JPS61168260A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61168260A
JPS61168260A JP863385A JP863385A JPS61168260A JP S61168260 A JPS61168260 A JP S61168260A JP 863385 A JP863385 A JP 863385A JP 863385 A JP863385 A JP 863385A JP S61168260 A JPS61168260 A JP S61168260A
Authority
JP
Japan
Prior art keywords
film
semiconductor
type
impurity
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP863385A
Other languages
Japanese (ja)
Inventor
Masaoki Kajiyama
梶山 正興
Kazuya Kikuchi
菊池 和也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP863385A priority Critical patent/JPS61168260A/en
Publication of JPS61168260A publication Critical patent/JPS61168260A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To readily manufacture bipolar transistors of high density in a high yield at a high speed by forming a base leading electrode and an emitter electrode at an ultrafine separating interval by a self-alignment. CONSTITUTION:After an oxide preventive film 26, an accumulated film 27 and an accumulated film 28 including an impurity are formed on an active region 23 of a transistor, a semiconductor film 30 is formed. Then, an impurity is diffused in the semiconductor film 30 from laminated films 26-28 by a heat treatment. Then, a semiconductor film of an impurity diffused region having a fast etching rate is selectively removed by the difference of the etching rate of the film 30, and a region 30b in which the impurity is not diffused is allowed to remain. Subsequently, the films 26-28 are implanted, and other conductive type impurity is implanted to the film 30b. Then, the films 27, 28 are removed, with the film 26 as a mask an insulating film 31 is formed on the film 30b. Then, the film 26 is removed, and windows for diffusing an emitter and contacting the emitter are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法で、特に高速・高密度
なバイポーラ型半導体素子の製造方法に関ノー。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor device, and particularly relates to a method of manufacturing a high-speed, high-density bipolar type semiconductor element.

゛するものである。It is something to do.

従来の技術 バイポーラ型トランジスタにおいて、高速・高密度化を
実現するために、パターンの微細化ならびに接合容量の
低減化をはかる必要がある。そこで、従来、多結晶シリ
コン膜(PolySi膜)でベース引き出し電極を形成
することによって、パターンの微細化ならびに接合容量
の低減化の検討がナサレテイル。例エバ、IEEE  
JOURNAL  0FSOLID−8TATE CI
RCUITS Vol、5c−16゜No、5.0CT
OBER1981T:Id、第3図に示す製造方法でベ
ース引き出し電極となるPo1ySi膜6aの形成を行
なっている。
In order to achieve high speed and high density in conventional bipolar transistors, it is necessary to miniaturize the pattern and reduce the junction capacitance. Therefore, conventional studies have been conducted to miniaturize the pattern and reduce the junction capacitance by forming the base lead electrode with a polycrystalline silicon film (PolySi film). Example Eva, IEEE
JOURNAL 0FSOLID-8TATE CI
RCUITS Vol, 5c-16°No, 5.0CT
OBER1981T:Id, the Po1ySi film 6a which becomes the base extraction electrode is formed by the manufacturing method shown in FIG.

発明が解決しようとする問題点 しかし、第3図に示すような製造方法においては、下記
のような問題点がある。
Problems to be Solved by the Invention However, the manufacturing method shown in FIG. 3 has the following problems.

(1)  エミッタ電極となるPo l yS i膜6
bを精度良く、微細に形成することが困難である。っ址
り、エミッタ電極となるPo1y S i膜6は、第3
図f(D如<、S 102膜8をマスクにしてボロンを
イオン注入したボロンドープトPo1ySi膜6aとノ
ンドープトPo1ySi膜6のエツチングレートの差を
利用してエツチングレートの速いノンドープ)Poly
Si膜6をエツチングして形成する。ところが、ボロン
ドープトPo1ySi膜6aを形成した際、S i02
膜8領域下も周囲一部力にボロンドープトPo1y S
i膜6aになる。そのため、ノンドープ)PolySi
膜6がエツチングできるように、Si3N4膜7をサイ
ドエッチする必要がある。また、ノンドープ)Poly
Si膜6とボロンドープ)PolySi膜6aを完全6
a離するためには、ノンドープ) Po1y Si膜6
aの膜厚分だけエツチングする必要がある。そのため、
少なくともノンドープトPo1ySi膜6の膜厚分に相
当するサイドエッチが入ってし1う。
(1) PolyS i film 6 serving as an emitter electrode
It is difficult to form b precisely and finely. The PolySi film 6, which becomes the emitter electrode, is
FIG.
It is formed by etching the Si film 6. However, when forming the boron-doped Po1ySi film 6a, Si02
Boron-doped Po1y S is applied to a part of the periphery under the film 8 region.
It becomes an i-film 6a. Therefore, non-doped) PolySi
It is necessary to side-etch the Si3N4 film 7 so that the film 6 can be etched. Also, non-doped) Poly
Si film 6 and boron doped) PolySi film 6a is completely 6
To separate a, use non-doped) PolySi film 6
It is necessary to etch the film by the thickness of a. Therefore,
A side etch corresponding to at least the thickness of the non-doped Po1ySi film 6 is included.

したがって、ボロンドープ) Po1y Si膜6aの
S 102膜8領域下へのはいりこみ、Si3N4膜7
のサイドエッチ量、ノンドープトPo1ySi膜6の膜
厚のバラツキ、ノンドープ) Po1y 5ii6のエ
ツチング時間のバラツキ等の影響によってノンドープ)
PolySi膜6のサイドエッチ量が異なる。そのため
、エミッタ電極となるノンドープ) Po1y Si膜
6のパターン寸法が変化し、精度良く微細に形成するこ
とが困難である。
Therefore, the boron-doped) Po1ySi film 6a intrudes under the S102 film 8 region, and the Si3N4 film 7
Due to the influence of side etching amount, variation in film thickness of non-doped Po1ySi film 6, variation in etching time of Po1y5ii6 (non-doped)
The amount of side etching of the PolySi film 6 is different. Therefore, the pattern dimensions of the non-doped PolySi film 6 which becomes the emitter electrode change, making it difficult to form it precisely and finely.

(2) 5i02膜10形成の際、ストレスが発生しや
すい。つ捷り、第3図0の如く、ノンドープ)Poly
Sf膜6とボロンドープトPo1ySi膜6aをエツチ
ングによって分離した後、第3図(2)の如く、St○
2膜1o全1oした場合、ノンドープトPo1y St
膜6とボロンドープトPo1y Si膜6a間が凹部形
状になっているため、酸化によるストレスが凹部にかか
る。この場合、間隔が狭くなるほどストレスが大きくな
る。したがって、間隔を狭く形成するとストレスによる
欠陥が生じやすく、歩留りの低下の原因になるという問
題がある。
(2) Stress is likely to occur when forming the 5i02 film 10. Threaded, as shown in Figure 3 0, non-doped) Poly
After separating the Sf film 6 and the boron-doped Po1ySi film 6a by etching, as shown in FIG.
When 2 films are 1o and 1o in total, non-doped Po1y St
Since the space between the film 6 and the boron-doped PolySi film 6a is in the shape of a recess, stress due to oxidation is applied to the recess. In this case, the narrower the interval, the greater the stress. Therefore, if the spacing is narrow, defects are likely to occur due to stress, which causes a decrease in yield.

本発明は、このような従来の問題に鑑み、これらの問題
を解決した高速・高密度なバイポーラトランジスタを有
する半導体装置の製造方法を提供することを目的とする
In view of these conventional problems, it is an object of the present invention to provide a method for manufacturing a semiconductor device having high-speed, high-density bipolar transistors that solves these problems.

問題点を解決するだめの手段 本発明は上記問題点を解決するために、トランジスタの
活性領域上に酸化防止膜、堆積被膜および不純物を含ん
だ堆積被膜(例えばPSG膜)からなる所定の積層膜を
形成した後、半導体膜(例えばPo1y−8i膜)を形
成し、熱処理により積層膜から選択的に半導体膜中へ不
純物を拡散して不純物拡散領域を形成する。その後、半
導体膜のエツチングレートの差によって、選択的にエツ
チングレートの速い不純物拡散領域の半導体膜は除去し
、エツチングレートの遅い不純物を拡散させていない領
域の半導体膜を残在させる。その後、前記積層膜を注入
マスクに他方導電形の不純物を前記半導体膜にイオン注
入する。その後、前記堆積被膜を除去した後、前記酸化
防止膜をマスクにして、前記半導体膜上に絶縁膜を形成
する。その後、前記酸化防止膜を除去し、エミッタ拡散
用およびエミッタコンタクト用窓を開口するものである
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a predetermined laminated film consisting of an oxidation prevention film, a deposited film, and a deposited film containing impurities (for example, a PSG film) on the active region of a transistor. After forming a semiconductor film (for example, a Po1y-8i film), an impurity is selectively diffused from the laminated film into the semiconductor film by heat treatment to form an impurity diffusion region. Thereafter, depending on the difference in the etching rate of the semiconductor films, the semiconductor film in the impurity diffusion region where the etching rate is high is selectively removed, and the semiconductor film in the region where the impurity with the slow etching rate is not diffused is left. Thereafter, impurities of the other conductivity type are ion-implanted into the semiconductor film using the laminated film as an implantation mask. Thereafter, after removing the deposited film, an insulating film is formed on the semiconductor film using the anti-oxidation film as a mask. Thereafter, the anti-oxidation film is removed and windows for emitter diffusion and emitter contact are opened.

作  用 本発明は上記した構成により、 (1)ベース引き出し電極となる半導体膜と、エミッタ
拡散用およびエミッタコンタクト窓は、前記積層膜パタ
ーンに対して、セルファジィンメントで形成できる。
Effects The present invention has the above-described configuration. (1) The semiconductor film serving as the base lead-out electrode, the emitter diffusion window and the emitter contact window can be formed by self-adhesion on the laminated film pattern.

(2)前記ペース引き出し電極と々る半導体膜と、前記
エミッタコンタクト窓に接続する電極との分離間隔は、
絶縁膜の膜厚で決まるので、エミッタ・ペース電極間の
微細々分離が可能となる。
(2) The separation interval between the semiconductor film on which the pace extraction electrode reaches and the electrode connected to the emitter contact window is:
Since it is determined by the thickness of the insulating film, fine separation between the emitter and the pace electrode is possible.

(3)活性領域上の不純物拡散領域の半導体膜を除去し
た後、酸化防止膜をマスクにして残在した半導体膜上に
絶縁膜を形成するので、活性領域である半導体層へのス
トレスの発生がなく、結晶欠陥の生じない高歩留りの半
導体装置を製造することができる。
(3) After removing the semiconductor film in the impurity diffusion region above the active region, an insulating film is formed on the remaining semiconductor film using the anti-oxidation film as a mask, so stress is generated on the semiconductor layer, which is the active region. Therefore, high-yield semiconductor devices without crystal defects can be manufactured.

実施例 第1図は本発明の一実施例における半導体装置の製造方
法を説明するためのもので、この半導体装置はNPN形
バイポーラトランジスタを有している。第1図において
、P形半導体(ここではシリコン)基板(以下Si基板
という)20に、周知技術を用いて、N+形埋込層21
、P+形チャンネルストッパ一層22、N形半導体層(
以下エビ層という)23、分離絶縁膜(以下分離S 1
02膜という)24、N+形コレクタウオール層25を
順次形成する(第1図A)。
Embodiment FIG. 1 is for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention, and this semiconductor device has an NPN type bipolar transistor. In FIG. 1, an N+ type buried layer 21 is formed on a P type semiconductor (silicon here) substrate (hereinafter referred to as Si substrate) 20 using a well-known technique.
, P+ type channel stopper layer 22, N type semiconductor layer (
(hereinafter referred to as shrimp layer) 23, separation insulating film (hereinafter referred to as separation S 1
02 film) 24 and an N+ type collector all layer 25 (FIG. 1A).

次に、81基板20上に酸化防止膜としてシリコン窒化
膜(以下513N4膜という)26、堆積被膜としてシ
リコン酸化膜(以下CV D  S 102膜という)
27、不純物を含んだ堆積被膜としてリンドープトシリ
コン酸化膜(以下PSG膜という)28を、CVD法に
より順次形成する(第1図B)。
Next, a silicon nitride film (hereinafter referred to as 513N4 film) 26 as an oxidation prevention film and a silicon oxide film (hereinafter referred to as CV D S 102 film) as a deposited film are deposited on the 81 substrate 20.
27. A phosphorus-doped silicon oxide film (hereinafter referred to as a PSG film) 28 is sequentially formed as a deposited film containing impurities by the CVD method (FIG. 1B).

次に、トランジスタの活性領域となる前記エビ層23の
所定領域上に、ホトエツチング技術を用イテ、前記PS
G膜28、CV D −S i○2膜27およびSi3
N4膜26から成る積層膜パターン29を選択形成する
。その後、前記Si基板2o上に半導体膜として多結晶
シリコン膜(以下Po1y−81膜という)30をCV
D法により形成する(第1図C)。
Next, a photo-etching technique is used on a predetermined region of the shrimp layer 23 that will become the active region of the transistor, and the PS
G film 28, CV D -S i○2 film 27 and Si3
A laminated film pattern 29 made of N4 film 26 is selectively formed. After that, a polycrystalline silicon film (hereinafter referred to as Po1y-81 film) 30 is formed as a semiconductor film on the Si substrate 2o by CVD.
It is formed by method D (FIG. 1C).

次に、前記Si基板2oに熱処理を施こす。例えばSi
基板20を100o℃で3o分間熱する。
Next, the Si substrate 2o is subjected to heat treatment. For example, Si
The substrate 20 is heated at 100° C. for 30 minutes.

この時、前記積層膜パターン29上のPo1y−3i層
30には、前記PSG膜28からリンが拡散し、N 形
拡散領域30aが形成される(第1図D)。
At this time, phosphorus is diffused from the PSG film 28 into the Poly-3i layer 30 on the laminated film pattern 29, forming an N type diffusion region 30a (FIG. 1D).

次に、前記N 形Po1y−8i膜30 aをエツチン
グ除去する。エツチング液としては、例えば、硝酸、弗
化水素酸および酢酸から成る混合液を用いる。この場合
、N形P01y−8i膜30 aは、リンが拡散されて
いないPo1y−3t膜30に比べて、エツチングレー
トが約10〜20倍速い。したがって、前記Po1y−
8i層3oをほとんどエツチングすることなく、N+形
Po1y−8i膜30 aを除去することができ、前記
積層膜パターン29上以外の領域にPo1y−3i膜3
0を残在できる。
Next, the N type Poly-8i film 30a is removed by etching. As the etching solution, for example, a mixed solution consisting of nitric acid, hydrofluoric acid and acetic acid is used. In this case, the N-type P01y-8i film 30a has an etching rate about 10 to 20 times faster than the P01y-3t film 30 in which phosphorus is not diffused. Therefore, the Po1y−
The N+ type Po1y-8i film 30a can be removed without substantially etching the 8i layer 3o, and the Po1y-3i film 30a is formed in a region other than on the laminated film pattern 29.
0 can remain.

その後、前記PSG膜28のみをエツチング除去し、残
在したC V D −S i○2膜を注入マスクとして
、前記Po1y−3t膜30にP形不純物としてボo7
をイオン注入して、P+形Po1y−8i膜30bを選
択形成する(第1図E)。
Thereafter, only the PSG film 28 is removed by etching, and using the remaining CVD-S i○2 film as an implantation mask, a P-type impurity is implanted into the Po1y-3t film 30.
ions are implanted to selectively form a P+ type Po1y-8i film 30b (FIG. 1E).

次に、前記CV D  S i02膜27をエツチング
除去し、ホトエツチング技術を用いて、N形エピ層23
を含んだ所定領域上のみに戸形Po1y−3t膜3ob
を選択形成する。その後、前記Si3N4膜26を酸化
マスクとして、熱酸化法により前記P+形Po1y−8
t膜30b上にシリコン酸化膜(以下S 102膜)3
1を形成する。この時、前記P+形Po1y−8i膜3
0bからボロンが拡散し、P+形Po1y−8i膜直下
にグラフトベースとなるP+形拡散層32が形成される
(第1図F)。
Next, the CVD Si02 film 27 is removed by etching, and the N-type epitaxial layer 23 is etched using a photoetching technique.
Door-shaped Po1y-3t film 3ob only on a predetermined area containing
form a selection. Thereafter, using the Si3N4 film 26 as an oxidation mask, the P+ type Po1y-8 is heated by thermal oxidation.
A silicon oxide film (hereinafter referred to as S102 film) 3 is formed on the T film 30b.
form 1. At this time, the P+ type Po1y-8i film 3
Boron diffuses from 0b, and a P+ type diffusion layer 32 serving as a graft base is formed directly under the P+ type Po1y-8i film (FIG. 1F).

次に、前記Si3N4膜26をエツチング除去し、エミ
ッタ拡散用窓を開口し、前記SiO2膜31を注入マス
クとして、活性領域のN形エビ層23にボロンおよびヒ
素をイオン注入し熱処理を施して、活性ベースとなるP
膨拡散層33およびエミッタとなるN+形拡散層34を
順次形成する(第1図G)。
Next, the Si3N4 film 26 is removed by etching, an emitter diffusion window is opened, and using the SiO2 film 31 as an implantation mask, boron and arsenic ions are implanted into the N-type shrimp layer 23 in the active region, and heat treatment is performed. P as the active base
A swelling diffusion layer 33 and an N+ type diffusion layer 34 serving as an emitter are sequentially formed (FIG. 1G).

次に、周知の技術を用いて、ペース引き出し電g ト’
lx ルP”形Po1y−8i膜3ob上のS z 0
2膜31にコンタクト窓を開口後、アルミニウム配線(
以下AI2配線という)35を形成する。こうすると、
第1図Hに示すように、NPN形バイポーラトランジス
タを形成することができる。
Next, using well-known techniques, a pace withdrawal electrode is used.
lx LeP" type Po1y-8i film 3ob S z 0
After opening a contact window in the second film 31, aluminum wiring (
35 (hereinafter referred to as AI2 wiring) is formed. In this way,
As shown in FIG. 1H, an NPN type bipolar transistor can be formed.

次いで、第2図に、エミッタがPo1y−8t膜からな
るNPN形バイポーラトランジスタの実施例を示す。
Next, FIG. 2 shows an embodiment of an NPN type bipolar transistor whose emitter is made of a Po1y-8t film.

トランジスタの活性領域のベースおよびエミッタ形成前
までは、第1図A−Fに示す方法を用いて同様に形成す
る。
Before forming the base and emitter of the active region of the transistor, the same steps are performed using the method shown in FIGS. 1A to 1F.

次に、前記Si3N4膜26をエツチング除去し、エミ
ッタ拡散用窓を開口し、活性領域のN形エピ層23にポ
ロンをイオン注入し熱処理を施して、活性ベースとなる
P膨拡散層4Qを形成する。その後、このP膨拡散層4
oおよび前記N+形コレクタウオール層25上にN+形
Po1y−8i膜41を選択形成し熱処理を施してPo
1y−8iエミツタとなるN+形Po1y−3i膜41
aおよびPo1y−3i コンタクトとなるN+形Po
1y−8t M4 l bをそれぞれ形成する(第2図
A)。
Next, the Si3N4 film 26 is removed by etching, an emitter diffusion window is opened, and boron ions are implanted into the N-type epitaxial layer 23 in the active region, and heat treatment is performed to form a P-swelled diffusion layer 4Q that will become an active base. do. After that, this P swelling diffusion layer 4
An N+ type Po1y-8i film 41 is selectively formed on the N+ type collector all layer 25 and is subjected to heat treatment to form a Po1y-8i film 41.
N+ type Po1y-3i film 41 that becomes a 1y-8i emitter
a and Po1y-3i N+ type Po which becomes the contact
1y-8t M4 lb respectively (Fig. 2A).

次に、周知の技術を用いて、ベース引き出し電極となる
P+形Po1y−3i膜30b上ノSi○2膜31にコ
ンタクト窓を開口後、AJ2配線42を形成する。こう
すると、第2図Bに示すように、NPN形バイポーラト
ランジスタを形成することが以上、本実施例によれば、
ベース引き出し電極となるP+形Po1y−3i膜30
bと、エミッタとなるN+形拡散層34およびN+形P
o1y−8i層41aは、第1図り、Eに示すように、
積層膜パターン29に対して、セルファンインメントで
形成できる0 丑た、前記ベース引き出し電極の1形Po1y−si膜
3obと、前記エミッタのN+形拡散層34と接続する
Afi配線35およびPo1y−8iエミ。
Next, using a well-known technique, a contact window is opened in the Si2 film 31 on the P+ type Po1y-3i film 30b, which will serve as a base extraction electrode, and then the AJ2 wiring 42 is formed. In this way, as shown in FIG. 2B, an NPN bipolar transistor can be formed.According to this embodiment,
P+ type Po1y-3i film 30 serving as a base extraction electrode
b, the N+ type diffusion layer 34 which becomes the emitter, and the N+ type P
The o1y-8i layer 41a, as shown in the first diagram E,
For the laminated film pattern 29, an Afi wiring 35 and a Poly-8i which are connected to the 1-type Poly-si film 3ob of the base lead-out electrode and the N+ type diffusion layer 34 of the emitter can be formed by cell fan implantation. Emi.

りのN+形Po1y−3i膜41aとの分離間隔は第1
図Hおよび第2図Hに示すように、1形Po1y−8i
膜3ob上のS 102膜31の膜厚で決まるので、実
質的なエミッタ・ベース電極間の微細な分離間隔が可能
となり、不活性領域を最小限にとどめることができるの
で、寄生容量等を低減でき、トランジスタの高速化、高
密度が実現できる。
The separation interval from the N+ type Po1y-3i film 41a is the first
As shown in Figure H and Figure 2 H, type 1 Poly-8i
Since it is determined by the thickness of the S102 film 31 on the film 3ob, it is possible to create a substantial fine separation between the emitter and base electrodes, and the inactive region can be kept to a minimum, reducing parasitic capacitance etc. This makes it possible to achieve higher speed and higher density transistors.

さらに、前記エミッタ・ベース電極間の分離S i02
膜31は、第1図Fに示すように、活性領域上のN+形
Po1y−3t’膜30aを除去した後、Si3N4膜
26をマスクにして、P+形Po1y−8i膜30bを
酸化して形成するので、活性領域であるN形エピ層23
へのストレスの発生がなく、結晶欠陥を生じることがな
(NPN形トランジスタを形成できる。
Furthermore, the separation S i02 between the emitter and base electrodes
As shown in FIG. 1F, the film 31 is formed by removing the N+ type Po1y-3t' film 30a on the active region and then oxidizing the P+ type Po1y-8i film 30b using the Si3N4 film 26 as a mask. Therefore, the N-type epitaxial layer 23 which is the active region
There is no stress on the structure, and no crystal defects are generated (an NPN transistor can be formed).

なお、本実施例においては、NPN形バイポーラトラン
ジスタを用いて説明したが、PNP形バイポーラトラン
ジスタについても同様な方法で形成することができる。
Note that although this embodiment has been described using an NPN type bipolar transistor, a PNP type bipolar transistor can also be formed by a similar method.

また、半導体膜としてPo1y−8t膜を用いて説明し
たが、非晶質シリコン等の半導体膜を用いても同様の効
果が得られるのは言う寸でもない。
Moreover, although the Po1y-8t film is used as the semiconductor film in the explanation, it is needless to say that the same effect can be obtained even if a semiconductor film of amorphous silicon or the like is used.

さらに、不純物を含んだ堆積膜としてPSG膜を用いて
説明したが、砒素ドープトシリコン酸化膜等の堆積膜を
用いても同様の効果が得られるのは言うまでもない。
Furthermore, although the PSG film is used as the deposited film containing impurities in the explanation, it goes without saying that similar effects can be obtained by using a deposited film such as an arsenic-doped silicon oxide film.

発明の効果 以上述べてきたように、本発明によれば、ベース引き出
し電極とエミッタ電極とを微細な分離間隔で、しかもセ
ルファジィンメントで形成することができるので、高速
・高密度なバイポーラトランジスタを有する半導体装置
を容易にしかも高歩留りで製造することができる。
Effects of the Invention As described above, according to the present invention, the base extraction electrode and the emitter electrode can be formed with a fine separation interval and in a self-adhesive manner, making it possible to form high-speed, high-density bipolar transistors. A semiconductor device having the above structure can be easily manufactured with high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図四〜(ハ)は本発明にかかる第1の実施例のNP
N形バイポーラトランジスタの製造工程断面図、第2図
(A) 、 (B)は本発明にかかる第2の実施例のN
PN形バイポーラトランジスタの製造工程断面図、第3
図(A)−(H)は従来のNPN形バイポーラトランジ
スタの製造工程断面図である。 20・・・・・・P形Si基板、23・・・・・・N形
エビ層、30 b−−・−P”形Po1y−8t膜、3
1・・・・・5102膜、33,40・・・・・・P膨
拡散層、34・・・・・N+形拡散層、41 a−=−
N+形Po1y−8i膜、26・・・−−−F3iN 
 膜、27・・・・・・CvD−8iO2膜、28・・
・・・・PSG膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ム 
                       5城
                         
  旧ワリ1 Cq 城く 5へ り艶 城            Q *0−2ミツ3寸 a) ハへ 城      1)        臣Cリ     
            C−区        c′
−Ic′−1 塚      −−
FIG. 1 4-(c) are NPs of the first embodiment according to the present invention.
FIGS. 2A and 2B are cross-sectional views of the manufacturing process of the N-type bipolar transistor of the second embodiment of the present invention.
3rd cross-sectional view of the manufacturing process of a PN type bipolar transistor
Figures (A) to (H) are cross-sectional views of the manufacturing process of a conventional NPN type bipolar transistor. 20... P-type Si substrate, 23... N-type shrimp layer, 30 b----P'' type Po1y-8t film, 3
1...5102 film, 33,40...P swelling diffusion layer, 34...N+ type diffusion layer, 41 a-=-
N+ type Po1y-8i film, 26...---F3iN
Membrane, 27...CvD-8iO2 membrane, 28...
...PSG film. Name of agent: Patent attorney Toshio Nakao and one other person
5 castles
Old Wari 1 Cq Castle 5 Heritsu Castle Q *0-2 Mitsu 3 Suna) Hahe Castle 1) Servant C
C-ward c'
-Ic'-1 Mound --

Claims (1)

【特許請求の範囲】 (1)一方導電形半導体層を有する基板の一主面上に、
少なくとも酸化防止膜および不純物を含む堆積被膜から
なる所定の積層膜を形成する工程と、前記基板上に半導
体膜を形成する工程と、前記積層膜から前記不純物を拡
散させ前記半導体膜の一部に不純物拡散領域を形成する
工程と、前記半導体膜を選択的にエッチングし、エッチ
ングレートの速い不純物拡散領域の半導体膜は除去し、
エッチングレートの遅い不純物の拡散されていない領域
の半導体膜を残在させる工程と、前記積層膜をマスクに
他方導電形の不純物を拡散させ他方導電形半導体膜を形
成する工程と、前記積層膜をマスクに前記他方導電形半
導体膜を酸化して絶縁膜を形成する工程とを備えたこと
を特徴とする半導体装置の製造方法。 (2)不純物を含んだ堆積被膜にリンドープトシリコン
酸化膜を用いていることを特徴とする特許請求の範囲第
1項に記載の半導体装置の製造方法。(3)半導体膜に
多結晶シリコン膜を用いていることを特徴とする特許請
求の範囲第1項に記載の半導体装置の製造方法。 (4)半導体膜の選択エッチングにおいて、硝酸、沸化
水素酸および酢酸の混合液を用いることを特徴とする特
許請求の範囲第1項に記載の半導体装置の製造方法。 (5)他方導電形の不純物拡散において、イオン注入を
用いることを特徴とする特許請求の範囲第1項に記載の
半導体装置の製造方法。
[Claims] (1) On one main surface of a substrate having one conductivity type semiconductor layer,
a step of forming a predetermined laminated film consisting of at least an oxidation-preventing film and a deposited film containing impurities, a step of forming a semiconductor film on the substrate, and a step of diffusing the impurity from the laminated film into a part of the semiconductor film. forming an impurity diffusion region, selectively etching the semiconductor film, and removing the semiconductor film in the impurity diffusion region where the etching rate is high;
a step of leaving a semiconductor film in a region where impurities with a slow etching rate are not diffused; a step of diffusing impurities of the other conductivity type using the laminated film as a mask to form a semiconductor film of the other conductivity type; A method for manufacturing a semiconductor device, comprising the step of oxidizing the other conductive type semiconductor film on a mask to form an insulating film. (2) The method for manufacturing a semiconductor device according to claim 1, wherein a phosphorus-doped silicon oxide film is used as the deposited film containing impurities. (3) The method for manufacturing a semiconductor device according to claim 1, wherein a polycrystalline silicon film is used as the semiconductor film. (4) The method for manufacturing a semiconductor device according to claim 1, wherein a mixed solution of nitric acid, hydrofluoric acid, and acetic acid is used in the selective etching of the semiconductor film. (5) The method for manufacturing a semiconductor device according to claim 1, wherein ion implantation is used in the impurity diffusion of the other conductivity type.
JP863385A 1985-01-21 1985-01-21 Manufacture of semiconductor device Pending JPS61168260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP863385A JPS61168260A (en) 1985-01-21 1985-01-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP863385A JPS61168260A (en) 1985-01-21 1985-01-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61168260A true JPS61168260A (en) 1986-07-29

Family

ID=11698351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP863385A Pending JPS61168260A (en) 1985-01-21 1985-01-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61168260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927774A (en) * 1988-06-10 1990-05-22 British Telecommunications Plc Self aligned bipolar fabrication process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927774A (en) * 1988-06-10 1990-05-22 British Telecommunications Plc Self aligned bipolar fabrication process

Similar Documents

Publication Publication Date Title
JPH0697185A (en) Semiconductor device
JPS61168260A (en) Manufacture of semiconductor device
JPH02305464A (en) Manufacture of semiconductor integrated circuit
JPS63181378A (en) Manufacture of semiconductor device
JP2715479B2 (en) Method for manufacturing semiconductor device
JP2707646B2 (en) Method for manufacturing semiconductor device
JP2890550B2 (en) Method for manufacturing semiconductor device
JP2697631B2 (en) Method for manufacturing semiconductor device
JPS6129539B2 (en)
JP2633411B2 (en) Method for manufacturing semiconductor device
JPH0254568A (en) Semiconductor integrated circuit device and manufacture thereof
JP2001274388A (en) Semiconductor device and manufacturing method thereof
JP2836393B2 (en) Semiconductor device and manufacturing method thereof
JPS62296452A (en) Manufacture of semiconductor device
JPH04152531A (en) Manufacture of semiconductor device
JPS60235464A (en) Manufacture of semiconductor device
JPH01189159A (en) Manufacture of semiconductor integrated circuit device
JPS61198648A (en) Manufacture of semiconductor device
JPS63228750A (en) Manufacture of semiconductor device
JPS5987859A (en) Manufacture of semiconductor device
JP2003124337A (en) Semiconductor device and its manufacturing method
JPS62291964A (en) Manufacture of semiconductor device
JPS6381831A (en) Manufacture of semiconductor integrated circuit
JPS5987858A (en) Manufacture of semiconductor device
JPS61166167A (en) Manufacture of semiconductor device