JP2893776B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2893776B2
JP2893776B2 JP34455589A JP34455589A JP2893776B2 JP 2893776 B2 JP2893776 B2 JP 2893776B2 JP 34455589 A JP34455589 A JP 34455589A JP 34455589 A JP34455589 A JP 34455589A JP 2893776 B2 JP2893776 B2 JP 2893776B2
Authority
JP
Japan
Prior art keywords
insulating film
active layer
gate electrode
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34455589A
Other languages
Japanese (ja)
Other versions
JPH03203246A (en
Inventor
泰 小瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP34455589A priority Critical patent/JP2893776B2/en
Publication of JPH03203246A publication Critical patent/JPH03203246A/en
Application granted granted Critical
Publication of JP2893776B2 publication Critical patent/JP2893776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超高周波帯で動作するショットキー障壁電界
効果トランジスタ(以下GaAsMESFETと略す)の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a Schottky barrier field effect transistor (hereinafter abbreviated as GaAsMESFET) operating in an ultra-high frequency band.

〔従来の技術〕[Conventional technology]

イオン注入法で形成されるGaAsMESFETに於いては性能
向上を図る為に抵抗性接触をもって設けるドレイン及び
ソース電極の直下に活性層より不純物濃度の高いコンタ
クト層が形成される。高出力GaAsFETの場合、ドレイン
・ゲート間耐圧を向上する目的でゲート端からドレイン
側コンタクト層までの距離をソース側よりも大きく取る
必要があり、これらゲート・ドレイン及びソース電極の
複雑な位置をもつデバイスを精度良く形成する為に第2
図(a)〜(g)に示す製造方法が取られた。
In a GaAs MESFET formed by an ion implantation method, a contact layer having a higher impurity concentration than the active layer is formed immediately below the drain and source electrodes provided with resistive contacts in order to improve the performance. In the case of high-power GaAsFETs, the distance from the gate edge to the drain-side contact layer must be larger than the source side in order to improve the drain-gate breakdown voltage, and these gate-drain and source electrodes have complicated positions. To form devices with high accuracy
The manufacturing method shown in FIGS.

従来技術によれば、イオン注入で活性層2を形成(同
図(a))後、ゲート電極材料として高融点金属11を被
着する(同図(b))。この高融点金属11をリアクティ
ブイオンエッチングにより加工し、ゲート電極を形成
(同図(c))後絶縁膜12を成長(同図(c))し、絶
縁膜12上にフォトレジストパターン13を形成して(同図
(e))、リアクティブイオンエッチングにより絶縁膜
12のパターニングを行う。このように加工されたゲート
電極11及び絶縁膜12をマスクとしてドレイン及びソース
電極下のコンタクト層、即ち活性層より不純物濃度の高
い層、をイオン注入により形成していた。
According to the prior art, after forming the active layer 2 by ion implantation (FIG. 1A), a high melting point metal 11 is applied as a gate electrode material (FIG. 2B). The refractory metal 11 is processed by reactive ion etching to form a gate electrode (FIG. 3C), and thereafter an insulating film 12 is grown (FIG. 3C), and a photoresist pattern 13 is formed on the insulating film 12. Formed (FIG. (E)), an insulating film is formed by reactive ion etching.
Perform 12 patterning. Using the gate electrode 11 and the insulating film 12 thus processed as a mask, a contact layer below the drain and source electrodes, that is, a layer having a higher impurity concentration than the active layer is formed by ion implantation.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した製造工程に於いては、イオン注入によりコン
タクト層を形成する際、絶縁膜12でおおわれた部分の
内、ゲート近停側壁部、即ち絶縁膜層の膜厚が厚い部分
を除いては、絶縁膜を介してGaAs基板上へスルー注入さ
れる。このスルー注入により形成された層(以下n′層
と称す)は、第2図(c)でのゲート加工の際のリアク
ティブイオンエッチング時に生じるGaAs表面付近に生じ
るダメージ層を補償する役目をするが、形成された注入
プロファイルの違いによりゲート・ドレイン間耐圧、ド
レイン抵抗、ダメージ層の補償のされ方に大きな有違差
が生じる為、RF特性の向上を図るにはn′層の設計が重
要となる。
In the above-described manufacturing process, when the contact layer is formed by ion implantation, of the portions covered with the insulating film 12, except for the portion near the gate stop side wall, that is, the portion where the thickness of the insulating film layer is large, Through injection is performed on the GaAs substrate via the insulating film. The layer formed by this through implantation (hereinafter referred to as n 'layer) serves to compensate for a damage layer generated near the GaAs surface at the time of reactive ion etching during gate processing in FIG. 2 (c). However, the difference in the formed injection profile causes a large difference in how the gate-drain breakdown voltage, drain resistance, and damage layer are compensated, so the design of the n 'layer is important to improve RF characteristics. Becomes

n′層の形成は絶縁膜層の膜厚及びコンタクト層の注
入条件で決定されるが従来技術では、絶縁膜層の膜厚
は、ソース側の側壁量、つまりソース側コンタクト層・
ゲート間距離の設計で制限される為、n′層形成の設計
を単独で行う事が不可能であった。
The formation of the n 'layer is determined by the thickness of the insulating film layer and the conditions for implanting the contact layer.
Since the design of the distance between the gates is limited, it is impossible to design the n 'layer independently.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の半導体装置の製造方法は、半絶縁性GaAs基板
に不純物を含む活性層を形成する工程と、該活性層上に
選択的にゲート電極を形成する工程と、該ゲート電極を
含む全面に絶縁膜を形成する工程と、前記活性層上およ
び前記ゲート電極上に前記絶縁膜が所定の膜厚残存する
ように該絶縁膜をリアクティブイオンエッチングにより
全面エッチングする工程と、前記絶縁膜上に選択的にマ
スク材を形成する工程と、リアクティブイオンエッチン
グにより前記絶縁膜の前記マスク材に覆われていない部
分を選択的に除去して前記ゲート電極の両側壁および前
記活性層上の前記ゲート電極の一方の側壁から延在する
部分に前記絶縁膜を残存させる工程と、イオン注入によ
り前記活性層より不純物濃度の高いコンタクト層を前記
活性層に形成する工程とを含むことを特徴としている。
A method for manufacturing a semiconductor device according to the present invention includes a step of forming an active layer containing impurities on a semi-insulating GaAs substrate, a step of selectively forming a gate electrode on the active layer, and a step of forming an entire surface including the gate electrode. Forming an insulating film, etching the entire surface of the insulating film by reactive ion etching such that the insulating film remains on the active layer and the gate electrode by a predetermined thickness, and Selectively forming a mask material, and selectively removing portions of the insulating film that are not covered by the mask material by reactive ion etching to form the gate on both side walls of the gate electrode and the active layer. Leaving the insulating film in a portion extending from one side wall of the electrode, and forming a contact layer having a higher impurity concentration than the active layer in the active layer by ion implantation And is characterized by including.

〔実施例〕〔Example〕

次に、図面を参照して本発明をより詳細に説明する。 Next, the present invention will be described in more detail with reference to the drawings.

第1図(a)〜(d)は本発明の一実施例を工程順に
示したものである。半絶縁性GaAs基板1にイオン注入に
より活性層2を形成後、高融点金属であるWSi11を全面
被着し、フォトレジスト加工及びリアクティブイオンエ
ッチングによりゲート電極11′を形成し、さらに絶縁膜
層としてSiO212の成長を行う(第1図(a))。以上は
従来工程と同様である。次にリアクティブイオンエッチ
ングにより、SiO2の全面エッチングを行い、平坦部にて
所望の膜厚を得る(第1図(b))。これ以降の工程は
従来技術(第2図(e)〜(g))と同様であるが、こ
の際ソース側の側壁量(第1図(c)のlS)は最初につ
けたSiO2膜12の膜厚で決定され、本発明によるリアクテ
ィブイオンエッチング工程の追加により変化はしない。
1 (a) to 1 (d) show an embodiment of the present invention in the order of steps. After an active layer 2 is formed on a semi-insulating GaAs substrate 1 by ion implantation, a high-melting-point metal WSi11 is coated on the entire surface, and a gate electrode 11 'is formed by photoresist processing and reactive ion etching. For growing SiO 2 12 (FIG. 1 (a)). The above is the same as the conventional process. Next, the entire surface of SiO 2 is etched by reactive ion etching to obtain a desired film thickness on the flat portion (FIG. 1B). Although the subsequent processes are the same as the prior art (FIG. 2 (e) ~ (g)) , SiO 2 film was initially attached (l S of FIG. 1 (c)) the side wall of the case source It is determined by the film thickness of 12, and does not change by the addition of the reactive ion etching process according to the present invention.

以上に説明した一実施例において、絶縁膜12のSiO2
代わりにSiN等のリアクティブイオンエッチングが可能
な他の絶縁膜でも利用できる。
In the embodiment described above, instead of SiO 2 of the insulating film 12, another insulating film capable of reactive ion etching such as SiN can be used.

〔発明の効果〕〔The invention's effect〕

本発明によれば、ソース側の側壁量を変える事なく、
スルー注入によるn′層形成時の絶縁膜厚の選択が可能
となり、ソース側コンタクト層・ゲート間距離を決定す
る為に決定された絶縁膜の膜厚、コンタクト層の設計に
対応するコンタクト層の注入条件に対して絶縁膜12′の
膜厚を選択する事によりn′層の設計が単独で行える
為、高ゲート・ドレイン間耐圧、低ドレイン抵抗のデバ
イスが得られ、高性能な高出力GaAsFETの実現が期待で
きる。
According to the present invention, without changing the amount of side wall on the source side,
The thickness of the insulating film can be selected when the n 'layer is formed by the through injection, and the thickness of the insulating film determined to determine the distance between the source-side contact layer and the gate, and the thickness of the contact layer corresponding to the design of the contact layer By selecting the thickness of the insulating film 12 'for the implantation conditions, the design of the n' layer can be performed independently, so that a device with high gate-drain breakdown voltage and low drain resistance can be obtained, and a high-performance, high-output GaAs FET. Can be expected to be realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(d)は一実施例を工程順に示した断面
図、第2図(a)〜(g)は従来技術を工程順に示した
断面図である。 1……半絶縁性GaAs基板、2……活性層、3,3′……n+
層、4……コンタクト層、11……WSi、11′……WSiゲー
ト電極、12……絶縁膜、12′……絶縁膜、13……側壁加
工時のフォトレジスト。
1 (a) to 1 (d) are sectional views showing an embodiment in the order of steps, and FIGS. 2 (a) to 2 (g) are sectional views showing the prior art in the order of steps. 1 ... Semi-insulating GaAs substrate, 2 ... Active layer, 3,3 '... n +
Layer 4, contact layer, 11 WSi, 11 'WSi gate electrode, 12 insulating film, 12' insulating film, 13 photoresist at the time of sidewall processing.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半絶縁性GaAs基板に不純物を含む活性層を
形成する工程と、該活性層上に選択的にゲート電極を形
成する工程と、該ゲート電極を含む全面に絶縁膜を形成
する工程と、前記活性層上および前記ゲート電極上に前
記絶縁膜が所定の膜厚残存するように該絶縁膜をリアク
ティブイオンエッチングにより全面エッチングする工程
と、前記絶縁膜上に選択的にマスク材を形成する工程
と、リアクティブイオンエッチングにより前記絶縁膜の
前記マスク材に覆われていない部分を選択的に除去して
前記ゲート電極の両側壁および前記活性層上の前記ゲー
ト電極の一方の側壁から延在する部分に前記絶縁膜を残
存させる工程と、イオン注入により前記活性層より不純
物濃度の高いコンタクト層を前記活性層に形成する工程
とを含むことを特徴とする半導体装置の製造方法。
A step of forming an active layer containing impurities on a semi-insulating GaAs substrate; a step of selectively forming a gate electrode on the active layer; and forming an insulating film on the entire surface including the gate electrode. A step of etching the insulating film entirely by reactive ion etching so that the insulating film remains on the active layer and the gate electrode by a predetermined thickness; and selectively masking the insulating film on the insulating film. And selectively removing portions of the insulating film that are not covered by the mask material by reactive ion etching to thereby remove both side walls of the gate electrode and one side wall of the gate electrode on the active layer And forming a contact layer having a higher impurity concentration than the active layer in the active layer by ion implantation. Semiconductor device manufacturing method.
JP34455589A 1989-12-28 1989-12-28 Method for manufacturing semiconductor device Expired - Fee Related JP2893776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34455589A JP2893776B2 (en) 1989-12-28 1989-12-28 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34455589A JP2893776B2 (en) 1989-12-28 1989-12-28 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH03203246A JPH03203246A (en) 1991-09-04
JP2893776B2 true JP2893776B2 (en) 1999-05-24

Family

ID=18370186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34455589A Expired - Fee Related JP2893776B2 (en) 1989-12-28 1989-12-28 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2893776B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824763B (en) * 2012-11-19 2016-08-17 上海华虹宏力半导体制造有限公司 The method improving the tungsten silicide bigrid edge roughness of self-aligned contact hole

Also Published As

Publication number Publication date
JPH03203246A (en) 1991-09-04

Similar Documents

Publication Publication Date Title
KR920002090B1 (en) Method of manufacturing field effect transistor
JPH02148738A (en) Manufacture of field effect transistor
JPH05109761A (en) Semiconductor dev ice and manufacture of the same
US4997779A (en) Method of making asymmetrical gate field effect transistor
US5001077A (en) Method of producing an asymmetrically doped LDD MESFET
JP2901905B2 (en) Method of manufacturing field effect transistor having self-aligned LDD structure with T-type gate
JP2893776B2 (en) Method for manufacturing semiconductor device
JP3164080B2 (en) Field effect transistor and method of manufacturing the same
JPH04291732A (en) Manufacture of field-effect transistor
JPH0774184A (en) Manufacture of schottky gate field-effect transistor
KR0141780B1 (en) The manufacture of semiconductor device
JP2900436B2 (en) Method for manufacturing semiconductor device
JP3217714B2 (en) Method for forming gate of field effect transistor
JPH0233940A (en) Manufacture of semiconductor device
JPH06177161A (en) Manufacture of metal schottky junction field-effect transistor
JP3032458B2 (en) Method for manufacturing field effect transistor
JPH04369841A (en) Compound semiconductor device and manufacture thereof
JPH028454B2 (en)
JPH0595004A (en) Manufacture of field-effect transistor
JPH06260510A (en) Field effect transistor and its manufacturing method
JPH02181440A (en) Manufacture of field-effect transistor
JPS58123777A (en) Schottky gate field-effect transistor and its manufacture
JPS59224178A (en) Manufacture of field effect transistor
JP2004214321A (en) Manufacturing method of semiconductor device
JPH04196134A (en) Manufacture of field-effect transistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees