JPH0360118A - Formation of contact electrode - Google Patents

Formation of contact electrode

Info

Publication number
JPH0360118A
JPH0360118A JP19614289A JP19614289A JPH0360118A JP H0360118 A JPH0360118 A JP H0360118A JP 19614289 A JP19614289 A JP 19614289A JP 19614289 A JP19614289 A JP 19614289A JP H0360118 A JPH0360118 A JP H0360118A
Authority
JP
Japan
Prior art keywords
conductive layer
layer
electrode
grown
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19614289A
Other languages
Japanese (ja)
Inventor
Shuji Asai
浅井 周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19614289A priority Critical patent/JPH0360118A/en
Publication of JPH0360118A publication Critical patent/JPH0360118A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the thickness of growth of a second conductive layer uniform and to improve the uniformity of element characteristics by a process for forming a first conductive layer on the surface of a semiconductor substrate, a process for growing the second conductive layer on the surface of the first conductive layer and a process, in which a defect is generated in the second conductive layer by ion- implanting selectively to make a high resistance for isolation. CONSTITUTION:Si<+> ions are implanted into surface of a semi-insulating GaAs semiconductor substrate 1 to provide a channel layer 11, a gate electrode 12 consisting of a heat-resisting gate metal, WSi, is formed, Si<+> ions are implanted using the electrode 12 as a mask to provide a first conductive layer 12 and a heat treatment is performed in an AsH2-containing atmosphere to recover the crystallizability of an ion-implanted layer. Then, an SiO2 film is grown, a vertical dry working is performed to provide sidewalls 14 and a second conductive layer 3 is grown. After that, by providing source and drain electrodes 16 and 17 consisting of an ohmic metal, AuGeNi, on the layer 3, a contact electrode is connected to an intrinsic FET region directly under the electrode 12 and a MESFET is completed. Accordingly, as the layer 3 is grown on almost the whole surface excluding part of the electrode 12, the thickness of the layer 3 becomes very uniform.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置における気相成長を用いた電極の形
成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of forming an electrode using vapor phase growth in a semiconductor device.

〔従来の技術〕[Conventional technology]

半導体装置では真性素子領域から電極を引き出す必要が
ある。ダイオードやバイポーラトランジスタ等の場合も
あるが、ここではGaAsの接合ゲート型電界効果トラ
ンジスタ(以下、MESFETと称す)を例に説明する
In semiconductor devices, it is necessary to lead out electrodes from the intrinsic element region. Although it may be a diode or a bipolar transistor, here, a GaAs junction gate field effect transistor (hereinafter referred to as MESFET) will be explained as an example.

このMESFETの一例として、特開昭62−1237
75号公報に示された製造方法について説明する。第2
図ω〜(イ)はこの製造方法を説明するための図で、主
要工程における素子の断面図である。第2図(a)にお
いて、半絶縁性GaAs基板(以下、半導体基板と記す
)lに選択的にイオン注入することによりチャネル層1
1を設け、この表面に耐熱金属WSiのゲート電極12
を形成し、このゲート電極12をマスクに選択的にイオ
ン注入して熱処理を行い第1導電層2を形成する。次い
で、第2図(ロ)に示すようにSin、の被覆膜13を
成長し、選択的に垂直ドライエツチングして開口を設け
る。この時、ゲート電極12の脇には側壁14が形成さ
れる。この開口部に第2導電層3を選択的に成長する。
As an example of this MESFET, JP-A-62-1237
The manufacturing method disclosed in Publication No. 75 will be explained. Second
Figures ω to (a) are diagrams for explaining this manufacturing method, and are cross-sectional views of the element in main steps. In FIG. 2(a), a channel layer 1 is formed by selectively implanting ions into a semi-insulating GaAs substrate (hereinafter referred to as a semiconductor substrate) l.
1, and a gate electrode 12 made of heat-resistant metal WSi is provided on the surface of the gate electrode 12.
A first conductive layer 2 is formed by selectively implanting ions using the gate electrode 12 as a mask and performing heat treatment. Next, as shown in FIG. 2(b), a coating film 13 of Sin is grown and selectively vertically dry etched to form openings. At this time, side walls 14 are formed beside the gate electrode 12. A second conductive layer 3 is selectively grown in this opening.

その後、第2図(Q)のようにSin、の被覆膜13を
除去する。第2図(イ)において、第2導電層3の上に
オーム性金属AuGeNiのソース電極16とドレイン
電極!7とを設けてMESFETを完成する。
Thereafter, as shown in FIG. 2(Q), the Sin coating film 13 is removed. In FIG. 2(a), a source electrode 16 and a drain electrode made of ohmic metal AuGeNi are placed on the second conductive layer 3! 7 to complete the MESFET.

このMESFETの特徴はゲート電極12に接して低濃
度の第1導電層2があり、この上部に高濃度の第2導電
層3を設けたことにより、チャネル層11の直下を流れ
る基板リーク電流が抑制され、短チヤネル効果が低減さ
れることにある。
The feature of this MESFET is that there is a first conductive layer 2 with a low concentration in contact with the gate electrode 12, and by providing a second conductive layer 3 with a high concentration on top of this, the substrate leakage current flowing directly under the channel layer 11 is reduced. and the short channel effect is reduced.

そして、高濃度の第2導電層3の成長には、例えばトリ
メチルガリウム(TMG)とアルシン(AsH,)とH
lとから原料ガスにドーパントとなるHっSガスを混ぜ
た混合ガスを用いた有機金属法による選択成長が用いら
れる。
For the growth of the highly concentrated second conductive layer 3, for example, trimethyl gallium (TMG), arsine (AsH, ) and H
Selective growth is used by an organometallic method using a mixed gas consisting of a raw material gas and HS gas as a dopant.

[発明が解決しようとする課題] ところで前記製造方法によれば、第2導電層の選択成長
において、開口部の面積や密集度に伴う開口部の割合が
小さいと、成長厚さが厚くなるというパターン依存性が
あり、成長厚さの変動は成長雰囲気を減圧すると少なく
なる傾向はあるが、成長速度が下がるため限界があった
[Problems to be Solved by the Invention] According to the above manufacturing method, in the selective growth of the second conductive layer, if the ratio of openings due to the area and density of the openings is small, the growth thickness becomes thick. There is pattern dependence, and although variations in the growth thickness tend to decrease when the growth atmosphere is reduced in pressure, there is a limit because the growth rate decreases.

また、MESFETにおいて第2導電層が薄い場合、ソ
ース直列抵抗が増大して相互コンダクタンスgmが減少
する。逆に厚い場合は、ドレイン端部での電界集中が強
くなり、ドレイン耐圧が低下し、このため、第2導電層
の成長厚さの変動は小さくする必要があった。
Furthermore, when the second conductive layer is thin in the MESFET, the source series resistance increases and the mutual conductance gm decreases. On the other hand, if the second conductive layer is thick, the electric field concentration at the end of the drain becomes strong and the drain withstand voltage decreases, so it is necessary to reduce the variation in the growth thickness of the second conductive layer.

本発明の目的はこの問題点を解決したコンタクト電極の
形成方法を提供することにある。
An object of the present invention is to provide a method for forming a contact electrode that solves this problem.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明によるコンタクト電極
の形成方法においては、半導体基板の表面に第1の導電
層を形成する工程と、前記第1の導電層の表面に第2の
導電層を成長する工程と、選択的にイオン注入すること
により前記第2の導電層に欠陥を生じさせ、これを高抵
抗化して分離する工程とを有するものである。
In order to achieve the above object, the method for forming a contact electrode according to the present invention includes the steps of forming a first conductive layer on the surface of a semiconductor substrate, and growing a second conductive layer on the surface of the first conductive layer. and a step of selectively implanting ions to cause defects in the second conductive layer to increase the resistance and separate the defects.

〔実施例1 以下に本発明のコンタクト電極の形成方法を、接合ゲー
ト型電界効果トランジスタの場合の実施例を図によって
説明する。
[Example 1] Hereinafter, a method for forming a contact electrode according to the present invention will be described with reference to the drawings as an example in the case of a junction gate field effect transistor.

第1図(a)〜(d)は本発明の一実施例を説明するた
めの図であり、主要製造工程における素子断面図である
FIGS. 1(a) to 1(d) are diagrams for explaining one embodiment of the present invention, and are sectional views of elements in main manufacturing steps.

第1図(a)において、半絶縁性GaAs基板(半導体
基板)1の表面にSi1イオンを加速電圧30KeV、
注入ドース3.6X10”CII′l−”で全面にイオ
ン注入してチャネル層11を設け、耐熱ゲート金属WS
iのゲート電極12(厚さ0.5pm)を形成し、ゲー
ト電極12をマスクとしてSt+イオンを40KeV、
 5.OX 10’ ” am−’でイオン注入して第
1導電層2を設け、AsH,雰囲気中で830℃、15
分間の熱処理をし、イオン注入層の結晶性を回復する。
In FIG. 1(a), Si1 ions are deposited on the surface of a semi-insulating GaAs substrate (semiconductor substrate) 1 at an accelerating voltage of 30 KeV.
A channel layer 11 is formed by ion implantation over the entire surface with an implantation dose of 3.6×10"CII'l-", and a heat-resistant gate metal WS is formed.
A gate electrode 12 (thickness: 0.5 pm) of i is formed, and St+ ions are heated at 40 KeV using the gate electrode 12 as a mask.
5. The first conductive layer 2 was formed by ion implantation at OX 10'am-' and then heated at 830° C. for 15 min in an AsH atmosphere.
A heat treatment is performed for a minute to restore the crystallinity of the ion-implanted layer.

次に第1図(ロ)に示すようにS i O,膜を成長し
、垂直ドライ加工して側壁14(厚さ0.3pm)を設
け、第2導電層3を厚さ20nm成長する。この時の成
長条件は、トリメチルガリウム(TMG) : AsH
,: l(、S= 7 : l : 0.04のガス比
で、toot。
Next, as shown in FIG. 1(b), a SiO film is grown, vertical dry processing is performed to form side walls 14 (thickness: 0.3 pm), and second conductive layer 3 is grown to a thickness of 20 nm. The growth conditions at this time are trimethyl gallium (TMG): AsH.
,: l(, with a gas ratio of S=7:l:0.04, toot.

orrに減圧して620℃の温度で行った。この時、ゲ
ート電極12や側壁14の上には第2導電層3は成長さ
れない。第1図(c)において、素子領域をホトレジス
ト15(厚さ3 lIm)で覆い、B+を1oOKeV
、5 X 10”an−”でイオン注入し、欠陥を生じ
させてこれを高抵抗化し、素子分離を行う。その後、第
1図(イ)に示すように素子として残った第2導電層3
の上にオーム性金属AuGeNiのソース電極16とド
レイン電極17を設けることにより、コンタクト電極が
ゲート電極直下の真性FET領域に接続されMESFE
Tを完成する。
The reaction was carried out at a temperature of 620° C. under reduced pressure to 620° C. At this time, the second conductive layer 3 is not grown on the gate electrode 12 or the sidewalls 14. In FIG. 1(c), the device region is covered with a photoresist 15 (thickness: 3 lIm), and B+ is set at 1oOKeV.
, 5.times.10"an-" ion implantation is performed to generate defects and increase the resistance, thereby performing element isolation. After that, as shown in FIG. 1(a), the second conductive layer 3 remained as an element.
By providing a source electrode 16 and a drain electrode 17 made of ohmic metal AuGeNi on the top, the contact electrode is connected to the intrinsic FET region directly under the gate electrode, and the MESFE
Complete T.

本発明の方法によれば、一部のゲート電極12を除いて
ほぼ全面に成長するため、第2導電層3の厚さは極めて
均一であり、基板内で200±20nm(±10%)の
範囲にあった。しかし、従来の方法で選択的に設けた場
合は、170〜320nmと約2倍も大きく変動した。
According to the method of the present invention, since the second conductive layer 3 is grown over almost the entire surface except for a part of the gate electrode 12, the thickness of the second conductive layer 3 is extremely uniform, and the thickness is 200±20 nm (±10%) within the substrate. It was within range. However, when it was selectively provided using the conventional method, it varied greatly by about twice as much, from 170 to 320 nm.

MESFETにおけるソース抵抗は本発明方法において
0.7〜0.8Ω柵であるが、従来法では0゜6〜0.
8Ωと変動幅が大きかった。一方、ドレイン耐圧は6〜
7Vであったが、従来法では4〜7Vとドレイン耐圧が
大きく低下する場合があった。
The source resistance in the MESFET is 0.7 to 0.8Ω in the method of the present invention, whereas it is 0.6 to 0.8Ω in the conventional method.
The fluctuation range was large at 8Ω. On the other hand, the drain breakdown voltage is 6~
7V, but in the conventional method, the drain breakdown voltage sometimes dropped significantly to 4 to 7V.

また、第2導電層3の高抵抗化は欠陥が生じればよく、
B+以外に、H”、 O”、 N+等のイオンを用いる
ことができる。
Further, the second conductive layer 3 can be made to have a high resistance as long as defects occur;
In addition to B+, ions such as H", O", and N+ can be used.

[発明の効果] 以上に説明したように本発明のコンタクト電極の形成方
法によれば、第2導電層をほぼ全面に成長するため、成
長厚さが均一になり、素子特性の均一性を向上させるこ
とができる。
[Effects of the Invention] As explained above, according to the method of forming a contact electrode of the present invention, the second conductive layer is grown almost over the entire surface, so that the growth thickness becomes uniform and the uniformity of device characteristics is improved. can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜■は本発明のコンタクト電極の形成方法
を説明するための各主要工程の素子断面図、第2図(a
)〜(イ)は従来のコンタクト電極の形成方法を説明す
るための各主要工程の素子断面図である。
FIGS. 1(a) to 2 are cross-sectional views of the device in each main process for explaining the method of forming a contact electrode of the present invention, and FIG. 2(a)
) to (a) are device cross-sectional views of each main process for explaining a conventional method of forming a contact electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板の表面に第1の導電層を形成する工程
と、前記第1の導電層の表面に第2の導電層を成長する
工程と、選択的にイオン注入することにより前記第2の
導電層に欠陥を生じさせ、これを高抵抗化して分離する
工程とを有することを特徴とするコンタクト電極の形成
方法。
(1) A step of forming a first conductive layer on the surface of the semiconductor substrate, a step of growing a second conductive layer on the surface of the first conductive layer, and a step of selectively implanting the second conductive layer. 1. A method for forming a contact electrode, comprising the steps of: creating a defect in a conductive layer, increasing the resistance, and separating the defect.
JP19614289A 1989-07-28 1989-07-28 Formation of contact electrode Pending JPH0360118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19614289A JPH0360118A (en) 1989-07-28 1989-07-28 Formation of contact electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19614289A JPH0360118A (en) 1989-07-28 1989-07-28 Formation of contact electrode

Publications (1)

Publication Number Publication Date
JPH0360118A true JPH0360118A (en) 1991-03-15

Family

ID=16352926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19614289A Pending JPH0360118A (en) 1989-07-28 1989-07-28 Formation of contact electrode

Country Status (1)

Country Link
JP (1) JPH0360118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116334595A (en) * 2023-02-18 2023-06-27 阳光中科(福建)能源股份有限公司 Boat bearing block for improving conductivity of perc battery piece coating process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116334595A (en) * 2023-02-18 2023-06-27 阳光中科(福建)能源股份有限公司 Boat bearing block for improving conductivity of perc battery piece coating process
CN116334595B (en) * 2023-02-18 2023-11-17 阳光中科(福建)能源股份有限公司 Boat bearing block for improving conductivity of perc battery piece coating process

Similar Documents

Publication Publication Date Title
JPS5832466A (en) Manufacture of mosfet
JPH0360118A (en) Formation of contact electrode
JPH04132232A (en) Field-effect transistor and its manufacture
JP4104891B2 (en) Manufacturing method of semiconductor device
JPH0212875A (en) Manufacture of semiconductor device
JPH02292831A (en) Manufacture of semiconductor device
JP2541230B2 (en) Method for manufacturing field effect transistor
JPS5957422A (en) Manufacture of semiconductor device
JPS60136264A (en) Manufacture of semiconductor device
JPS62130567A (en) Manufacture of schottky gate field effect transistor
JP3164042B2 (en) Semiconductor device and manufacturing method thereof
JPS62204578A (en) Manufacture of field-effect transistor
JPS59127875A (en) Manufacture of schottky barrier gate type field effect transistor
JP2682032B2 (en) Method for manufacturing semiconductor device
JP2707436B2 (en) Method for manufacturing field effect transistor
JPH0352238A (en) Manufacture of compound semiconductor device
JPS6223175A (en) Manufacture of semiconductor device
JPS6240782A (en) Manufacture of semiconductor device
JPS6356959A (en) Manufacture of field-effect transistor
JPS61239673A (en) Manufacture of semiconductor device
JPS58147168A (en) Manufacture of semiconductor device
JPH02234442A (en) Manufacture of field effect type semiconductor device
JPS6122872B2 (en)
JPH08167622A (en) Semiconductor device and manufacturing method thereof
JPS63283126A (en) Manufacture of semiconductor device