JPS61239673A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61239673A
JPS61239673A JP8102985A JP8102985A JPS61239673A JP S61239673 A JPS61239673 A JP S61239673A JP 8102985 A JP8102985 A JP 8102985A JP 8102985 A JP8102985 A JP 8102985A JP S61239673 A JPS61239673 A JP S61239673A
Authority
JP
Japan
Prior art keywords
film
gate electrode
layer
superposed
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8102985A
Other languages
Japanese (ja)
Inventor
Tadatoshi Nozaki
野崎 忠敏
Kazuo Nakamura
和夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8102985A priority Critical patent/JPS61239673A/en
Publication of JPS61239673A publication Critical patent/JPS61239673A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a compound semiconductor FET by a method wherein an insulating wall is formed onto the side surface of a gate electrode, a high conductive layer having the same conduction type as an operating layer is shaped onto the surface of a compound semiconductor, a IV group element thin-film is superposed thereon, the same conduction type impurity is implanted and an ohmic contact material is applied. CONSTITUTION:Si ions are implanted to a semi-insulating GaAs substrate 1 under conditions of 60KeV and 2X10<12>cm<-3> to form an operating layer 2, a TiW gate electrode 3 is coated with SiO2, and insulating walls 4 are shaped through anisotropic etching by employing CF4. GaAs 5 is superposed and Si is added in 1X10<18>cm<-3>, a Ge thin-film 6 is superposed and Si ions are implanted to the whole surface under the conditions of 300KeV and approximately 1X10<15>cm<-3>, and the whole is coated with an SiO2 film and annealed at 800 deg.C in H2. The SiO2 film is removed and Ni 7 is superposed thereon, and a resist 8 is applied. The top surface of the gate electrode 3 is exposed through ion milling from a flat surface, and a resist on a wafer is removed and an electrode 9 is shaped through alloying treatment in H2. An inter-layer insulating film 10 is formed, and an electrode wiring 11 consisting of Ti-Pt-Au is attached, thus completing a semiconductor device. According to the constitution, a compound semiconductor FET, a short channel effect thereof is inhibited and parasitic resistance thereof is also reduced, is acquired.

Description

【発明の詳細な説明】 (発明の属する技術分野の説明) 本発明は化合物半導体電界効果トランジスタの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Description of the technical field to which the invention pertains) The present invention relates to a method for manufacturing a compound semiconductor field effect transistor.

(従来技術の説明) 化合物半導体、とりわけ砒化ガリウム(GaAs )は
ポストシリコン材料として期待きれ、高速動作が可能な
電界効果トランジスタ(FET)及び集積回路の製造が
可能である事から、現在各所で研究試作がなきれている
。FET特性の高性能化の要請から、現状ではゲート領
域に近接して高電導度ソース・ドレインM(以下n+層
からなるので、n+層とも称される)を形成する製造方
法がしられている(19B3年アイ・イー・イー・イー
・ソリッドステート・サーキット・コンファレンス、ダ
イジェスト・才ブ・テクニカル・ペーパーズ44頁(1
983IEEE International 5ol
idState C1rkits Conferenc
e、Digest of TechnicalPape
rs P、 44 )。第2図はそれ等FETの模式断
面図であり、高電導度ソース・ドレイン届け、ゲート電
極をマスクにして、動作層と同−電導型を示す不純物を
イオン注入法を用いて高濃度に注入する周知の方法で製
造しである。第2図において、1は半絶縁性基板、22
は動作層、3はゲート電極、24は高電導度ソース・ド
レイン層、25はソースドレインオーミック電極、26
は層間絶縁膜、11はソース・ドレイン電極配線である
。このような高電導度ソース・ドレイン層を有するFE
Tでは寄生抵抗の低減化が可能であり、相互コンダクタ
ンスの増大をもたらすから、FET特性及び集積回路の
性能向上につながる。
(Description of Prior Art) Compound semiconductors, particularly gallium arsenide (GaAs), are currently being researched in various places because they hold great promise as post-silicon materials and can be used to manufacture field-effect transistors (FETs) and integrated circuits capable of high-speed operation. We are running out of prototypes. Due to the demand for high performance FET characteristics, currently a manufacturing method is known in which a highly conductive source/drain M (hereinafter also referred to as an n+ layer because it consists of an n+ layer) is formed close to the gate region. (19B3 IEE Solid State Circuit Conference, Digest Technical Papers, page 44 (1)
983IEEE International 5ol
idState C1rkits Conference
e, Digest of Technical Paper
rsP, 44). Figure 2 is a schematic cross-sectional view of these FETs. The high conductivity source/drain is delivered, and impurities having the same conductivity type as the active layer are implanted at a high concentration using the ion implantation method, using the gate electrode as a mask. It is manufactured by a well-known method. In FIG. 2, 1 is a semi-insulating substrate, 22
3 is an active layer, 3 is a gate electrode, 24 is a high conductivity source/drain layer, 25 is a source/drain ohmic electrode, 26
1 is an interlayer insulating film, and 11 is a source/drain electrode wiring. FE with such high conductivity source/drain layers
With T, it is possible to reduce parasitic resistance and increase mutual conductance, leading to improved FET characteristics and integrated circuit performance.

第2図に示したように、高電導度ソース・ドレイン層、
即ちn+層をイオン注入法で形成する場合に、このn″
1Mの深さに関しては深きが大である程n+層の抵抗が
小きくなり好ましいが、一方n+層の流感が犬になるに
従い、いわゆる短チヤネル効果が顕著となり、ゲート長
の縮少化に伴い1   ′°°゛″ta’o*ir″″
““1°、 L、i’l([’[圧の制御が困難となる
大きな問題が生ずる。短チヤネル化はFET特性向上の
ため不可決であるが、短チャネルになる程、寄生抵抗の
低減化が必要となり、n+層をイオン注入法により形成
する方法では、寄生抵抗の低減化と短チヤネル効果の低
減化を両方成立させることは現状では非常に難かしい。
As shown in Figure 2, high conductivity source/drain layers,
That is, when forming an n+ layer by ion implantation, this n''
Regarding the depth of 1M, the greater the depth, the smaller the resistance of the n+ layer is, which is preferable.However, as the fluency of the n+ layer increases, the so-called short channel effect becomes more prominent, and as the gate length decreases, 1 ′°°゛"ta'o*ir""
""1°, L, i'l (['[A big problem arises in that it is difficult to control the pressure. Shortening the channel is unavoidable in order to improve FET characteristics, but the shorter the channel, the lower the parasitic resistance. At present, it is very difficult to reduce both the parasitic resistance and the short channel effect using the method of forming the n+ layer by ion implantation.

以上の問題点に関する一つの解決策として、n+層をソ
ース・ドレイン領域となる基板面上に結晶層として設け
る方法が検討妨れている。
As one solution to the above problems, a method of providing an n+ layer as a crystal layer on the substrate surface that will become the source/drain region has not been considered.

第3図がそのようなトランジスタの模式断面図を示した
もので、1が半絶縁性基板、2が動作層、3がゲート電
極、34がn+結晶層、26が眉間絶縁膜、25がソー
スドレインオーミック電極、11がソース・ドレイン電
極配線である。
Figure 3 shows a schematic cross-sectional view of such a transistor, in which 1 is a semi-insulating substrate, 2 is an active layer, 3 is a gate electrode, 34 is an n+ crystal layer, 26 is an insulating film between the eyebrows, and 25 is a source. A drain ohmic electrode 11 is a source/drain electrode wiring.

とのn+結晶層34の形成方法に関しては、いくつかの
結晶成長法が周知であるが、n1結晶層34の特性は成
長が開始する結晶表面の処理状態に大きく影響きれ、現
状では満足のゆく結果が得られていない。即ちこのn+
結晶N34の形成はFET製造途中において実施きれる
が、その場合結晶成長開始面がFET製造上不可決な各
種処理が施されている事が原因となり、現実には、n1
結晶層が未処理の結晶面上に形成された場合と同一の特
性を示きず、n4″結晶層を形成して製造きれたトラン
ジスタにおいて満足のゆく寄生抵抗の低減化がなきれて
いない。従ってn+結晶層を設ける方法においては、形
成すべき半導体表面の処理状態に依存しない、良質のn
+結晶層を形成し得る製造方法の確立が必要である。こ
のn+結晶層上にはオーミックメタルの被着及びアロイ
によるオーミック電極の形成がFETの製造上必要であ
るが、その場合、このオーミンク電極は出来る限りゲー
ト電極に近接させて形成し、かつオーミック接触抵抗の
低減化を達成し得る事が寄生抵抗の低減化従ってFET
の高性能化にとり不可決である。以上述べた良質のn+
結晶層を設け、さらに該結晶層上に低接触抵抗を有する
オーミック電極をゲート電極に近接して設ける事が、高
性能FETの製造にとり不可決であるが、これ等全てを
満足し得る製造方法は現状では開発されておらず、模索
されている。
Regarding the method of forming the n+ crystal layer 34, several crystal growth methods are well known, but the characteristics of the n1 crystal layer 34 are greatly influenced by the treatment conditions of the crystal surface where growth begins, and at present, none of the methods are satisfactory. No results have been obtained. That is, this n+
Although the formation of crystal N34 can be completed during FET manufacturing, in this case, the crystal growth starting surface is subjected to various treatments that are unacceptable for FET manufacturing, and in reality, n1
The crystal layer does not exhibit the same characteristics as when formed on an untreated crystal surface, and transistors manufactured by forming an N4'' crystal layer have not been able to achieve a satisfactory reduction in parasitic resistance. In the method of forming an n+ crystal layer, a high-quality n
+ It is necessary to establish a manufacturing method that can form a crystal layer. On this n+ crystal layer, it is necessary to deposit an ohmic metal and form an ohmic electrode using an alloy in order to manufacture the FET. It is possible to achieve a reduction in resistance by reducing parasitic resistance and therefore reducing the resistance of FETs.
This is essential for improving performance. The high quality n+ mentioned above
Providing a crystal layer and further providing an ohmic electrode with low contact resistance on the crystal layer in close proximity to the gate electrode is essential for manufacturing high-performance FETs, but this is a manufacturing method that can satisfy all of these requirements. has not been developed at present and is being explored.

そこで、本発明の目的は、以上の点を考慮し、短チヤネ
ル効果が抑制され、しかも寄生抵抗の低減化が可能な化
合物半導体電界効果トランジスタを含む半導体装置の製
造方法の提供にある。
SUMMARY OF THE INVENTION In consideration of the above points, an object of the present invention is to provide a method for manufacturing a semiconductor device including a compound semiconductor field effect transistor in which short channel effects are suppressed and parasitic resistance can be reduced.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する化合物
半導体電界効果トランジスタを含む半導体装置の製造方
法は、ゲート電極側面に絶縁物の側壁を形成する工程と
、前記側壁で前記ゲート電極から分離されたソース・ド
レイン部になるべき領域の化合物半導体表面に動作層と
同−電導型を有する高電導度結晶層を形成する工程と、
前記高電導度結晶層上に■族元素薄膜を形成する工程と
、前記動作層と同−電導型を有する不純物又は化合物半
導体構成元素若しくは不活性元素を前記高電導度結晶層
及び前記動作層の界面を通過する深さまで前記■族元素
薄膜表面から注入し熱処理する工程と、前記■族元素薄
膜上にオーミック接触構成材料を被着しアロイ化する工
程とを順次に行うことを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the method of manufacturing a semiconductor device including a compound semiconductor field effect transistor provided by the present invention includes a step of forming an insulating sidewall on a side surface of a gate electrode. and a step of forming a high conductivity crystal layer having the same conductivity type as the active layer on the surface of the compound semiconductor in a region to become a source/drain portion separated from the gate electrode by the side wall;
forming a thin film of a group Ⅰ element on the high conductivity crystal layer; and adding an impurity, a compound semiconductor constituent element, or an inert element having the same conductivity type as the active layer to the high conductivity crystal layer and the active layer. The present invention is characterized in that a step of injecting the group (I) element from the surface of the thin film to a depth that passes through the interface and heat treatment, and a step of depositing an ohmic contact constituent material on the thin film of the group (I) and forming an alloy are sequentially performed.

(作用) 本発明は、ゲート電極側面に絶縁物側壁を設は該側壁で
へだてられたソース・ドレイン層となる領域上に、動作
層と同−電導型を有する高電導度結晶層を形成し、さら
に■族元素薄膜を被着し、例えば動作層と同−電導型を
有する不純物を、高電導度結晶層と基板動作層との界面
を通過する様に注入する事により高電導度結晶層と基板
動作層との界面および■族元素薄膜と高電導度結晶層と
の界面において混合効果を生ぜしめ、これにより設計き
れた高電導度結晶の高電気型導度を維持すると同様に低
接触抵抗オーミック接触の形成を可能ならしめる事が骨
子であり、それが可能である事を確認した新規な実験結
果に根ざしたものである。
(Function) The present invention provides an insulating side wall on the side surface of the gate electrode, and forms a high conductivity crystal layer having the same conductivity type as the active layer on the region separated by the side wall that will become the source/drain layer. Furthermore, a high conductivity crystal layer is formed by depositing a thin film of a group Ⅰ element and, for example, implanting an impurity having the same conductivity type as the active layer so as to pass through the interface between the high conductivity crystal layer and the substrate active layer. This produces a mixing effect at the interface between the substrate active layer and the group III element thin film and the high conductivity crystal layer, which maintains the high conductivity of the well-designed high conductivity crystal and also reduces the contact. The key point is to make it possible to form resistive ohmic contacts, and it is based on new experimental results that confirm that this is possible.

(実施例) 以下に実施例を挙げ、本発明を一層詳しく説明する。第
1図(a)〜(c)に本発明の一実施例jパ3°x−r
*aa t″、6 !’c o 4’J’t’4KmW
’AJ!: h 5 >ジスタの半製品の断面図を工程
順に示す。第1図(a)の構造の形成についてまず説明
する。反絶縁性GaAs基板1に、レジストをマスクと
してSiイオンを60KeVのイオンエネルギーで2X
10”Crl+−”注入し動作層領域2を形成する。レ
ジスト除去後、ゲート電極材料としてTiW膜をスパッ
タ法により5000人被着U3パターン化したホトレジ
ストをマスクにIiW膜をドライエツチングで除去し、
ゲート電極3を形成する。次に試料全面にシリコン酸化
膜を1500人の膜厚で形成し、平行平板ドライエツチ
ング装置を用いCF4ガスを用いた異方性エツチング技
術を用い、シリコン酸化膜をエツチングしソース・ドレ
イン領域となるGaAs表面を露出せしめ、かつゲート
電極3の側面にシリコン酸化膜側壁4を残置せしめる。
(Example) The present invention will be explained in more detail with reference to Examples below. FIGS. 1(a) to (c) show an embodiment of the present invention.
*aa t'', 6!'co 4'J't'4KmW
'AJ! : h 5 >Cross-sectional views of semi-finished products of ZISTA are shown in order of process. First, the formation of the structure shown in FIG. 1(a) will be explained. Si ions are applied 2X to an anti-insulating GaAs substrate 1 with an ion energy of 60 KeV using a resist as a mask.
10"Crl+-" is implanted to form active layer region 2. After removing the resist, the IiW film was removed by dry etching using a photoresist with a U3 pattern formed by depositing 5,000 TiW films as a gate electrode material by sputtering as a mask.
Gate electrode 3 is formed. Next, a silicon oxide film is formed on the entire surface of the sample to a thickness of 1,500 mm, and the silicon oxide film is etched to become source/drain regions using a parallel plate dry etching device and an anisotropic etching technique using CF4 gas. The GaAs surface is exposed and the silicon oxide film sidewalls 4 are left on the side surfaces of the gate electrode 3.

次に第11f!J(b)の構造の形成について説明する
。分子線結晶成長法を用い露出したGaAs表面上で単
結晶膜となる様GaAs結晶膜5を全面に2000人の
膜厚で成長させた。その際、該GaAsの電子濃度がI
 X 10 ”cm−”となる様にSiをドープした。
Next is the 11th f! The formation of the structure of J(b) will be explained. A GaAs crystal film 5 was grown to a thickness of 2000 nm over the entire surface of the exposed GaAs surface using a molecular beam crystal growth method to form a single crystal film. At that time, the electron concentration of the GaAs is I
Si was doped so that X 10 "cm-".

引き続き800人の膜厚を有するGe薄膜6を全面に形
成しSiイオンを300KeV、1×IQ”cTrI−
”の条件で全面に注入し、5ift膜2000人を形成
し、■、ガス雰囲気中SOO℃、20分の熱処理を行な
った。Sin、膜除去後、全面にNi膜7を700人の
膜厚で全面に被着し、更に全面にホトレジスト8を塗布
し180℃ベーキングによりレジストを軟化させ、ゲー
ト電極段差を覆うレジスト膜の段差をなだらかなものと
した。
Subsequently, a Ge thin film 6 having a thickness of 800 nm was formed on the entire surface, and Si ions were heated at 300 KeV and 1×IQ”cTrI−.
A 5-ift film of 2000 mm was formed on the entire surface under the conditions of 2. Heat treatment was performed at SOO°C in a gas atmosphere for 20 minutes. Then, photoresist 8 was applied to the entire surface, and the resist was softened by baking at 180° C., so that the step of the resist film covering the gate electrode step was smoothed.

第1図(c)の構造は次の如くに形成する。イオンミリ
ング装置を用い全面エツチングを行ないゲート電極3上
のレジスト8、Ni薄膜7、Ge′f#膜6及びGaA
s膜5を除去し、きらにウェハー上に残ったレジストを
除去し、H,ガス雰囲気中600”C520分のアロイ
処理を行ないソース・ドレイン電極9となした。次に層
間膜としてシリコン酸化膜10を3000人の膜厚で被
着し、パターン化されたレジストをマスクにソース・ド
レイン電極及びゲート電極の取り出し部分の、シリコン
酸化膜を除去し、更にレジストを除去した後全面にTi
−Pt−Au膜を形成しイオンミリング装置を用いパタ
ーニングする事によりソース・ドレイン電極配線1工を
形成して、図示のGaAs F E Tを完成する。
The structure shown in FIG. 1(c) is formed as follows. The entire surface is etched using an ion milling device to remove the resist 8, Ni thin film 7, Ge'f# film 6 and GaA on the gate electrode 3.
The S film 5 was removed, the resist remaining on the wafer was removed, and an alloying process was performed for 600"C520 minutes in an H gas atmosphere to form source/drain electrodes 9. Next, a silicon oxide film was formed as an interlayer film. 10 was deposited to a thickness of 3,000 yen, and the silicon oxide film was removed from the source/drain electrode and gate electrode extraction portions using the patterned resist as a mask.After the resist was further removed, Ti was deposited on the entire surface.
A -Pt-Au film is formed and patterned using an ion milling device to form one source/drain electrode wiring, thereby completing the GaAs FET shown in the figure.

以上述べた本実施例の方法によるFET(A)の他、比
較のため、Ge薄膜形成後のSiイオン注入工程を実施
せずに製造したFET(B)を用意した。ゲート長0.
6,1,2.4mを有するFE′ 120個についてし
きい値電圧、相互コンダクタンス及びソース抵抗を測定
しそれぞれの平均値を求めた。それ等の結果を表1に示
す。FET(A)、(B)ともにゲート長0.6〜1−
におI/蔦て 同等のしきい値電圧が得られており、高電導度結晶層を
設けた事により短チヤネル効果が抑制きれている。そし
てFET(A)においては、Ge薄膜を通してSiイオ
ンを注入した効果によりソース抵抗が低減化され高い相
互コンダクタンス値が得られており、本実施例の効果が
確認された。
In addition to the FET (A) according to the method of this embodiment described above, for comparison, an FET (B) was prepared that was manufactured without performing the Si ion implantation step after forming the Ge thin film. Gate length 0.
The threshold voltage, mutual conductance, and source resistance of 120 FE's having lengths of 6, 1, and 2.4 m were measured, and their average values were determined. The results are shown in Table 1. Gate length for both FETs (A) and (B) is 0.6 to 1-
A threshold voltage equivalent to I/T was obtained, and the short channel effect was suppressed by providing the high conductivity crystal layer. In the FET (A), the source resistance was reduced due to the effect of implanting Si ions through the Ge thin film, and a high mutual conductance value was obtained, confirming the effects of this example.

以上述べた実施例においては、Siイオンを用いた例に
ついて示したが、Si以外にS 、 Sn 、 Te等
のドーパント及びGaもしくはAsそしてNe 、 A
r 、 Kr等の不活性元素に関しても同等の効果が確
認された。
In the embodiments described above, examples using Si ions have been shown, but in addition to Si, dopants such as S, Sn, Te, Ga or As, and Ne, A are also used.
Similar effects were confirmed for inert elements such as r and Kr.

以上はGaAsを用いた場合について述べたが、本発明
が他の化合物半導体を用いた電界効果トランジスタにつ
いても適用出来る事は明らかである。
Although the case using GaAs has been described above, it is clear that the present invention can also be applied to field effect transistors using other compound semiconductors.

(発明の効果) 本発明によれば、以上に説明したように、短チヤネル効
果が抑制され、しかも寄生抵抗の低減1   ”“M″
ll″;&(he*’f’!1KtJ’i’:@:!E
 )−? > ’)x ’l **む半導体装置の製造
方法が提供できる。
(Effects of the Invention) According to the present invention, as explained above, the short channel effect is suppressed, and the parasitic resistance is reduced by 1.
ll'';&(he*'f'!1KtJ'i':@:!E
)−? >') x 'l ** A method for manufacturing a semiconductor device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は本発明の方法により製造する電
界効果トランジスタの半製品を製造工程順に示す模式断
面図であり、第2及び第3図は従来より周知の電界効果
トランジスタの模式断面図である。 代理人弁理士  本 庄 伸 介 第1図 第2図 GaAs1f艷球赫抜 第3図
FIGS. 1(a) to (c) are schematic cross-sectional views showing semi-finished products of field effect transistors manufactured by the method of the present invention in the order of manufacturing steps, and FIGS. It is a schematic cross-sectional view. Representative Patent Attorney Shinsuke Honjo Figure 1 Figure 2 GaAs 1f Socket Figure 3

Claims (1)

【特許請求の範囲】[Claims] ゲート電極側面に絶縁物の側壁を形成する工程と、前記
側壁で前記ゲート電極から分離されたソース・ドレイン
部になるべき領域の化合物半導体表面に動作層と同一電
導型を有する高電導度結晶層を形成する工程と、前記高
電導度結晶層上にIV族元素薄膜を形成する工程と、前記
動作層と同一電導型を有する不純物又は化合物半導体構
成元素若しくは不活性元素を前記高電導度結晶層及び前
記動作層の界面を通過する深さまで前記IV族元素薄膜表
面から注入し熱処理する工程と、前記IV族元素薄膜上に
オーミック接触構成材料を被着しアロイ化する工程とを
順次に行うことを特徴とする化合物半導体電界効果トラ
ンジスタを含む半導体装置の製造方法。
A step of forming an insulating sidewall on the side surface of the gate electrode, and a high conductivity crystal layer having the same conductivity type as the active layer on the surface of the compound semiconductor in a region that is to become a source/drain region separated from the gate electrode by the sidewall. a step of forming a group IV element thin film on the high conductivity crystal layer; and a step of forming a group IV element thin film on the high conductivity crystal layer; and sequentially performing a step of injecting the group IV element from the surface of the group IV element thin film to a depth that passes through the interface of the active layer and heat treating it, and a step of depositing an ohmic contact constituent material on the group IV element thin film and forming an alloy. A method for manufacturing a semiconductor device including a compound semiconductor field effect transistor, characterized by:
JP8102985A 1985-04-16 1985-04-16 Manufacture of semiconductor device Pending JPS61239673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8102985A JPS61239673A (en) 1985-04-16 1985-04-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8102985A JPS61239673A (en) 1985-04-16 1985-04-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61239673A true JPS61239673A (en) 1986-10-24

Family

ID=13735040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8102985A Pending JPS61239673A (en) 1985-04-16 1985-04-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61239673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422070A (en) * 1987-07-17 1989-01-25 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422070A (en) * 1987-07-17 1989-01-25 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JPS63263770A (en) Gaas mesfet and manufacture of the same
JPH0475351A (en) Manufacture of chemical compound semiconductor device
JPH0817184B2 (en) Method for manufacturing compound semiconductor device
JPS61239673A (en) Manufacture of semiconductor device
JPH06349856A (en) Thin-film transistor and its manufacture
JP4104891B2 (en) Manufacturing method of semiconductor device
JPS6160591B2 (en)
JP3035917B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPS6190470A (en) Manufacture of compound semiconductor device
KR20200081283A (en) Contact of semiconductor device and contact formation method of semiconductor device
JP2682032B2 (en) Method for manufacturing semiconductor device
JPS6258154B2 (en)
JP2713122B2 (en) Method for manufacturing semiconductor device
JPS61204982A (en) Field effect transistor
JPS60176278A (en) Manufacture of semiconductor device
JPH04350945A (en) Manufacture of field effect transistor
JPH05304172A (en) Manufacture of compound semiconductor device
JPH06232168A (en) Field effect transistor and its manufacture
JPH01251667A (en) Manufacture of field effect transistor
JPH0637110A (en) Manufacture of thin film transistor
JPH08204189A (en) Manufacture of semiconductor device
JPH0360118A (en) Formation of contact electrode
JPH0298173A (en) Manufacture of semiconductor memory
JPS6356959A (en) Manufacture of field-effect transistor
JPS63248172A (en) Manufacture of semiconductor device