JP4186267B2 - Method for manufacturing compound semiconductor device - Google Patents

Method for manufacturing compound semiconductor device Download PDF

Info

Publication number
JP4186267B2
JP4186267B2 JP26000598A JP26000598A JP4186267B2 JP 4186267 B2 JP4186267 B2 JP 4186267B2 JP 26000598 A JP26000598 A JP 26000598A JP 26000598 A JP26000598 A JP 26000598A JP 4186267 B2 JP4186267 B2 JP 4186267B2
Authority
JP
Japan
Prior art keywords
fet
gaas
electrode
layer
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26000598A
Other languages
Japanese (ja)
Other versions
JP2000091346A (en
Inventor
隆 杉野
成 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP26000598A priority Critical patent/JP4186267B2/en
Publication of JP2000091346A publication Critical patent/JP2000091346A/en
Application granted granted Critical
Publication of JP4186267B2 publication Critical patent/JP4186267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,GaAs表面の酸化を抑制し表面の再結合準位の発生を押さえ,もって表面空乏層の広がりを抑制したGaAs化合物半導体装置,およびその製造方法に関する。
【0002】
【従来の技術】
GaAs半導体を素材とする電界効果トランジスタ(FET)は,GaAs中での電子の移動度が大きいために,高周波デバイスとしてもっぱら使用されている。しかしながら,GaAs−FETは一般にそのゲート電極が金属−半導体接合で形成するFET(MESFET)であるため,半導体表面の特性の影響を強く受ける。MESFETでは,金属ゲート電極にゲート信号を印加して,表面近傍に形成されたチャネル層の幅を制御することで,増幅作用を発揮させる。しかしながら,半導体に本質的に存在する表面空乏層が大きくなると,このゲート信号の作用を,この空乏層が吸収してしまい,FET性能(例えば相互コンダクタンス)の劣化を伴ってしまう。
【0003】
従来のFETではこの影響を緩和するために,例えば図4に示すように,ゲート電極形成箇所をエッチングにより掘り込み,この窪みに電極を形成することが行われていた。この方法によれば,チャネル層が表面から深い位置に形成されるため,ゲート電極両脇に形成される空乏層の影響が緩和される。
【0004】
【発明が解決しようとする課題】
しかしながらこの窪みの深さ,すなわち,窪み底部とチャネルまでの距離に従って,このFETの特性も決定されるため,窪みの深さを充分制御しなければ,再現性良くかつ均一性良くFETを作製できないという問題があった。
【0005】
【課題を解決するための手段】
上記問題を克服するために,本発明においては,FETの各電極が形成された後,半導体基板を燐(P)と水素(H)とを含むプラズマで表面処理することを特徴とする。ここで水素プラズマで表面処理を行った後,燐プラズマで表面処理を行う順次の方法でもよい。
【0006】
【作用】
GaAs基板の表面には自然酸化膜が必ず形成されている。この酸化膜はGaの酸化膜や,Asの酸化膜が知られているが,Ga酸化膜はホスフィンに含有されるプラズマ中では,分解された水素で還元除去される。従って表面はAsリッチな状態に変化するが,この状態はホスフィン中の燐によりパシベートされるとともに,Asの一部はPと置換しGaPという空気中で安定な化合物に変換され,さらに表面がPで覆われる。従って,ホスフィンプラズマで処理された表面は,酸化物が除去された清浄でかつ安定な化合物で保護された状態になり,表面空乏層拡大の原因となる不純物,欠陥のない状態となる。
【0007】
【発明の実施の形態】
図1及び図2は本発明によるGaAs−FETの処理の方法等を説明するための図であって,GaAs−FETの各製造工程における断面を表す。以下これらの図に基づいて本発明を説明する。なお以下の説明では金属−半導体接触(ショットキ接続)を有するFETの例を示すが,本発明による方法はこれに制限されることはなく,光デバイス,高移動度トランジスタ(HEMT:High Electron Mobility Transistor),ヘテロ接合バイポーラトランジスタ(HBT:Hetero Bipolar Transistor)等のデバイスへも応用可能である。
【0008】
半絶縁性GaAs基板1上に不純物を選択的に導入してn型の第1不純物層5を形成する(図1(a))。このn型の第1不純物層5は,熱処理により不純物が活性化されると活性層(チャネル層)となるので,後工程で形成されるFETのソース,ドレイン領域の間に形成される。この不純物層5の形成方法としては,例えば基板1上にフォトリソグラフィ技術を用いてレジストパターン3を形成し,このレジストパターン3をマスクにしてイオン注入を行うことにより行われる。イオン注入の条件としては,イオン種として29Si用い,加速電圧30[keV],ドーズ量として2×1012[cm-2]である。この注入条件は,得ようとするFETの閾値電圧,相互コンダクタンスgmなどの性能に基づき決定される。
【0009】
次いでGaAs基板1上にn型の不純物を導入して高濃度のn型第2不純物層9を形成する(図1(b))。この高濃度不純物層9は,後に熱処理により導入した不純物を活性化し,それぞれソース,ドレイン領域のn+ 層となる。このソース,ドレイン領域は先に形成された第1の不純物層5を挟んで形成される。第2の不純物層9の形成方法としては,第1の不純物層5の形成方法と同様に,パターン形成したフォトレジスト7をマスクにしてイオン注入により形成される。注入の条件としては,不純物として29Siを用い,加速電圧120[keV],ドーズ量2×1013[cm-2]である。29Siに代えて28Siを用いてもよい。この時にはビーム中に含まれる282 を十分に除去しておかなければならない。注入した後にフォトレジスト7あるいは第1の不純物層5の場合にはレジストパターン3を除去する。
【0010】
注入した後,基板1の表面上にキャップ膜13を形成する(図1(c))。このキャップ膜13はアニール保護膜の機能を果たし,SiN,SiON等が用いられる。これらの膜は化学的気相成長(CVD:Chemical Vapor Deposition)法を用いる絶縁膜形成装置により成膜可能である。キャップ膜13の成膜後に基板1に熱処理を施すと,n型第1不純物層とn型第2不純物層9はアニールされ,各層に導入された不純物の活性化が行われ,それぞれの層は活性層(チャネル層)およびn+ 層となる。アニール後にキャップ膜13は除去され,基板表面が露出される。
【0011】
次に,n+層上にAuGe/Niからなるオーミック金属17を形成する(図2(a))。これらの形成方法は,スパッタリング法,蒸着法などの物理的気相成長(PVD:Physical Vapor Deposition)により行われる。全ての金属を形成した後,例えば450℃,1分の熱処理を行って,GaAs基板と形成金属を合金化する。GaAs中のGaが金属側に移動し,この移動した後の空孔にGeが置換することで,GaAsと金属とのオーミック接触が保たれる。NiはAuGeのGaAs表面への濡れ性を高めるための金属である。
【0012】
次いでショットキゲート電極21を形成する(図2(b))。このゲート電極は,例えばTi/Pt/Auの積層金属で,ソースおよびドレインの各電極に挟まれた活性層15上に形成される。形成方法としては,オーミック金属と同様にスパッタリング法,蒸着法等のPVD法が用いられる。
【0013】
次いで,オーミック,ゲートの各電極が形成された基板を,プラズマ照射装置の中に移動し,ホスフィンプラズマを照射する(図2(c))。ホスフィンプラズマは電極金属下のGaAs表面には作用せず,ゲート−オーミック電極間の領域,および,FET形成領域以外の基板表面に作用し,GaAs表面の酸化膜を除去し安定化する。
【0014】
ホスフィンプラズマ処理の条件としては,
基板温度 : 285[℃]
圧 力 : 0.2[Torr]
パワー密度: 0.18[W/cm2]
周波数 :13.56[MHz]
処理時間 :5分
であった。これら条件の詳細はFETの製造プロセスにより左右される。ホスフィンはベースガスとして水素を含んでいてもよく,プラズマ周波数は13.56MHzに制限されず,例えばECRプラズマ装置で一般に用いられる2.35GHzでもよい。
【0015】
ホスフィンプラズマ処理により,プラズマに晒されたGaAs表面の酸化物は除去され,さらに,この表面はP,あるいはGaAs中のAs空孔がホスフィン中のPで埋められたGaPに置換され,さらに表面がPで覆われるため,極めて安定な表面となる。単に表面酸化物の除去のみでは,表面のストイキオメトリが変化し,この変化による表面準位の形成が表面空乏層の増加という悪影響をデバイス特性に及ぼすが,この表面をホスフィンプラズマで処理することで,表面酸化物の除去と同時に,ストイキオメトリを維持したまま表面の改質も行うので,表面空乏層の増加を招くことがない。
【0016】
図3(b)は本発明によるホスフィンプラズマ処理を施したFETのゲート電圧(Vg)−ドレイン電流(Id)の特性を,光照射の有無の影響を観測したものである。実線が光照射のある時,破線がダークの状態で測定した結果である。この時FETの閾値電圧はほぼ同じものを用い,またドレイン電圧は3Vで一定とした。図3(a)には参考のために,ホスフィンプラズマ処理を施していないFETの特性の合わせて示した。
【0017】
プラズマ処理を施さないFETでは,ほぼ同じゲート電圧に対して,得られるゲート電流の絶対値が小さく,また,この時のゲート電圧の変化に対するドレイン電流の変化(gm:相互コンダクタンス,同図に示された特性線の傾き)も小さくなっている。さらに,ホスフィンプラズマ未処理のFETでは光照射の有無によるドレイン電流の差も大きくなっている。
【0018】
一方,プラズマ処理を施したFETでは,同じゲート電圧に対し得られるドレイン電流の値そのものが大きいのみならず,特性線の傾きである相互コンダクタンスも大きくなっている。また,光照射によるドレイン電流の変化も,未処理FETに比較し格段に小さい。
【0019】
【効果】
これは,ホスフィンプラズマ処理により,ゲート電極とソース電極との間に形成される表面空乏層の大きさが制限され,またこの表面空乏層の原因となる表面準位の生成が抑制されるためである。表面準位の生成が制限されると,この準位に起因する表面空乏層の拡がりが制限され,デバイス特性への影響を無くすることができる。
【図面の簡単な説明】
【図1】図1(a)〜(c)は本発明にかかわるGaAs−FETの製造工程を説明するために,その一実施態様を示す模式工程断面図である。
【図2】図2(a)〜(c)は本発明にかかわるGaAs−FETの製造工程を説明するために,その一実施態様を示す模式工程断面図である。
【図3】図3は本発明にかかわるGaAs−FETの電気特性を示す図である。実線は光照射時,破線は暗状態での結果を示す。
【図4】図4は従来のMESFETの断面構造を示す図である。
【符号の説明】
1・・・半絶縁性GaAs半導体基板
3・・・レジスト
5・・・n型第1不純物層
7・・・レジスト
9・・・n型第2不純物層
11・・・ホスフィンプラズマ
13・・・キャップ膜
15・・・活性層
17・・・オーミック電極
19・・・n+
21・・・ゲート電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a GaAs compound semiconductor device that suppresses oxidization of a GaAs surface, suppresses generation of a recombination level on the surface, and suppresses the spread of a surface depletion layer, and a manufacturing method thereof.
[0002]
[Prior art]
Field effect transistors (FETs) made of GaAs semiconductors are used exclusively as high-frequency devices because of their high electron mobility in GaAs. However, the GaAs-FET is generally an FET (MESFET) whose gate electrode is formed by a metal-semiconductor junction, and is therefore strongly influenced by the characteristics of the semiconductor surface. In MESFET, a gate signal is applied to a metal gate electrode to control the width of a channel layer formed in the vicinity of the surface, thereby exerting an amplification effect. However, when the surface depletion layer that is essentially present in the semiconductor becomes large, the action of the gate signal is absorbed by the depletion layer, resulting in deterioration of FET performance (for example, mutual conductance).
[0003]
In order to alleviate this influence in the conventional FET, for example, as shown in FIG. 4, a gate electrode forming portion is dug by etching, and an electrode is formed in this recess. According to this method, since the channel layer is formed at a deep position from the surface, the influence of the depletion layer formed on both sides of the gate electrode is mitigated.
[0004]
[Problems to be solved by the invention]
However, since the characteristics of this FET are also determined according to the depth of the depression, that is, the distance from the bottom of the depression to the channel, an FET cannot be fabricated with good reproducibility and uniformity unless the depression depth is sufficiently controlled. There was a problem.
[0005]
[Means for Solving the Problems]
In order to overcome the above problems, the present invention is characterized in that after each electrode of the FET is formed, the semiconductor substrate is surface-treated with plasma containing phosphorus (P) and hydrogen (H). Here, after the surface treatment with hydrogen plasma, the sequential treatment with the surface treatment with phosphorus plasma may be used.
[0006]
[Action]
A natural oxide film is always formed on the surface of the GaAs substrate. As this oxide film, a Ga oxide film and an As oxide film are known, but the Ga oxide film is reduced and removed by decomposed hydrogen in plasma containing phosphine. Therefore, the surface changes to an As-rich state, and this state is passivated by phosphorus in the phosphine, and part of As is replaced with P to be converted into a stable compound in the air called GaP. Covered with. Therefore, the surface treated with phosphine plasma is protected by a clean and stable compound from which oxides have been removed, and is free of impurities and defects that cause the surface depletion layer to expand.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 and FIG. 2 are views for explaining a GaAs-FET processing method and the like according to the present invention, and show cross sections in each manufacturing process of the GaAs-FET. The present invention will be described below based on these drawings. In the following description, an example of an FET having a metal-semiconductor contact (Schottky connection) is shown, but the method according to the present invention is not limited to this, and an optical device, a high mobility transistor (HEMT) is used. ), Devices such as heterojunction bipolar transistors (HBTs).
[0008]
Impurities are selectively introduced onto the semi-insulating GaAs substrate 1 to form an n-type first impurity layer 5 (FIG. 1A). Since the n-type first impurity layer 5 becomes an active layer (channel layer) when the impurity is activated by heat treatment, it is formed between the source and drain regions of the FET formed in a later process. As a method of forming the impurity layer 5, for example, a resist pattern 3 is formed on the substrate 1 using a photolithography technique, and ion implantation is performed using the resist pattern 3 as a mask. As ion implantation conditions, 29 Si is used as an ion species, an acceleration voltage is 30 [keV], and a dose is 2 × 10 12 [cm −2 ]. This implantation condition is determined on the basis of performance such as the threshold voltage and mutual conductance gm of the FET to be obtained.
[0009]
Next, an n-type impurity is introduced onto the GaAs substrate 1 to form a high-concentration n-type second impurity layer 9 (FIG. 1B). The high-concentration impurity layer 9 activates impurities introduced later by heat treatment and becomes n + layers in the source and drain regions, respectively. The source and drain regions are formed with the first impurity layer 5 formed in advance. The second impurity layer 9 is formed by ion implantation using the patterned photoresist 7 as a mask in the same way as the first impurity layer 5 is formed. The implantation conditions are 29 Si as an impurity, an acceleration voltage of 120 [keV], and a dose of 2 × 10 13 [cm −2 ]. Instead of 29 Si, 28 Si may be used. At this time, 28 N 2 contained in the beam must be sufficiently removed. In the case of the photoresist 7 or the first impurity layer 5 after the implantation, the resist pattern 3 is removed.
[0010]
After the implantation, a cap film 13 is formed on the surface of the substrate 1 (FIG. 1C). The cap film 13 functions as an annealing protective film, and SiN, SiON or the like is used. These films can be formed by an insulating film forming apparatus using a chemical vapor deposition (CVD) method. When heat treatment is performed on the substrate 1 after the formation of the cap film 13, the n-type first impurity layer and the n-type second impurity layer 9 are annealed, and the impurities introduced into each layer are activated, It becomes an active layer (channel layer) and an n + layer. After the annealing, the cap film 13 is removed and the substrate surface is exposed.
[0011]
Next, an ohmic metal 17 made of AuGe / Ni is formed on the n + layer (FIG. 2A). These forming methods are performed by physical vapor deposition (PVD) such as sputtering and vapor deposition. After all the metals are formed, for example, heat treatment is performed at 450 ° C. for 1 minute to alloy the GaAs substrate and the formed metal. Ga in GaAs moves to the metal side, and Ge replaces the vacancy after the movement, so that ohmic contact between GaAs and the metal is maintained. Ni is a metal for enhancing the wettability of AuGe to the GaAs surface.
[0012]
Next, the Schottky gate electrode 21 is formed (FIG. 2B). The gate electrode is formed of, for example, a Ti / Pt / Au laminated metal on the active layer 15 sandwiched between the source and drain electrodes. As a forming method, PVD methods such as sputtering and vapor deposition are used in the same manner as ohmic metals.
[0013]
Next, the substrate on which the ohmic and gate electrodes are formed is moved into a plasma irradiation apparatus and irradiated with phosphine plasma (FIG. 2C). The phosphine plasma does not act on the GaAs surface under the electrode metal, but acts on the region between the gate-ohmic electrode and on the substrate surface other than the FET formation region, thereby removing and stabilizing the oxide film on the GaAs surface.
[0014]
As conditions for phosphine plasma treatment,
Substrate temperature: 285 [° C]
Pressure: 0.2 [Torr]
Power density: 0.18 [W / cm2]
Frequency: 13.56 [MHz]
Processing time: 5 minutes. The details of these conditions depend on the FET manufacturing process. Phosphine may contain hydrogen as a base gas, and the plasma frequency is not limited to 13.56 MHz, and may be 2.35 GHz generally used in an ECR plasma apparatus, for example.
[0015]
The oxide on the GaAs surface exposed to the plasma is removed by the phosphine plasma treatment, and this surface is further replaced with P or GaP in which As vacancies in GaAs are filled with P in phosphine. Since it is covered with P, it becomes a very stable surface. By simply removing the surface oxide, the stoichiometry of the surface changes, and the formation of surface states due to this change has the adverse effect of increasing the surface depletion layer on the device characteristics. This surface must be treated with phosphine plasma. Thus, the surface depletion layer is not increased because the surface modification is performed while maintaining the stoichiometry simultaneously with the removal of the surface oxide.
[0016]
FIG. 3 (b) shows the characteristics of the gate voltage (Vg) -drain current (Id) of the FET subjected to the phosphine plasma treatment according to the present invention, in which the influence of light irradiation is observed. The solid line shows the result of measurement in the dark state when there is light irradiation. At this time, the threshold voltage of the FET was almost the same, and the drain voltage was constant at 3V. For reference, FIG. 3A shows the characteristics of an FET not subjected to phosphine plasma treatment.
[0017]
In an FET that is not subjected to plasma treatment, the absolute value of the obtained gate current is small for almost the same gate voltage, and the change in the drain current with respect to the change in the gate voltage (gm: mutual conductance, shown in the figure). The slope of the characteristic line is also small. Furthermore, in the phosphine plasma-untreated FET, the difference in drain current due to the presence or absence of light irradiation is also large.
[0018]
On the other hand, in the FET subjected to the plasma treatment, not only the value of the drain current obtained for the same gate voltage itself is large, but also the mutual conductance which is the slope of the characteristic line is large. Also, the change in drain current due to light irradiation is much smaller than that of unprocessed FETs.
[0019]
【effect】
This is because phosphine plasma treatment limits the size of the surface depletion layer formed between the gate electrode and the source electrode, and suppresses the generation of surface states that cause this surface depletion layer. is there. If the generation of the surface level is limited, the spread of the surface depletion layer due to this level is limited, and the influence on the device characteristics can be eliminated.
[Brief description of the drawings]
FIGS. 1A to 1C are schematic process cross-sectional views illustrating an embodiment of a GaAs-FET manufacturing process according to the present invention.
FIGS. 2A to 2C are schematic process cross-sectional views showing an embodiment of the GaAs-FET manufacturing process according to the present invention.
FIG. 3 is a diagram showing electrical characteristics of a GaAs-FET according to the present invention. The solid line shows the result in the light irradiation, and the broken line shows the result in the dark state.
FIG. 4 is a diagram showing a cross-sectional structure of a conventional MESFET.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semi-insulating GaAs semiconductor substrate 3 ... Resist 5 ... n-type 1st impurity layer 7 ... Resist 9 ... n-type 2nd impurity layer 11 ... Phosphine plasma 13 ... Cap film 15 ... active layer 17 ... ohmic electrode 19 ... n + layer 21 ... gate electrode

Claims (2)

GaAs基板表面にソース電極とドレイン電極および該二つの電極の間にゲート電極を有する電界効果トランジスタにおいて,
該各電極を形成した後,少なくともソース電極とゲート電極との間の基板表面をホスフィンプラズマ処理する,
ことを特徴とする電界効果トランジスタの製造方法。
In a field effect transistor having a source electrode and a drain electrode on the surface of a GaAs substrate and a gate electrode between the two electrodes,
After forming each of the electrodes, at least the substrate surface between the source electrode and the gate electrode is treated with phosphine plasma.
A method of manufacturing a field effect transistor.
GaAs基板表面にソース電極とドレイン電極および該二つの電極の間にゲート電極を有する電界効果トランジスタにおいて,
該各電極を形成した後,少なくともソース電極とゲート電極との間の基板表面を水素プラズマ処理し,次いで燐プラズマ処理する
ことを特徴とする電界効果トランジスタの製造方法。
In a field effect transistor having a source electrode and a drain electrode on the surface of a GaAs substrate and a gate electrode between the two electrodes,
A method of manufacturing a field effect transistor, wherein after forming each electrode, at least a substrate surface between a source electrode and a gate electrode is subjected to a hydrogen plasma treatment and then a phosphorus plasma treatment .
JP26000598A 1998-09-14 1998-09-14 Method for manufacturing compound semiconductor device Expired - Fee Related JP4186267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26000598A JP4186267B2 (en) 1998-09-14 1998-09-14 Method for manufacturing compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26000598A JP4186267B2 (en) 1998-09-14 1998-09-14 Method for manufacturing compound semiconductor device

Publications (2)

Publication Number Publication Date
JP2000091346A JP2000091346A (en) 2000-03-31
JP4186267B2 true JP4186267B2 (en) 2008-11-26

Family

ID=17341988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26000598A Expired - Fee Related JP4186267B2 (en) 1998-09-14 1998-09-14 Method for manufacturing compound semiconductor device

Country Status (1)

Country Link
JP (1) JP4186267B2 (en)

Also Published As

Publication number Publication date
JP2000091346A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
US5041393A (en) Fabrication of GaAs integrated circuits
KR920002090B1 (en) Method of manufacturing field effect transistor
US7244973B2 (en) Field-effect semiconductor device and method for making the same
JPH11354541A (en) Semiconductor device and its manufacture
KR900005560B1 (en) Semiconductor device and manufacturing method thereof
JPH0260063B2 (en)
JP2001185717A (en) Semiconductor device and method of manufacturing it
EP0744773B1 (en) Method of manufacturing semiconductor device having a plasma-processed layer
JP4186267B2 (en) Method for manufacturing compound semiconductor device
JPH0212927A (en) Manufacture of mesfet
JP3211227B2 (en) Method for stabilizing surface of GaAs layer, method for manufacturing GaAs semiconductor device, and method for forming semiconductor layer
JPH04233771A (en) Field-effect transistor and its manuacture
JPS6292327A (en) Semiconductor device and manufacture thereof
JP3171902B2 (en) Method for manufacturing semiconductor device
JP4708722B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2893776B2 (en) Method for manufacturing semiconductor device
JPH06204259A (en) Manufacture of compound semiconductor device
JP3176835B2 (en) Method of forming compound semiconductor device
JPS6037173A (en) Manufacture of field effect transistor
JPH06232168A (en) Field effect transistor and its manufacture
JPS62243371A (en) Manufacture of semiconductor device
JPH0770544B2 (en) Method for manufacturing semiconductor device
JPH1174515A (en) Compound semiconductor device and its manufacture
JPS6158274A (en) Manufacture of semiconductor device
JPH0637116A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees