結果を第2表に示した。
The heat shock resistance, moisture resistance reliability, and bending strength of each of the epoxy resin bottoms of the above examples and comparative examples were examined as follows, and the results are shown in Table 2.

(al  耐ヒートショック性(内部応力の評価)チッ
プサイズ113lxl3nのシリコンウエハーを実装し
たフラントパソケージ(15mxl9snXl,3m、
60ピン〉を上記成形材料を用いて各々20個成形した
。得られた或形品に対して、ヒートサイクル試験機を用
いてマイナス(−)65℃〜プラス150℃(各5分間
〉の液相ヒートサイクル試験を行い、外部クラック発生
までのサイクル数を不良発生回数とし、不良個数が50
%になった時の不良発生回数を比較した。
(al Heat shock resistance (internal stress evaluation) Flank path cage mounted with silicon wafer of chip size 113lxl3n (15mxl9snXl, 3m,
60 pins> were molded using the above molding material. The obtained shaped product was subjected to a liquid phase heat cycle test using a heat cycle tester from minus (-) 65℃ to plus 150℃ (5 minutes each) to determine the number of cycles until external cracks appeared. The number of occurrences is 50, and the number of defective items is 50.
%, the number of defects occurring was compared.

(b)  耐湿信頼性評価 USPCBT試験(半田浸漬後の耐湿信頼性試験) 線幅5μi、線間5 amのA1配線の3.21m X
 2. 31mlのシリコンウエハーと上記戒形材料と
を用いて12.6闘X 5. 7 mi X l. 5
 @11の18ビンsopを20個ずつ戒形した。次に
85℃で85%R Hの恒温恒湿槽で72時間吸湿処理
を行った後、260℃の半田浴に10秒間浸漬した。次
に138℃、85%RHの雰囲気”i?20V(7)U
SPCBT試験を行い、Al配線の断線までの時間を不
良発生時間とし、不良個数が50%になった時の不良発
生時間を比較した。
(b) Moisture resistance reliability evaluation USPCBT test (moisture resistance reliability test after solder immersion) 3.21 m of A1 wiring with a line width of 5 μi and a line spacing of 5 am
2. Using a 31 ml silicon wafer and the above-mentioned material, make 12.6 x 5. 7 mi X l. 5
@11's 18-bin sop was given 20 pieces each. Next, a moisture absorption process was carried out for 72 hours in a constant temperature and humidity bath at 85° C. and 85% RH, and then immersed in a solder bath at 260° C. for 10 seconds. Next, an atmosphere of 138℃ and 85% RH “i?20V(7)U
A SPCBT test was conducted, and the failure occurrence time was defined as the time until disconnection of the Al wiring, and the failure occurrence time when the number of failures reached 50% was compared.

(C)  曲げ強度 上記成形材料を用いて、l Qmx 4u+X 1 0
 0一のサンプルをトランスファー成形し、曲げ試験機
を用いて曲げ強度を測定した。
(C) Bending strength Using the above molding material, l Qmx 4u+X 1 0
A sample of No. 01 was transfer molded, and its bending strength was measured using a bending tester.

支点間距離は6 4關とした。The distance between fulcrums is 6 4 questions.

第2表にみるように、実施例のものは比較例に比べて耐
ヒートショソク性およびUSPCBT試験結果が良好で
あり、曲げ強度が同等以上であった。
As shown in Table 2, the heat shock resistance and USPCBT test results of the examples were better than those of the comparative examples, and the bending strength was the same or higher.

〔発明の効果〕〔Effect of the invention〕

この発明にかかるエポキシ樹脂組成物は、以上のように
、エポキシ基含有基およびポリオキシアルキレン基含有
基を持つシリコーン重合体と、自硬化性シリコーンゴム
および/またはゲルとを低応力化のための改質剤として
含むので、硬化物の内部応力が大幅に低下し、かつ、半
田浸漬後の耐湿信頼性が良好で、機械強度の低下の少な
いものである。
As described above, the epoxy resin composition according to the present invention combines a silicone polymer having an epoxy group-containing group and a polyoxyalkylene group-containing group, and a self-curing silicone rubber and/or gel to reduce stress. Since it is included as a modifier, the internal stress of the cured product is significantly reduced, and the moisture resistance after solder immersion is good, with little decrease in mechanical strength.

この発明ではミエポキシ樹脂の硬化剤としてフェノール
樹脂を用いるようにすると、硬化物がより高Tg,高信
頼性になり、戒形材料にしやすくなる。
In this invention, when a phenol resin is used as a curing agent for the myepoxy resin, the cured product has a higher Tg and higher reliability, and can be easily made into a molding material.

フェノール樹脂を用いる場合、上記シリコーン重合体と
フェノール樹脂とを反応させておくと、硬化物の機械的
強度の低下をより少なくすることができる。
When using a phenol resin, if the silicone polymer and the phenol resin are reacted, the decrease in mechanical strength of the cured product can be further reduced.

Claims (1)

【特許請求の範囲】 1 硬化物の低応力化を図る改質剤として、下記の成分
(A)および(B)が含まれているエポキシ樹脂組成物
。 (A)下式で表されるシリコーン重合体。 ▲数式、化学式、表等があります▼ 〔上式において、Rは1価の炭化水素基を 示し、Xはエポキシ基含有の基を示し、 Yはポリオキシアルキレン基含有基を示 す。l、m、nの各値は1以上の整数で ある、このシリコーン重合体は、ブロッ ク共重合体であっても、ランダム共重合 体であってもよい。 (B)自硬化性シリコーンゴムおよび/またはゲル。 2 エポキシ樹脂の硬化剤としてフェノール樹脂が用い
られている請求項1記載のエポキシ樹脂組成物。 3 シリコーン重合体が予めフェノール樹脂と反応され
ている請求項2記載のエポキシ樹脂組成物。
[Scope of Claims] 1. An epoxy resin composition containing the following components (A) and (B) as a modifier for reducing stress in a cured product. (A) A silicone polymer represented by the following formula. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [In the above formula, R represents a monovalent hydrocarbon group, X represents an epoxy group-containing group, and Y represents a polyoxyalkylene group-containing group. Each value of l, m, and n is an integer of 1 or more. This silicone polymer may be a block copolymer or a random copolymer. (B) Self-curing silicone rubber and/or gel. 2. The epoxy resin composition according to claim 1, wherein a phenol resin is used as a curing agent for the epoxy resin. 3. The epoxy resin composition according to claim 2, wherein the silicone polymer has been reacted with a phenolic resin in advance.
JP1308787A 1989-11-27 1989-11-27 Epoxy resin composition Expired - Fee Related JP2690795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308787A JP2690795B2 (en) 1989-11-27 1989-11-27 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308787A JP2690795B2 (en) 1989-11-27 1989-11-27 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH03167250A true JPH03167250A (en) 1991-07-19
JP2690795B2 JP2690795B2 (en) 1997-12-17

Family

ID=17985302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308787A Expired - Fee Related JP2690795B2 (en) 1989-11-27 1989-11-27 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP2690795B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007887A (en) * 1998-06-25 2000-01-11 Matsushita Electric Works Ltd Epoxy resin composition for sealing inner layer of multiply molded semiconductor device and semiconductor device
JP2007142182A (en) * 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd Module with built-in electronic components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2647967A1 (en) * 2008-12-19 2010-06-19 Shawcor Ltd. Epoxy resin compositions and curing agents for thermally insulating ultra-deep sea equipment used for oil and gas production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454168A (en) * 1977-10-07 1979-04-28 Hitachi Ltd Epoxy resin composition
JPH01108254A (en) * 1987-10-19 1989-04-25 Shin Etsu Chem Co Ltd Curable epoxy resin composition
JPH01272624A (en) * 1988-04-25 1989-10-31 Hitachi Chem Co Ltd Epoxy resin molding material for sealing electronic part
JPH02120315A (en) * 1988-10-31 1990-05-08 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH02138332A (en) * 1988-11-18 1990-05-28 Ube Ind Ltd Epoxy resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454168A (en) * 1977-10-07 1979-04-28 Hitachi Ltd Epoxy resin composition
JPH01108254A (en) * 1987-10-19 1989-04-25 Shin Etsu Chem Co Ltd Curable epoxy resin composition
JPH01272624A (en) * 1988-04-25 1989-10-31 Hitachi Chem Co Ltd Epoxy resin molding material for sealing electronic part
JPH02120315A (en) * 1988-10-31 1990-05-08 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH02138332A (en) * 1988-11-18 1990-05-28 Ube Ind Ltd Epoxy resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007887A (en) * 1998-06-25 2000-01-11 Matsushita Electric Works Ltd Epoxy resin composition for sealing inner layer of multiply molded semiconductor device and semiconductor device
JP2007142182A (en) * 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd Module with built-in electronic components

Also Published As

Publication number Publication date
JP2690795B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
EP0955675B1 (en) Epoxy resin compositions and semiconductor devices encapsulated therewith
JPH0329259B2 (en)
KR970004948B1 (en) Resin encapsulation type semiconductor device
JP2660012B2 (en) Rubber-modified phenolic resin, epoxy resin composition, and resin-encapsulated semiconductor device
KR100429363B1 (en) Epoxy resin composition for semiconductor device sealing
JPS6326128B2 (en)
JPH03167250A (en) Epoxy resin composition
JP2641277B2 (en) Epoxy resin composition
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2642966B2 (en) Epoxy resin composition
JP3206317B2 (en) Method for producing epoxy resin composition and epoxy resin composition
JP2836274B2 (en) Epoxy resin composition
JPH05206331A (en) Resin composition for sealing semiconductor
JPH08337634A (en) Epoxy resin composition and semiconductor device sealed therewith
JP2616265B2 (en) Thermosetting resin composition
JPH10176099A (en) Epoxy resin composition and resin-sealed type semiconductor device by using the same
JP2658749B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
JP3093051B2 (en) Epoxy resin composition
JPH09176286A (en) Epoxy resin composition and resin-sealed semiconductor device
JPH05105739A (en) Resin composition for sealing semiconductor
JPH02209949A (en) Epoxy resin composition and cured material for sealing of semiconductor
JP2732939B2 (en) Epoxy resin composition and semiconductor device sealed with the same
JPH1135793A (en) Epoxy resin composition and resin-sealed semiconductor device made by using the same
JP3093050B2 (en) Epoxy resin composition
JP3279084B2 (en) Epoxy resin composition for sealing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees