JPH08204189A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH08204189A
JPH08204189A JP1315895A JP1315895A JPH08204189A JP H08204189 A JPH08204189 A JP H08204189A JP 1315895 A JP1315895 A JP 1315895A JP 1315895 A JP1315895 A JP 1315895A JP H08204189 A JPH08204189 A JP H08204189A
Authority
JP
Japan
Prior art keywords
source
region
gate electrode
mask
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1315895A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kaigawa
裕之 貝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP1315895A priority Critical patent/JPH08204189A/en
Publication of JPH08204189A publication Critical patent/JPH08204189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To prevent short channel effect by introducing impurities in a region turning to a source and drain region, by obliquely implanting ions in order that impurities may not be implanted in the vicinity of a gate electrode. CONSTITUTION: After a gate electrode 4 is formed, one side of a region where a source and drain is formed is covered with a mask 8, and ions are implanted from the direction inclined to the normal of a semiconductor substrate 1 by an angle θ, in order that a region (what is called a shadow part) in which impurities are not implanted may be formed in the vicinity of the gate electrode 4. After the mask 8 is eliminated, the other side of the region where the source and drain is formed is covered with a mask 8', and ions are implanted from the direction inclined to the normal of the semiconductor substrate 1 by an angle -θ. Hence a second shadow part is formed in the vicinity of the gate electrode 4. A source/drain region 5 is formed by heat-treating the semiconductor substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造法に関
し、特に短チャンネル効果を防止できるMOSトランジ
スタの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a MOS transistor capable of preventing a short channel effect.

【0002】[0002]

【従来の技術】MOSトランジスタはバイポーラトラン
ジスタに比べて構造が簡単で製造工程も少ないので、高
集積化が容易で機能あたりのコストも安いという特徴を
持っている。MOSトランジスタの従来の製造方法を図
3を参照に説明する。まず同図(a)に示すように、半
導体基板1上に素子分離酸化膜2およびゲート酸化膜3
を形成する。次いで、同図(b)に示すように、CVD
法等により多結晶シリコン膜を堆積した後、エッチング
によりゲート電極4を形成する。そして、ゲート電極4
をマスクとしてイオン注入を行う。次いで、同図(c)
に示すように、熱処理を施すことによりソース/ドレイ
ン領域5を形成する。その後CVD法により半導体基板
1を覆うようにPSG膜等の層間絶縁膜6を形成し、層
間絶縁膜6にコンタクトホールを開口してAl等の導電
材料を蒸着してソース/ドレイン領域5と電気的に接続
する電極7を形成する。以上のようにして、従来はMO
Sトランジスタを製造していた。
2. Description of the Related Art A MOS transistor has the features that it has a simpler structure and fewer manufacturing steps than a bipolar transistor, so that high integration is easy and the cost per function is low. A conventional method of manufacturing a MOS transistor will be described with reference to FIG. First, as shown in FIG. 3A, an element isolation oxide film 2 and a gate oxide film 3 are formed on a semiconductor substrate 1.
To form. Then, as shown in FIG.
After depositing a polycrystalline silicon film by a method or the like, the gate electrode 4 is formed by etching. And the gate electrode 4
Is used as a mask to perform ion implantation. Then, the same figure (c)
As shown in FIG. 5, heat treatment is performed to form the source / drain regions 5. After that, an interlayer insulating film 6 such as a PSG film is formed so as to cover the semiconductor substrate 1 by the CVD method, a contact hole is opened in the interlayer insulating film 6, and a conductive material such as Al is deposited to electrically connect with the source / drain regions 5. The electrode 7 that is electrically connected is formed. As described above, the conventional MO
Manufactured S-transistor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図3に
示すような製造方法では、ソース/ドレイン領域5をゲ
ート電極4をマスクにイオン注入して熱処理することで
形成していたので、MOSトランジスタの最終的な構造
では、ソース/ドレイン領域5の不純物が横方向に拡散
して、チャネルLがゲート電極4の幅(=ゲート長)W
より短い構造となっていた。
However, in the manufacturing method as shown in FIG. 3, since the source / drain regions 5 are formed by ion implantation using the gate electrode 4 as a mask and heat treatment, the MOS transistor of the MOS transistor is formed. In the final structure, the impurities in the source / drain regions 5 are diffused in the lateral direction, and the channel L has a width (= gate length) W of the gate electrode 4.
It had a shorter structure.

【0004】特に、最小ルールでゲート電極が形成され
たMOSトランジスタでは、チャネルLも非常に短くな
っており、次のような問題が起こっていた。すなわち、
半導体基板表面にチャネルが形成されないような電圧を
ゲート電極に印加した状態ではソースとチャネル領域間
に電位障壁が作られているが、チャネルLが非常に短く
なった場合、ドレインの空乏層がソース近傍の電位障壁
近くまで延び、ドレイン電圧の増加により電位障壁の高
さが低くなり、チャネル領域が形成されていなくても、
ソースからキャリアの注入が起こりはじめて電流が流れ
る、いわゆる短チャネル効果が生じていた。
Particularly, in the MOS transistor in which the gate electrode is formed according to the minimum rule, the channel L is also very short, and the following problems occur. That is,
A potential barrier is created between the source and the channel region when a voltage is applied to the gate electrode so that a channel is not formed on the surface of the semiconductor substrate. However, when the channel L becomes very short, the depletion layer of the drain becomes the source. It extends near the potential barrier in the vicinity, and the height of the potential barrier becomes low due to the increase of the drain voltage, and even if the channel region is not formed,
There was a so-called short channel effect in which current started to flow when carriers were injected from the source.

【0005】本発明は、上述した問題点に鑑み、短チャ
ネル効果を防止することができる半導体装置の製造方法
を提供するものである。
In view of the above problems, the present invention provides a method of manufacturing a semiconductor device capable of preventing the short channel effect.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の目的を
達成するために次のような構成をとる。すなわち、本発
明の半導体装置の製造方法は、半導体基板表面にゲート
酸化膜を形成する工程と、前記ゲート酸化膜上にゲート
電極を形成する工程と、ソース及びドレイン領域が形成
される領域の一方側をマスクで覆った後前記一方側のマ
スク側の斜め方向からイオン注入する工程と、前記マス
クを除去し、他方側の領域をマスクで覆った後前記他方
側のマスク側の斜め方向からイオン注入する工程と、熱
処理を施してソース及びドレイン領域を形成する工程と
を有することを特徴とするものである。
The present invention has the following constitution in order to achieve the above object. That is, a method of manufacturing a semiconductor device according to the present invention includes a step of forming a gate oxide film on the surface of a semiconductor substrate, a step of forming a gate electrode on the gate oxide film, and one of a region where a source and drain region is formed. After the side is covered with a mask, the step of implanting ions from a diagonal direction on the one side of the mask, and the step of removing the mask and covering the region on the other side with a mask, then the ions from the diagonal side of the other side of the mask The method is characterized by including a step of implanting and a step of performing heat treatment to form source and drain regions.

【0007】[0007]

【作用】本発明の半導体装置の製造方法は、ゲート電極
の近傍に不純物が打ち込まれないように斜め方向からイ
オン注入してソース及びドレイン領域となる領域に不純
物を打ち込んでいるので、その後に熱処理を施してソー
ス及びドレイン領域が横方向に拡散しても、チャネルを
ゲート電極4の幅とほぼ同一の長さにできるので、短チ
ャネル効果を有効に防止することができる。
According to the method of manufacturing a semiconductor device of the present invention, the impurity is implanted into the source and drain regions by oblique ion implantation so that the impurity is not implanted in the vicinity of the gate electrode. Even if the source and drain regions are laterally diffused by applying the above, since the channel can be made to have almost the same length as the width of the gate electrode 4, the short channel effect can be effectively prevented.

【0008】[0008]

【実施例】以下、本発明の実施例を、図1を参照しつつ
説明する。尚、従来と同一部分や相当部分には同一の符
号を付している。本発明の製造方法は、まず同図(a)
に示すように、半導体基板1上に素子分離酸化膜2を形
成した後、素子形成領域に膜厚30Å〜200Åのゲー
ト酸化膜3を形成する。次いで、同図(b)に示すよう
に、CVD法等により多結晶シリコン膜を堆積した後、
エッチングによりゲート長が約0.3μm程度のゲート
電極4を形成する。そして、ソース及びドレイン領域が
形成される領域の一方側をレジスト等のマスク8で覆
い、ゲート電極4の近傍に不純物が打ち込まれない領域
(いわゆる影部)が形成されるように、半導体基板1の
法線方向に対してθだけ傾けた斜め方向からイオン注入
を行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG. Incidentally, the same reference numerals are given to the same or corresponding portions as in the conventional case. In the manufacturing method of the present invention, first, FIG.
As shown in FIG. 3, after the element isolation oxide film 2 is formed on the semiconductor substrate 1, the gate oxide film 3 having a film thickness of 30Å to 200Å is formed in the element formation region. Then, as shown in FIG. 2B, after depositing a polycrystalline silicon film by a CVD method or the like,
The gate electrode 4 having a gate length of about 0.3 μm is formed by etching. Then, one side of the region where the source and drain regions are formed is covered with a mask 8 such as a resist, so that a region (so-called shadow) where impurities are not implanted is formed in the vicinity of the gate electrode 4. Ion implantation is performed from an oblique direction that is tilted by θ with respect to the normal direction of.

【0009】次いで、同図(c)に示すように、マスク
8を除去した後、ソース及びドレイン領域が形成される
領域の他方側をマスク8’で覆い、半導体基板1の法線
方向に対して−θだけ傾けた斜め方向からイオン注入を
行い、図(b)の工程と同様に、ゲート電極4の近傍に
第2の影部が形成される。次いで、同図(d)に示すよ
うに、半導体基板1に600℃〜1000℃の熱処理を
施すことによりソース/ドレイン領域5を形成する。そ
の後、CVD法により半導体基板1を覆うようにPSG
膜等の層間絶縁膜6を形成し、層間絶縁膜6にコンタク
トホールを開口してAl等の導電材料を蒸着してソース
/ドレイン領域5と電気的に接続する電極7を形成す
る。
Next, as shown in FIG. 1C, after the mask 8 is removed, the other side of the region where the source and drain regions are formed is covered with a mask 8 ', and the direction normal to the semiconductor substrate 1 is set. Then, ion implantation is performed from an oblique direction inclined by −θ, and a second shadow portion is formed in the vicinity of the gate electrode 4 as in the step of FIG. Then, as shown in FIG. 3D, the semiconductor substrate 1 is heat-treated at 600 ° C. to 1000 ° C. to form the source / drain regions 5. After that, the PSG is formed by the CVD method so as to cover the semiconductor substrate 1.
An interlayer insulating film 6 such as a film is formed, a contact hole is opened in the interlayer insulating film 6, and a conductive material such as Al is deposited to form an electrode 7 electrically connected to the source / drain region 5.

【0010】以上のような、MOSトランジスタの製造
方法では、図2に示すように、半導体基板1の法線方向
に対してθだけ傾けた斜め方向からイオン注入している
ので、ゲート電極4の端からL’の距離にある領域では
不純物が打ち込まれない領域(いわゆる影部)が形成さ
れる。そして、次工程で熱処理が施されてソース/ドレ
イン領域5が横方向に拡散しても、ゲート電極4の端を
超えて拡散されることはないので、チャネルとゲート長
をほぼ同一の長さとすることができる。
In the above-described MOS transistor manufacturing method, as shown in FIG. 2, since the ion implantation is performed from an oblique direction inclined by θ with respect to the normal direction of the semiconductor substrate 1, the gate electrode 4 is formed. In a region located at a distance L ′ from the edge, a region (so-called shadow portion) where impurities are not implanted is formed. Even if the source / drain regions 5 are laterally diffused by heat treatment in the next step, they are not diffused beyond the end of the gate electrode 4, so that the channel and the gate length are set to be almost the same length. can do.

【0011】[0011]

【発明の効果】以上、説明したように本発明の半導体装
置の製造方法は、ゲート電極の近傍に不純物が打ち込ま
れないように斜め方向からイオン注入してソース及びド
レイン領域となる領域に不純物を打ち込んでいるので、
その後に熱処理を施してソース及びドレイン領域が横方
向に拡散しても、チャネルをゲート長とほぼ同一の長さ
にできるので、短チャネル効果を有効に防止することが
できる。
As described above, according to the method of manufacturing a semiconductor device of the present invention, the impurity is implanted into the regions to be the source and drain regions by obliquely ion-implanting so that the impurities are not implanted in the vicinity of the gate electrode. Since I am driving in,
Even if the source and drain regions are laterally diffused by heat treatment thereafter, the channel can be made to have almost the same length as the gate length, so that the short channel effect can be effectively prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を示す説明図。FIG. 1 is an explanatory view showing a manufacturing method of the present invention.

【図2】本発明の作用を示す説明図。FIG. 2 is an explanatory view showing the operation of the present invention.

【図3】従来の製造方法を示す説明図。FIG. 3 is an explanatory view showing a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 素子分離酸化膜 3 ゲート酸化膜 4 ゲート電極 5 ソース/ドレイン領域 6 層間絶縁膜 7 電極 8 レジスト 1 Semiconductor Substrate 2 Element Isolation Oxide Film 3 Gate Oxide Film 4 Gate Electrode 5 Source / Drain Region 6 Interlayer Insulation Film 7 Electrode 8 Resist

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板表面にゲート酸化膜を形成す
る工程と、前記ゲート酸化膜上にゲート電極を形成する
工程と、ソース及びドレイン領域が形成される領域の一
方側をマスクで覆った後前記一方側のマスク側の斜め方
向からイオン注入する工程と、前記マスクを除去し、他
方側の領域をマスクで覆った後前記他方側のマスク側の
斜め方向からイオン注入する工程と、熱処理を施してソ
ース及びドレイン領域を形成する工程とを有することを
特徴とする半導体装置の製造方法。
1. A step of forming a gate oxide film on a surface of a semiconductor substrate, a step of forming a gate electrode on the gate oxide film, and after covering one side of a region where source and drain regions are formed with a mask. A step of implanting ions from an oblique direction on the one mask side, a step of removing the mask, covering the other area with a mask, and then implanting ions from an oblique direction on the other mask side, and a heat treatment. And forming source and drain regions.
JP1315895A 1995-01-30 1995-01-30 Manufacture of semiconductor device Pending JPH08204189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1315895A JPH08204189A (en) 1995-01-30 1995-01-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1315895A JPH08204189A (en) 1995-01-30 1995-01-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH08204189A true JPH08204189A (en) 1996-08-09

Family

ID=11825373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1315895A Pending JPH08204189A (en) 1995-01-30 1995-01-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH08204189A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077842A1 (en) * 1999-06-15 2000-12-21 Infineon Technologies Ag Method for producing a non-volatile semiconductor memory cell
KR100825892B1 (en) * 2001-05-11 2008-04-28 하이닉스 세미컨덕터 아메리카 인코포레이티드 Flash memory cell fabrication sequence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587482A (en) * 1978-12-25 1980-07-02 Fujitsu Ltd Mis type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587482A (en) * 1978-12-25 1980-07-02 Fujitsu Ltd Mis type semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077842A1 (en) * 1999-06-15 2000-12-21 Infineon Technologies Ag Method for producing a non-volatile semiconductor memory cell
KR100825892B1 (en) * 2001-05-11 2008-04-28 하이닉스 세미컨덕터 아메리카 인코포레이티드 Flash memory cell fabrication sequence

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
US4517729A (en) Method for fabricating MOS device with self-aligned contacts
US5536957A (en) MOS field effect transistor having source/drain regions surrounded by impurity wells
US5527725A (en) Method for fabricating a metal oxide semiconductor field effect transistor
JP2965283B2 (en) Method for manufacturing thin film transistor
US5502322A (en) Transistor having a nonuniform doping channel
EP0225426B1 (en) A method of fabricating a mos transistor on a substrate
JPH08204189A (en) Manufacture of semiconductor device
JP3257317B2 (en) Method for manufacturing semiconductor device
US5620911A (en) Method for fabricating a metal field effect transistor having a recessed gate
JP3131850B2 (en) Method for manufacturing thin film transistor
JPH04316333A (en) Manufacture of thin-film transistor
JP2557206B2 (en) Method for manufacturing semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JPS62232164A (en) Semiconductor device and manufacture of the same
JPS63227059A (en) Semiconductor device and manufacture thereof
JPH0982949A (en) Semiconductor device and the manufacture
JP2923772B2 (en) Method for manufacturing thin film transistor
JPH08213601A (en) Semiconductor device and its manufacturing method
JP2789998B2 (en) Semiconductor device
JPH06151842A (en) Semiconductor device and its manufacture
JP2003115585A (en) Method for manufacturing semiconductor device
JPH08153878A (en) Thin film transistor and fabrication thereof
JPH0424876B2 (en)
US20040161901A1 (en) Method for fabricating transistor of semiconductor device