JPH02234442A - Manufacture of field effect type semiconductor device - Google Patents

Manufacture of field effect type semiconductor device

Info

Publication number
JPH02234442A
JPH02234442A JP5531189A JP5531189A JPH02234442A JP H02234442 A JPH02234442 A JP H02234442A JP 5531189 A JP5531189 A JP 5531189A JP 5531189 A JP5531189 A JP 5531189A JP H02234442 A JPH02234442 A JP H02234442A
Authority
JP
Japan
Prior art keywords
layer
heat
metal layer
gate electrode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5531189A
Other languages
Japanese (ja)
Other versions
JP3035917B2 (en
Inventor
Hikari Toida
樋田 光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1055311A priority Critical patent/JP3035917B2/en
Publication of JPH02234442A publication Critical patent/JPH02234442A/en
Application granted granted Critical
Publication of JP3035917B2 publication Critical patent/JP3035917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To control short-channel effect and improve reliability by providing a multi-layer gate electrode where three or more heat-resistant metal layers with different stress characteristics are laminated. CONSTITUTION:A high-resistance GaAs substrate 1, an undoped GaAs 2, an n-type GaAs 3 with impurities concentration of 2X10<18>cm<-3> and a film thickness of 20nm, an ohmic electrode 4 by Ni/Au/Ge, WSi 5, LaB6 6, and W are provided. These metals 5, 6, and 7 form a gate electrode and these are formed by the sputter method, the electron beam gun deposition method, and the sputter method, respectively. By forming a gate in multi-layer structure and inserting the LaB6 6 to control separation of a metal film for restricting stress generated at the interface between WSi 5 and W 7, thus preventing an abnormal diffusion of impurity ions due to concentration of stress at the gate electrode edge. Therefore, it is possible to control short-channel effect and improve reliability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は信頼性の高い高速半導体装置及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a highly reliable high-speed semiconductor device and a method for manufacturing the same.

(従来の技術) 近年、GaAsなとの化合物半導体を用いた超高速半導
体集積回路の研究開発が盛んに行われている。特に、分
子線エビタキシャル法(MBE法)等の高制御成長法が
確立されて以来、高不純物密度・極薄膜のエビタキシャ
ル半導体層を用いた超高速半導体素子及び集積回路の研
究開発は急速に進展している。
(Prior Art) In recent years, research and development of ultra-high-speed semiconductor integrated circuits using compound semiconductors such as GaAs have been actively conducted. In particular, since the establishment of highly controlled growth methods such as the molecular beam epitaxial method (MBE method), research and development of ultra-high speed semiconductor devices and integrated circuits using ultra-thin epitaxial semiconductor layers with high impurity density has rapidly progressed. Progress is being made.

従来、例えばGaAs電界効果型トランジスタ(GaA
sMESFET)においては、寄生抵抗の低減を計り、
素子の高速化を実現するために、ゲート電極外部の寄生
領域にイオン注入を行い、熱処理することによって電気
的抵抗層を形成していた。この場合、ゲート電極には耐
熱性に優れ、GaAsとの界面が安定なWSiを用いる
ことが多かった。また、通常、寄生領域のイオン注入は
、WSi加工後、このWSiゲート電極にセルファライ
ン的に行われ、例えば、Si3N4膜を保護膜にして8
00°C、20分程度の熱処理が行われる。しかしなが
ら、実際には、WSiゲート電極及びSi3N4膜とG
aAsの熱膨張係数が大きく異なるため、ゲート電極端
にストレスが発生し、GaAs中に注入した不純物イオ
ンが異常な拡散をおこしてしまうことが知られている。
Conventionally, for example, GaAs field effect transistors (GaAs
sMESFET), we aim to reduce parasitic resistance.
In order to achieve high-speed devices, ions were implanted into the parasitic region outside the gate electrode, and an electrically resistive layer was formed by heat treatment. In this case, WSi, which has excellent heat resistance and has a stable interface with GaAs, is often used for the gate electrode. In addition, ion implantation into the parasitic region is usually performed in a self-aligned manner into the WSi gate electrode after WSi processing.
Heat treatment is performed at 00°C for about 20 minutes. However, in reality, the WSi gate electrode and the Si3N4 film are
It is known that since the thermal expansion coefficients of aAs differ greatly, stress is generated at the end of the gate electrode, causing abnormal diffusion of impurity ions implanted into GaAs.

その結果、短チャネル効果の制御が不十分となり、FE
Tの高速化に有利なゲート長の短縮が困難であった。
As a result, short channel effects are poorly controlled and the FE
It has been difficult to shorten the gate length, which is advantageous for increasing the speed of T.

尚、ゲート電極材料としては、ゲート抵抗低減の為に、
例えばWとWSiの2層構造を用いることもあるが、前
述の問題は同様に生じていた。更に、この場合、W, 
WSi及びGaAsの応力特性がことなるため、金属膜
の剥がれが生じやすいと言う問題もあった。
In addition, as gate electrode materials, in order to reduce gate resistance,
For example, a two-layer structure of W and WSi may be used, but the above-mentioned problem also occurs. Furthermore, in this case, W,
Since the stress characteristics of WSi and GaAs are different, there is also the problem that the metal film is likely to peel off.

(発明が解決しようとする課題) 本発明の目的は、このような問題を解決し、短チャネル
効果を制御し、信頼性に優れた高速半導体装置及びその
製造方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a high-speed semiconductor device that solves these problems, controls short channel effects, and has excellent reliability, and a method for manufacturing the same.

(問題を解決するための手段) 本発明の電界効果型半導体装置の構成は、互いに応力特
性が異なる耐熱性金属層を3層以上積層させた多層電極
ゲート電極を備えてなることを特徴とする。
(Means for Solving the Problem) The structure of the field-effect semiconductor device of the present invention is characterized by comprising a multilayer electrode gate electrode in which three or more heat-resistant metal layers having mutually different stress characteristics are laminated. .

また、本発明の電界効果型半導体装置の製造方法の構成
は、半導体層上に互いにエッチング特性の異なる耐熱性
金属層を3層以上形成する工程と、ハロゲン元素を含む
ガスを用い、下層の金属層を停止層上して上層の金属層
を選択的に除去し、下層の金属層を露出させる工程と、
下層の金属層を通して半導体層にイオン注入する工程と
、続いて熱処理を行う工程とを少なくとも備えてなるこ
とを特徴とする。
The method for manufacturing a field-effect semiconductor device of the present invention includes a step of forming three or more heat-resistant metal layers having different etching characteristics on a semiconductor layer, and a step of forming three or more heat-resistant metal layers having different etching characteristics on a semiconductor layer, and using a gas containing a halogen element to form a metal layer of a lower layer. selectively removing the overlying metal layer over the stop layer to expose the underlying metal layer;
The method is characterized by comprising at least a step of implanting ions into a semiconductor layer through an underlying metal layer, and a step of subsequently performing heat treatment.

更に、本発明の電界効果型半導体装置の構成は、半導体
層上に互いにエッチング特性の異なる第1の耐熱性金属
層及び第2の耐熱性金属層上第3の耐熱性多層金属層か
らなる電極を順次形成する工程と、ハロゲン元素を含む
ガスを用いて前記第3の耐熱性多層金属層の一部の領域
を第2の耐熱性金属層を停止層上して選択的に除去し、
この一部の領域の第2の耐熱性金属層を露出させる工程
と、前記露出した第2の耐熱性金属層を通して半導体層
にイオン注入する工程と、絶縁膜を形成する工程と、絶
縁膜を異方性ドライエッチング法により垂直加工し、側
壁を形成する工程と、前記露出した第2の耐熱性金属層
を通して半導体層に再びイオン注入する工程と、続いて
熱処理を行う工程とを少なくとも備えてなることを特徴
とする。
Furthermore, the structure of the field effect semiconductor device of the present invention is such that an electrode is formed of a first heat-resistant metal layer having mutually different etching characteristics on the semiconductor layer, and a third heat-resistant multilayer metal layer on the second heat-resistant metal layer. and selectively removing a part of the third heat-resistant multilayer metal layer using a gas containing a halogen element with the second heat-resistant metal layer on top of the stop layer;
A step of exposing the second heat-resistant metal layer in this partial region, a step of implanting ions into the semiconductor layer through the exposed second heat-resistant metal layer, a step of forming an insulating film, and a step of forming an insulating film. The method includes at least the steps of performing vertical processing using an anisotropic dry etching method to form sidewalls, reinjecting ions into the semiconductor layer through the exposed second heat-resistant metal layer, and subsequently performing heat treatment. It is characterized by becoming.

次に、本発明について図面を参照して詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

(実施例1) 第1図、本発明の一実施例の半導体装置の構造断面図で
ある。第1図は、例えば、有機金属気相成長法(MOC
VD法)を用いて成長した半導体結晶の断面図である。
(Example 1) FIG. 1 is a structural sectional view of a semiconductor device according to an example of the present invention. FIG. 1 shows, for example, metal organic chemical vapor deposition (MOC)
1 is a cross-sectional view of a semiconductor crystal grown using a VD method.

第1図において、1は高抵抗GaAs基板、2はアンド
ープのGaAs,3は不純物密度か2X1018cm=
で膜厚20nmのn型GaAs 、4はNi/Au/G
eによるオーミック電極、5はW8i、6はLaB6、
7はWである。この式、5,6及び7の金属によりゲー
ト電極が形成されている。ゲート金属5,6及び7は、
各々スバッタ法、電子ビーム銃蒸着法及びスバッタ法で
形成される。ゲートを多層構造にする事により、ゲート
金属抵抗Rgは、従来のWSi単層の場合に比べ、約1
桁以上低くでき、最大有能利得が大幅に改善された。ま
た、WSi5とW7との界面に生じる応力をLaB66
を挿入する事により低減することができ、金属膜の剥が
れを制御でき、信頼性の高いゲート電極を形成できた。
In Figure 1, 1 is a high-resistance GaAs substrate, 2 is undoped GaAs, and 3 is the impurity density, 2×1018 cm=
20 nm thick n-type GaAs, 4 is Ni/Au/G
Ohmic electrode by e, 5 is W8i, 6 is LaB6,
7 is W. A gate electrode is formed of the metals of formulas 5, 6, and 7. Gate metals 5, 6 and 7 are
They are formed by a sputtering method, an electron beam gun evaporation method, and a sputtering method, respectively. By making the gate a multilayer structure, the gate metal resistance Rg is reduced by about 1 compared to the conventional single layer WSi.
The maximum effective gain was significantly improved. In addition, the stress generated at the interface between WSi5 and W7 can be reduced by LaB66.
By inserting , the peeling of the metal film could be controlled, and a highly reliable gate electrode could be formed.

(実施例2) 第2図(a)乃至第2図(e)は、本発明の一実施例の
半導体装置の製造方法の要部製造工程である。
(Example 2) FIGS. 2(a) to 2(e) show main manufacturing steps of a method for manufacturing a semiconductor device according to an example of the present invention.

第2図(a)に示すように、分子線エビタキシー成長法
(MBE法)を用いて、高抵抗GaAs基板上1に、ア
ンドープのGaAs2を0.5pm、不純物密度が2×
1018cm−3で膜厚20nmのn型GaAs3を順
次エビタキシャル成長した後、ゲート電極材料となるW
Si5をスパノタ法で形成し、その後LaB6を蒸着法
で形成し、更にスパッタ法でW7を形成する。次に、第
2図(b)に示すように、フォトレジスト(PR)8を
マスクにし、CF4ガス9を用いてW7をドライエッチ
法で加工する。この時、LaB66のエッチングレート
は、W7のそれに比べ十分小さくなるように設定する。
As shown in FIG. 2(a), using molecular beam epitaxy (MBE), undoped GaAs2 was deposited on a high-resistance GaAs substrate 1 at a thickness of 0.5 pm and an impurity density of 2×.
After sequentially epitaxially growing n-type GaAs3 with a film thickness of 20 nm at 1018 cm-3, W, which becomes the gate electrode material, was grown.
Si5 is formed by a supanota method, then LaB6 is formed by a vapor deposition method, and W7 is further formed by a sputtering method. Next, as shown in FIG. 2(b), using the photoresist (PR) 8 as a mask, the W7 is processed by dry etching using CF4 gas 9. Then, as shown in FIG. At this time, the etching rate of LaB66 is set to be sufficiently smaller than that of W7.

例えば、パワー100W、ガス圧1mTorr、ガス流
量10SCCM程度か望ましい。次に、第2図(C)に
示すように、寄生領域にWSi5及びLaB66を通し
てSiイオン11を5×1013cm−2、100ke
Vの条件で注入する。
For example, it is desirable that the power be 100 W, the gas pressure be 1 mTorr, and the gas flow rate be about 10 SCCM. Next, as shown in FIG. 2(C), Si ions 11 were injected into the parasitic region at 5×1013 cm−2 and 100 ke by passing WSi5 and LaB66 into the parasitic region.
Inject under the condition of V.

その後、寄生領域にWSi5及びLaB66を残したま
ま、800°C、20分間の熱処理を行う。次に、第2
図(d)に示すように、LaB66を、例えば、Arイ
オンミリング法を用いて除去後、CF4ガスを用いてW
Si5をドライエッチ法で加工する。最後に、第2図(
e)に示すように、Ni/Au/Geによるオーミツク
電極4を形成する。
Thereafter, heat treatment is performed at 800° C. for 20 minutes while leaving WSi5 and LaB66 in the parasitic region. Next, the second
As shown in figure (d), after removing LaB66 using, for example, Ar ion milling method, W is removed using CF4 gas.
Process Si5 using a dry etching method. Finally, Figure 2 (
As shown in e), an ohmic electrode 4 made of Ni/Au/Ge is formed.

本実施例においては、ゲート電極にセルファライン的に
低抵抗寄生領域を形成できるため。素子の相互コンダク
タンスの向上に極めて有利である。さらに、熱処理の保
護膜に、ゲート金属と同じ材料WSi5を用いることが
出来るため、従来法で問題となっていたゲート電極端で
のストレス集中による不純物イオンの以上拡散も防止で
きた。また、その結果、0.5pmの短ゲートを有する
素子に於でも、良好なピンチオフ特性及び特性の均一性
、再現性を得ることが出来た。また、本実施例において
は、ゲート電極のパターンの原型となるW7の加工をL
aB66を自動停止層上して行うため、基板面内に於け
る微細ゲート長の均一性も極めて良好であった。
In this embodiment, a low resistance parasitic region can be formed in the gate electrode in a self-aligned manner. This is extremely advantageous in improving the mutual conductance of the device. Furthermore, since the same material WSi5 as the gate metal can be used for the heat-treated protective film, further diffusion of impurity ions due to stress concentration at the end of the gate electrode, which was a problem in the conventional method, can be prevented. Moreover, as a result, even in a device having a short gate of 0.5 pm, good pinch-off characteristics, uniformity of characteristics, and reproducibility could be obtained. In addition, in this example, the processing of W7, which is the prototype of the gate electrode pattern, is
Since aB66 was formed on the automatic stop layer, the uniformity of the fine gate length within the substrate surface was also extremely good.

(実施例3) 第3図(a)乃至第3図(Oは、本発明の一実施例の半
導体装置の製造方法の要部製造工程である。第1図は、
例えば、有機金属気相成長法(MOCVD法)を用いて
成長した半導体結晶の断面図である。第1図において、
1は高抵抗GaAs基板、2はアンドープのGaAs、
3は不純物密度が2×1018cm−3で膜厚20nm
のn型GaAs、4はNi/Au/Geによるオーミッ
ク電極、5はWSi、6はLaB6、7はWである。こ
の時、5、及び7金属によりゲート電極が形成されてい
る。
(Example 3) FIGS. 3(a) to 3(O) are main manufacturing steps of a method for manufacturing a semiconductor device according to an example of the present invention.
For example, it is a cross-sectional view of a semiconductor crystal grown using a metal organic chemical vapor deposition method (MOCVD method). In Figure 1,
1 is a high resistance GaAs substrate, 2 is undoped GaAs,
3 has an impurity density of 2 x 1018 cm-3 and a film thickness of 20 nm.
4 is an ohmic electrode made of Ni/Au/Ge, 5 is WSi, 6 is LaB6, and 7 is W. At this time, gate electrodes are formed of metals 5 and 7.

第3図(a)に示すように、n型GaAs導電層をエビ
タキシャル成長後、ゲート電極材料となるWSi5をス
パッタ法で形成し、その後LaB66を蒸着法で形成し
、更にスパッタ法でW7を形成する。次に、第3図(b
)に示すように、フォトレジスト(PR)8をマスクに
し、CF4ガス9を用いてW7をドライエッチ法で加工
する。その時、LaB66のエッチングレートは、W7
のそれに比べ十分小さくなるように設定する。
As shown in FIG. 3(a), after epitaxially growing an n-type GaAs conductive layer, WSi5, which will become the gate electrode material, is formed by sputtering, then LaB66 is formed by vapor deposition, and then W7 is formed by sputtering. Form. Next, Figure 3 (b
), using a photoresist (PR) 8 as a mask, W7 is processed by dry etching using CF4 gas 9. At that time, the etching rate of LaB66 was W7
Set it so that it is sufficiently smaller than that of .

例えば、バワー100W、ガス圧1mTorr、ガス流
量10SCCM程度が望ましい。次に、第3図(c)に
示すように、CVD法によりSi02を全面に300n
m堆積し、CF4ガスを用いてSi02を異方性ドライ
エッチング方で加工し、ゲート側壁10を形成する。更
に、寄生領域にWSi5及びLaB66を通してSiイ
オン11を5X1013cm−2、100keVの条件
で注入する。つぎに、第3図(d)に示すように、ゲー
ト側壁をHFにより除去した後、寄生領域にWSi5及
びLaB66を通してSiイオン12を5X1012a
m−2、50keVの条件で注入する。その後、寄生領
域にWSi5及びLaB66を残したまま、800°C
、20分間の熱処理を行う。次に、第3図(e)に示す
ように、LaB66を、例えば、Arイオンミリング法
を用いて除去後、CF4ガスを用いてWSi5をドライ
エッチ方で加工する。最後に、第3図(Dに示すように
、Ni/Au/Geによるオーミック電極4を形成する
For example, a power of 100 W, a gas pressure of 1 mTorr, and a gas flow rate of about 10 SCCM are desirable. Next, as shown in FIG. 3(c), 300nm of Si02 is deposited on the entire surface by CVD method.
m is deposited, and Si02 is processed by anisotropic dry etching using CF4 gas to form gate sidewalls 10. Furthermore, Si ions 11 are implanted into the parasitic region through WSi5 and LaB66 under conditions of 5×10 13 cm −2 and 100 keV. Next, as shown in FIG. 3(d), after removing the gate sidewalls with HF, Si ions 12 are injected into the parasitic region by 5×1012a through WSi5 and LaB66.
Implantation is performed under the conditions of m-2 and 50 keV. After that, the temperature was heated to 80°C while leaving WSi5 and LaB66 in the parasitic region.
, heat treatment for 20 minutes. Next, as shown in FIG. 3(e), after removing LaB66 using, for example, Ar ion milling, WSi5 is processed by dry etching using CF4 gas. Finally, as shown in FIG. 3 (D), an ohmic electrode 4 made of Ni/Au/Ge is formed.

本実施例においては、ゲート側壁9Si0210を金属
上に堆積し、ドライ加工するため、直接的な半導体層へ
の損傷を極めて小さくできた。これにより、テバイス特
性の周波数分散を制御することができた。また、ゲート
電極用WSi層5とイオン注入した寄生部の半導体層3
との接点は、低不純物密度になっているため、短チャネ
ル効果の制御を図ることができた。更に、実施例2で述
べた他の効果もそのまま維持できていることも確認した
In this example, since the gate sidewalls 9Si0210 are deposited on metal and dry processed, direct damage to the semiconductor layer can be minimized. This made it possible to control the frequency dispersion of device characteristics. In addition, the WSi layer 5 for the gate electrode and the semiconductor layer 3 of the parasitic part into which ions are implanted
Since the contact point with the ferrite layer has a low impurity density, it was possible to control the short channel effect. Furthermore, it was confirmed that the other effects described in Example 2 were also maintained.

尚、実施例2及び実施例3においては、寄生領域へのS
iイオンの注入をLaB66を通して行ったが、LaB
66を除去後に行ってもよい。また、熱処理前に、例え
ばSi3N4等の保護膜を形成し、半導体構成元素の外
部拡散を制御してもよい。また、本実施例において用い
たゲート電極材料の他に、例えばWSiN, WAL 
WN, WAIN, MoSi, Taxi等の耐熱性
を有した金属硅化物、ほう化物、炭化物等を用いてもよ
い。これらの金属材量は注入イオンの電気的活性化のた
めの熱処理温度に耐えることが必要であり、通常500
°C以上の耐熱性を有することが望ましい。更に、本発
明は、FETだけでなく、例えばバイポーラトランジス
タのエミッタ電極部の形成に用いることも可能である。
In addition, in Example 2 and Example 3, S
i ion implantation was performed through LaB66, but LaB
66 may be removed. Furthermore, before the heat treatment, a protective film such as Si3N4 may be formed to control external diffusion of semiconductor constituent elements. In addition to the gate electrode materials used in this example, for example, WSiN, WAL
Metal silicides, borides, carbides, etc. having heat resistance such as WN, WAIN, MoSi, Taxi, etc. may be used. The amount of these metal materials must be able to withstand the heat treatment temperature for electrical activation of the implanted ions, which is usually 500°C.
It is desirable to have heat resistance of °C or higher. Furthermore, the present invention can be used not only for FETs but also for forming emitter electrodes of bipolar transistors, for example.

また、本発明は、InPやSiなどの他の半導体材料や
高電子移動度トランジスタ(HEMT)などの他の素子
に対しても同様に有効である。
Further, the present invention is similarly effective for other semiconductor materials such as InP and Si, and other elements such as high electron mobility transistors (HEMTs).

(発明の効果) 以上説明したように、請求項1に記載した構造の半導体
装置ではゲート電極を多層構造としているため、ゲート
金属抵抗が低く、応力の小さいゲート電極が得られる。
(Effects of the Invention) As described above, in the semiconductor device having the structure described in claim 1, since the gate electrode has a multilayer structure, a gate electrode with low gate metal resistance and low stress can be obtained.

請求項2に記載した半導体装置の製造方法によれば、コ
ンタクト層を形成するためのイオン注入を、金属を通し
て行い、またイオン注入後の回復アニール保護膜として
この金属をそのまま利用できるため、ストレス集中によ
る不純物イオンの拡散やイオン注入による損傷が抑制さ
れ、再現性にすぐれた製造方法が得られる。請求項3の
製造方法によればゲート側壁用絶縁膜が金属上に形成さ
れるな、ゲート絶縁膜のドライ加工時の半導体層への損
傷が抑制できる。
According to the method for manufacturing a semiconductor device described in claim 2, ion implantation for forming the contact layer is performed through the metal, and the metal can be used as it is as a recovery annealing protective film after the ion implantation, thereby reducing stress concentration. Damage caused by impurity ion diffusion and ion implantation is suppressed, and a manufacturing method with excellent reproducibility can be obtained. According to the manufacturing method of the third aspect, since the gate sidewall insulating film is not formed on metal, damage to the semiconductor layer during dry processing of the gate insulating film can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の半導体装置の模式的要部構造断面図
、第2図(a)乃至第2図(e)及び第3図(a)乃至
第3図(Dは、本発明の実施例の半導体装置の製造方法
の要部製造工程である。 1・・・GaAs基板、2・・・アンドープGaAs、
3・・・n型GaAs、4・・・オーミック電極、5,
6.7・・・ゲート電極、8・・・フォトレジスト、9
.14・・・エッチングガス、10・・・Si02、1
1.12・・・注入イオン、13・・・イオン注入領域
。 第1図
FIG. 1 is a schematic cross-sectional view of the main part structure of a semiconductor device of the present invention, FIG. 2(a) to FIG. 2(e) and FIG. 3(a) to FIG. This is a main manufacturing process of a method for manufacturing a semiconductor device according to an embodiment. 1... GaAs substrate, 2... Undoped GaAs,
3... n-type GaAs, 4... ohmic electrode, 5,
6.7... Gate electrode, 8... Photoresist, 9
.. 14... Etching gas, 10... Si02, 1
1.12... Ion implantation, 13... Ion implantation region. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)互いに応力特性が異なる耐熱性金属層を3層以上
積層させた多層電極をゲート電極として備えてなること
を特徴とする電界効果型半導体装置。
(1) A field-effect semiconductor device comprising, as a gate electrode, a multilayer electrode in which three or more heat-resistant metal layers having different stress characteristics are laminated.
(2)半導体層上に互いにエッチング特性の異なる耐熱
性金属層を3層以上形成する工程と、ハロゲン元素を含
むガスを用い、下層の金属層を停止層として上層の金属
層を選択的に除去し、下層の金属層を露出させる工程と
、下層の金属層を通して半導体層にイオン注入する工程
と、続いて熱処理を行う工程とを備えてなることを特徴
とする電界効果型半導体装置の製造方法。
(2) A step of forming three or more heat-resistant metal layers with different etching characteristics on the semiconductor layer, and selectively removing the upper metal layer using a gas containing a halogen element, using the lower metal layer as a stop layer. A method for manufacturing a field effect semiconductor device, comprising: exposing a lower metal layer; implanting ions into a semiconductor layer through the lower metal layer; and subsequently performing heat treatment. .
(3)半導体層上に互いにエッチング特性の異なる第1
の耐熱性金属層及び第2の耐熱性金属層と第3の耐熱性
多層金属層からなる電極を順次形成する工程と、ハロゲ
ン元素を含むガスを用いて前記第3の耐熱性多層金属層
の一部の領域を第2の耐熱性金属層を停止層として選択
的に除去し、この一部の領域の第2の耐熱性金属層を露
出させる工程と、前記露出した第2の耐熱性金属層を通
して半導体層にイオン注入する工程と、絶縁膜を形成す
る工程と、絶縁膜を異方性ドライエッチング法により垂
直加工し、側壁を形成する工程と、前記露出した第2の
耐熱性金属層を通して半導体層に再びイオン注入する工
程と、続いて熱処理を行う工程とを少なくとも備えてな
ることを特徴とする電界効果型半導体装置の製造方法。
(3) A first layer having different etching characteristics on the semiconductor layer.
a step of sequentially forming an electrode consisting of a heat-resistant metal layer, a second heat-resistant metal layer, and a third heat-resistant multilayer metal layer, and forming the third heat-resistant multilayer metal layer using a gas containing a halogen element. selectively removing a part of the region using a second heat-resistant metal layer as a stop layer and exposing the second heat-resistant metal layer in the part of the region; a step of implanting ions into the semiconductor layer through the layer, a step of forming an insulating film, a step of vertically processing the insulating film by an anisotropic dry etching method to form a side wall, and a step of forming the exposed second heat-resistant metal layer. 1. A method for manufacturing a field-effect semiconductor device, comprising at least the steps of reinjecting ions into a semiconductor layer through a semiconductor layer, and subsequently performing heat treatment.
JP1055311A 1989-03-07 1989-03-07 Field effect type semiconductor device and method of manufacturing the same Expired - Fee Related JP3035917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055311A JP3035917B2 (en) 1989-03-07 1989-03-07 Field effect type semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055311A JP3035917B2 (en) 1989-03-07 1989-03-07 Field effect type semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02234442A true JPH02234442A (en) 1990-09-17
JP3035917B2 JP3035917B2 (en) 2000-04-24

Family

ID=12995017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055311A Expired - Fee Related JP3035917B2 (en) 1989-03-07 1989-03-07 Field effect type semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3035917B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559182A2 (en) * 1992-03-03 1993-09-08 Sumitomo Electric Industries, Limited Semiconductor device
US5550065A (en) * 1994-11-25 1996-08-27 Motorola Method of fabricating self-aligned FET structure having a high temperature stable T-shaped Schottky gate contact

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258066A (en) * 1987-04-15 1988-10-25 Oki Electric Ind Co Ltd Gaas field-effect semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258066A (en) * 1987-04-15 1988-10-25 Oki Electric Ind Co Ltd Gaas field-effect semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559182A2 (en) * 1992-03-03 1993-09-08 Sumitomo Electric Industries, Limited Semiconductor device
EP0559182A3 (en) * 1992-03-03 1995-05-10 Sumitomo Electric Industries
US5550065A (en) * 1994-11-25 1996-08-27 Motorola Method of fabricating self-aligned FET structure having a high temperature stable T-shaped Schottky gate contact

Also Published As

Publication number Publication date
JP3035917B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
US7160766B2 (en) Field-effect semiconductor device and method for making the same
JPS63263770A (en) Gaas mesfet and manufacture of the same
US6329230B1 (en) High-speed compound semiconductor device having an improved gate structure
JPH0260217B2 (en)
KR910002818B1 (en) Method of manufacturing mes fet
JPS6338871B2 (en)
JPH0475351A (en) Manufacture of chemical compound semiconductor device
JPH02234442A (en) Manufacture of field effect type semiconductor device
JPH0260222B2 (en)
JP3380139B2 (en) High electron mobility transistor and method of manufacturing the same
JPS6254966A (en) Schottky gate field effect transistor and manufacture thereof
JPH04233771A (en) Field-effect transistor and its manuacture
JPS6292327A (en) Semiconductor device and manufacture thereof
JPH04299825A (en) Manufacture of semiconductor device
JPH0831846A (en) Manufacture of high breakdown voltage fet
JPH1074775A (en) Semiconductor device and its manufacture
JPH0429225B2 (en)
JP4186267B2 (en) Method for manufacturing compound semiconductor device
JPH10125698A (en) Semiconductor device and its manufacture
JPS61171141A (en) Semiconductor device and manufacture thereof
JPH081910B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPH0870011A (en) Manufacture of semiconductor device
JPS61210674A (en) Manufacture of semiconductor device
JPS61239673A (en) Manufacture of semiconductor device
JPH01261870A (en) Field effect transistor and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees