JPS6381831A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS6381831A
JPS6381831A JP22669686A JP22669686A JPS6381831A JP S6381831 A JPS6381831 A JP S6381831A JP 22669686 A JP22669686 A JP 22669686A JP 22669686 A JP22669686 A JP 22669686A JP S6381831 A JPS6381831 A JP S6381831A
Authority
JP
Japan
Prior art keywords
film
grooves
groove
semiconductor substrate
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22669686A
Other languages
Japanese (ja)
Inventor
Kazuya Kikuchi
菊池 和也
Tadanaka Yoneda
米田 忠央
Hiroyuki Sakai
坂井 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22669686A priority Critical patent/JPS6381831A/en
Publication of JPS6381831A publication Critical patent/JPS6381831A/en
Priority to US07/396,791 priority patent/US4910575A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To contrive to be able to easily form a thick insulation-isolated film having a roughly flat surface by a method wherein the prescribed regions of a semiconductor substrate are etched and a shallow groove and deep grooves are formed. CONSTITUTION:The prescribed regions of a semiconductor substrate are etched in a depth of 1 mum equivalent to the amount of the thickness of an epitaxial layer 32 by dry etching using a CVD-SiO2 film 34 as a mask. Thereby, grooves 35 and 36 become deeper, a first deep groove 38 and a second deep groove 39, each having a depth of 2.5-3.5 mum, are formed, and at the same time, a shallow groove 40 of a depth of 1 mum, surrounded with the grooves 38 and 39, is formed. Moreover, by burying a CVD-SiO2 film 45 in the grooves 38-40, a groove 41 and a recessed part 42, SiO2 films 48 for element isolation are formed. In this case, as the deep first and second grooves and the shallow groove are connected to each other and the width Y of the grooves for interelement isolation is a wide one of 3-5 mum, a region having a fast etching rate is not formed on the surfaces of the SiO2 films 48. Accordingly, in the case of formation of a transistor, a recessed part is never generated in the surface of the isolation region even through a treatment is performed with a liquid containing hydrofluoric acid. Thereby, a thick insulating film can be formed without heating the semiconductor substrate. Accordingly, the parasitic capacity can be lessened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度で、配線の寄生容量の小さな絶縁物分離
が形成できる半導体集積回路の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor integrated circuit that can form high-density insulator isolation with small wiring parasitic capacitance.

従来の技術 従来、溝にCVD5i02膜を埋める絶縁分離方法が提
案されている。
2. Description of the Related Art Conventionally, an insulation isolation method has been proposed in which trenches are filled with a CVD5i02 film.

上記絶縁分離方法の製造工程を用いてバイポーラLSI
を製造する場合を第4図A−Fに示す。
Bipolar LSI using the manufacturing process of the above insulation isolation method
The case of manufacturing is shown in FIGS. 4A to 4F.

p形シリコン基板1に拡散深さ約1μmのヒンを拡散し
たn十形埋込領域2を形成する。次に、厚さ1μmのn
形エピタキシアル層3を形成する。
An n-type buried region 2 is formed in a p-type silicon substrate 1 by diffusing hings to a diffusion depth of approximately 1 μm. Next, a 1 μm thick n
A shaped epitaxial layer 3 is formed.

厚さ約1−2 μmのCV D −5i02膜4を形成
し、ホトエッチ技術により絶縁分離形成領域のCVD−
5i02膜4を除去する(第4図A)。
A CVD-5i02 film 4 with a thickness of about 1-2 μm is formed, and the CVD-5i02 film 4 in the insulation isolation formation area is removed by photoetching.
5i02 film 4 is removed (FIG. 4A).

次ニ、CV D −8i02 膜4をエツチングマスク
として露出しているシリコンをエツチングし、深さ約2
.5〜3.5μm9幅1.2μmの溝5を形成する。そ
してCV D −5in2膜4をマスクにしてボロンを
イオン注入して溝5の底部にチャンネルストッパー領域
6を形成する(第4図B)。
Next, the exposed silicon is etched using the CV D-8i02 film 4 as an etching mask to a depth of about 2
.. A groove 5 having a width of 5 to 3.5 μm and a width of 1.2 μm is formed. Then, using the CV D-5in2 film 4 as a mask, boron ions are implanted to form a channel stopper region 6 at the bottom of the groove 5 (FIG. 4B).

次に5iH2Cβ2ガスとN2oガスの熱分解法により
約800°Cで厚さ1.4 p mの5i02膜7を形
成し、溝5を5102膜7で埋める(第4図C)。
Next, a 5i02 film 7 having a thickness of 1.4 pm is formed at about 800° C. by thermal decomposition of 5iH2Cβ2 gas and N2o gas, and the groove 5 is filled with the 5102 film 7 (FIG. 4C).

次に基板表面にホトレジスト膜を塗布し、ドライエッチ
によりホトレジスト膜を除去して凹部にホトレジスト膜
8を残し、表面を平坦にする(第4図D)。
Next, a photoresist film is applied to the surface of the substrate, and the photoresist film is removed by dry etching, leaving the photoresist film 8 in the recesses, and the surface is made flat (FIG. 4D).

そしてホトレジスト膜a、  S工o2膜7を除去し、
分離用5i02膜7とエピタキシアル層3の表面を平坦
にする(第4図E)。
Then, the photoresist film a and the SO2 film 7 are removed.
The surfaces of the isolation 5i02 film 7 and the epitaxial layer 3 are made flat (FIG. 4E).

次に、選択酸化法により厚さ約0.6μmのフィールド
5i02膜g、n+=rレクタ領域10.p十形ベース
領域11.n+形エミッタ領域12を形成する。この場
合、溝5に形成されたSiO2膜7のHFによるエッチ
速度が速いために凹部13が形成される(第4図F)。
Next, by selective oxidation, a field 5i02 film g, n+=r, with a thickness of about 0.6 μm, and a rectifier region 10. p-decade base region 11. An n+ type emitter region 12 is formed. In this case, since the etching rate of the SiO2 film 7 formed in the groove 5 by HF is high, a recess 13 is formed (FIG. 4F).

発明が解決しようとする問題点 上記工程において、第6図人に示すように溝6に810
2膜7を埋めた場合、溝の深さdと幅Wの比d / w
が1〜2を越えると溝5上部の8102膜T内に弗化水
素酸(HF )を有するエツチング液に対してエツチン
グ速度の速い領域15が形成される。そのため、表面平
坦化後のトランジスタ形成工程で第5図Bに示すように
分離領域に凹部16が形成され、微細パターン形成が困
難という問題がある。しかも、分離形成後、SiO2膜
7の表面とシリコン基板1の表面が平坦になっていても
、後工程によってSiO2膜7が全体的にエツチングさ
れ、分離領域側面のシリコン基板12Lが露出してしま
う。このように、分離領域側面シリコン基板1aが露出
すると、トランジスタ特性が劣下するという問題がある
Problems to be Solved by the Invention In the above process, as shown in FIG.
When two films 7 are filled, the ratio of groove depth d to width W is d/w
When the value exceeds 1 to 2, a region 15 is formed in the 8102 film T above the trench 5 where the etching rate is high for an etching solution containing hydrofluoric acid (HF). Therefore, in the transistor formation step after surface planarization, a recess 16 is formed in the isolation region as shown in FIG. 5B, making it difficult to form a fine pattern. Moreover, even if the surface of the SiO2 film 7 and the surface of the silicon substrate 1 are flat after the isolation is formed, the entire SiO2 film 7 is etched in the subsequent process, and the silicon substrate 12L on the side surface of the isolation region is exposed. . When the side silicon substrate 1a of the isolation region is exposed in this way, there is a problem that the transistor characteristics deteriorate.

また、分離幅Wを広くすればSiO2膜7の厚さも厚く
形成する必要があり、そのため、SiO2膜7の形成お
よび平坦化が困難となる。
Furthermore, if the separation width W is increased, the thickness of the SiO2 film 7 must also be increased, which makes it difficult to form and planarize the SiO2 film 7.

さらに、第6図に示すように、トランジスタのn+コレ
クタ拡散層20.21間に電圧が印加された場合、空乏
層22がn+コレクタ拡散層21に接しないように分離
の深さを深くしなければならないという問題がある。な
お、分離幅Wを広くすれば分離の深さを深くしなくても
良いが、前記のようにSiO2膜7の厚さを厚くしなけ
ればならず、他の問題が生ずる。
Furthermore, as shown in FIG. 6, when a voltage is applied between the n+ collector diffusion layers 20 and 21 of the transistor, the isolation depth must be deep so that the depletion layer 22 does not touch the n+ collector diffusion layer 21. There is a problem that it must be done. Incidentally, if the separation width W is made wider, the depth of the separation does not have to be increased, but as mentioned above, the thickness of the SiO2 film 7 must be increased, which causes other problems.

問題点を解決するための手段 本発明の半導体集積回路の製造方法は、半導体基板の所
定の領域を所望の深さまでエツチングして第1及び第2
の溝を形成する工程と、前記第1と第2の溝の間の半導
体基板と、前記第1及び第2の溝を同時に所定の深さま
でエツチングし、浅い溝と第3及び第4の深い溝を形成
する工程と、前記浅い溝と深い溝の底部に前記半導体基
板と同−導電形の拡散層形成用不純物を導入する工程と
、酸化防止膜をマスクにして前記浅い溝と深い溝の表面
を選択的に酸化して酸化膜を形成する工程と、前記半導
体基板上に前記浅い溝の深さよりも厚い絶縁膜を形成す
る工程と、前記絶縁膜を選択的にエツチングし、前記酸
化防止膜表面と溝内に埋めた前記絶縁膜表面とをほぼ同
じ高さにする工程を備え、前記酸化防止膜を除去するこ
とによって前記半導体基板の露出表面よりも前記酸化膜
の露出表面が高くなることを特徴とする。
Means for Solving the Problems The method of manufacturing a semiconductor integrated circuit according to the present invention includes etching a predetermined region of a semiconductor substrate to a desired depth and etching the first and second regions.
etching the semiconductor substrate between the first and second trenches and the first and second trenches to a predetermined depth at the same time, forming shallow trenches and third and fourth deep trenches; a step of forming a groove, a step of introducing an impurity for forming a diffusion layer having the same conductivity type as the semiconductor substrate into the bottoms of the shallow groove and the deep groove, and a step of forming the shallow groove and the deep groove using an anti-oxidation film as a mask. a step of selectively oxidizing the surface to form an oxide film; a step of forming an insulating film thicker than the depth of the shallow groove on the semiconductor substrate; and a step of selectively etching the insulating film to prevent the oxidation. A step of making the surface of the film and the surface of the insulating film buried in the trench substantially the same height, and by removing the anti-oxidation film, the exposed surface of the oxide film is higher than the exposed surface of the semiconductor substrate. It is characterized by

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

すなわち、厚い絶縁膜を形成する必要がなく、しかも、
表面平坦化後の分離絶縁膜の表面がHF系エツチング液
に対してエツチング速度が速くなることはないので分離
領域が凹部状になることはない。また、分離領域の半導
体基板側面が露出しないので、トランジスタ特性の劣下
を防止することができる。さらに、隣りあったトランジ
スタのコレクタ間には2個の深い分離領域が形成されて
いるので分離深さを深くすることなく、コレクターコレ
クタ間の耐圧を高くすることができる。
In other words, there is no need to form a thick insulating film, and
Since the etching rate of the surface of the isolation insulating film after surface planarization is not increased with respect to the HF-based etching solution, the isolation region does not become recessed. Further, since the side surface of the semiconductor substrate in the isolation region is not exposed, deterioration of transistor characteristics can be prevented. Furthermore, since two deep isolation regions are formed between the collectors of adjacent transistors, the breakdown voltage between collectors and collectors can be increased without increasing the isolation depth.

実施例 以下、本発明の一実施例としてnpn形バイポーラトラ
ンジスタの形成方法を第1図人〜工に基づいて説明する
EXAMPLE Hereinafter, as an example of the present invention, a method for forming an npn type bipolar transistor will be explained based on the steps of FIG.

p形10〜2oΩ、7mの半導体基板30に砒素の選択
拡散法により拡散深さ1μmのn十拡散層31を形成す
る。その後、0・6Ω・儂、厚さ1μmのn形エピタキ
シャル層32を形成する。その上にCVD法により厚さ
O−1μmのSi3N4膜33及び1.2μmのSiO
2膜34を形成する。そして、ホトエツチング技術によ
り深い分離領域形成領域のcvn−3i02膜34及び
Si3N4膜33を除去し、さらにCV D−5i02
膜34をマスクにしてドライエツチング技術によシ、エ
ピタキシャル層32及び半導体基板30を1.5〜2.
5μmエツチングし、幅0.8〜1.2μmの溝35.
36を形成する(第1図人)。
An n0 diffusion layer 31 with a diffusion depth of 1 μm is formed on a p-type semiconductor substrate 30 of 10 to 2 Ω and 7 m in length by selective diffusion of arsenic. Thereafter, an n-type epitaxial layer 32 having a thickness of 1 μm and having a resistance of 0.6 Ω is formed. On top of that, a Si3N4 film 33 with a thickness of O-1 μm and an SiO film with a thickness of 1.2 μm are formed by CVD.
Two films 34 are formed. Then, the CVN-3i02 film 34 and the Si3N4 film 33 in the deep isolation region forming region are removed by photoetching, and the CVD-5i02 film is removed.
Using the film 34 as a mask, the epitaxial layer 32 and the semiconductor substrate 30 are etched by a dry etching technique of 1.5-2.
Grooves 35.5 μm etched and 0.8 to 1.2 μm wide.
36 (Figure 1 person).

次に、ホトリソ技術によりトランジスタのエミッタ、ベ
ース、コレクタ領域上にホトレジスト膜37を形成する
(第1図B)。
Next, a photoresist film 37 is formed on the emitter, base, and collector regions of the transistor by photolithography (FIG. 1B).

次にホトレジスト膜37をマスクにしてCVD−3i0
2膜34及び5isN433を除去する。その後、ホト
レジスト膜37を除去する(第1図G)。
Next, using the photoresist film 37 as a mask, CVD-3i0
2 film 34 and 5isN433 are removed. Thereafter, the photoresist film 37 is removed (FIG. 1G).

次に、G ”i D −5i02膜34をマスクにして
ドライエツチングにより、エピタキシャル層32の厚さ
分に相当する1μmをエツチングする。これにより、溝
35.36は深くなり深さ2.5〜3.5μmの第1の
深い溝38.第2の深い溝39が形成され、同時に溝3
8.39で囲まれた深さ1μmの浅い溝40が形成され
る。また、ベース、コレクタ分離用の深さ1μmの溝4
1.フィールド領域のエピタキシャル層32が除去され
た凹部42も同時に形成される。そして、CV D −
5i02膜34をマスクにして溝および凹部の底部に約
25 keV。
Next, using the G''i D -5i02 film 34 as a mask, dry etching is performed to 1 μm, which corresponds to the thickness of the epitaxial layer 32. As a result, the grooves 35 and 36 are deepened to a depth of 2.5 to 2.5 μm. A first deep groove 38 and a second deep groove 39 of 3.5 μm are formed, and at the same time the groove 3
A shallow groove 40 with a depth of 1 μm surrounded by 8.39 is formed. In addition, a groove 4 with a depth of 1 μm for separating the base and collector
1. A recess 42 in which the epitaxial layer 32 in the field region is removed is also formed at the same time. And CV D-
Approximately 25 keV was applied to the bottoms of the grooves and recesses using the 5i02 film 34 as a mask.

1〜10X10  zonslonのホロンを注入し、
チャンネルストッパー拡散層43を形成する(第1図D
)。
Inject 1~10X10 zonslon holons,
Forming a channel stopper diffusion layer 43 (FIG. 1D)
).

次に、CVD−SiO頭34を除去した後、酸化防止膜
であるSi3N4膜33を選択酸化マスクにして800
℃の高圧酸化法により溝および凹部表面に5102膜4
4をO−1〜0.21t m形成する(第1図E)次に
、減圧CVD法により浅い溝40の深さよりも厚い1.
4〜1.8μmのSiO2膜45全45する。
Next, after removing the CVD-SiO head 34, the Si3N4 film 33 which is an oxidation prevention film is used as a selective oxidation mask to
A 5102 film 4 is formed on the groove and recess surfaces by high-pressure oxidation at ℃.
4 is formed to a thickness of O-1 to 0.21 tm (FIG. 1E). Next, a layer 1.4 thicker than the depth of the shallow groove 40 is formed by low pressure CVD.
A total of 45 SiO2 films 45 with a thickness of 4 to 1.8 μm are formed.

そして、ホ) IJン技術により凹部42上に厚さ1μ
mのホトレジストパターン46を形成する。その後、全
面にホトレジスト膜47を塗布するとホトレジスト膜4
7の表面は平坦になる(第1図F)。
and (e) a 1μ thick layer on the recess 42 using IJ technology.
A photoresist pattern 46 of m is formed. After that, when a photoresist film 47 is applied to the entire surface, the photoresist film 4
The surface of 7 becomes flat (FIG. 1F).

次に、ドライエツチング技術によりホトレジスト膜46
 、 4.7 トCV D−5i02膜45とノエッチ
ング速度が同じ程度になる条件でSi3N4膜33の表
面とC”1D−5i02膜45の表面が同じ高さになる
程度までエツチングする。これにより、CvD−5i0
2膜45を溝38.39.40.41.凹部42に埋め
こむことができ、素子分離用SiO2膜48.ベース、
コレクタ間分離用5i02膜49゜フィールド用5in
2膜50が同時に形成することができる(第1図G)。
Next, the photoresist film 46 is etched using dry etching technology.
, 4.7 Etching is performed to the extent that the surface of the Si3N4 film 33 and the surface of the C''1D-5i02 film 45 are at the same height under the conditions that the etching rate is about the same as that of the CV D-5i02 film 45. , CvD-5i0
2 membranes 45 into grooves 38, 39, 40, 41. A SiO2 film 48 for element isolation can be filled in the recess 42. base,
5i02 membrane for collector separation 49° field 5in
Two films 50 can be formed simultaneously (FIG. 1G).

次にSi 3N4膜33を除去する。これにより、エピ
タキシャル層32の表面よりも露出している5i02膜
44の表面及びSiO2膜4B、  49. 50の表
面の方が高くなる。このような構造にすることにより、
後工程の処理によって分離領域の半導体基板側面が露出
することはない(第1図H)。
Next, the Si 3N4 film 33 is removed. As a result, the surface of the 5i02 film 44 and the SiO2 film 4B, which are more exposed than the surface of the epitaxial layer 32, 49. The surface of 50 is higher. By having such a structure,
The side surface of the semiconductor substrate in the isolation region is not exposed during post-processing (FIG. 1H).

次に、n コレクタ拡散層51.52.p+ベース拡散
層53.n+エミッタ拡散層54.p+形Po17Si
 ヘ−スミ極6ts、  5i02膜56.Aj電極5
7.5B、59.60を形成すれば、第1図工の如き構
造を有するnpn形バイポーラトランジスタを形成する
ことができる。
Next, the n collector diffusion layers 51, 52. p+ base diffusion layer 53. n+ emitter diffusion layer 54. p+ type Po17Si
Hesmi pole 6ts, 5i02 membrane 56. Aj electrode 5
By forming 7.5B and 59.60, it is possible to form an npn type bipolar transistor having a structure as shown in FIG.

上記工程において、溝38.39.40に埋めた5i0
2膜48は第2図に示すように深い溝の幅Wは0.8〜
1.2μmと狭いために弗化水素酸系のエツチング液に
対してエツチング速度が速い領域61.62が生じる。
In the above process, the 5i0 filled in the grooves 38, 39, 40
2 film 48 has a deep groove width W of 0.8~0.
Since the width is as narrow as 1.2 .mu.m, regions 61 and 62 are formed where the etching rate is high for a hydrofluoric acid-based etching solution.

この場合、深い第1.第2の溝と浅い溝がつながってお
り、素子間分離用溝の幅Yは3〜5μmと広いため5i
02膜48の表面にはエツチング速度の速い領域が形成
されない。
In this case, the deep first. The second groove and the shallow groove are connected, and the width Y of the element isolation groove is as wide as 3 to 5 μm, so 5i
A region where the etching rate is high is not formed on the surface of the 02 film 48.

しかも、エピタキシャル層32の表面に比べて、5i0
2膜44.48の表面はSi3N4膜33の膜厚に相当
する程度高く形成される。したがって、第1図工に示す
ようにトランジスタ形成の際、弗化水素酸を含んだ液に
よる処理を行なっても分離領域表面に凹部が生じること
はない。しかも、エピタキシャル層32の側面が露出す
ることがない。
Moreover, compared to the surface of the epitaxial layer 32, 5i0
The surfaces of the two films 44 and 48 are formed to be as high as the thickness of the Si3N4 film 33. Therefore, as shown in FIG. 1, even if a treatment with a solution containing hydrofluoric acid is performed during transistor formation, no recesses will be formed on the surface of the separation region. Moreover, the side surfaces of the epitaxial layer 32 are not exposed.

また、n+コレクタ拡散層51.52間に電圧を印加し
た場合、分離幅Yが広いためn+コレクタ拡散層51.
52間が空乏層でつながる電圧は高く、n十拡散層31
とp十チャンネルストッパー拡散層43とが接しない程
度の深さで深い溝38゜39を形成すれば良い。
Furthermore, when a voltage is applied between the n+ collector diffusion layers 51 and 52, since the separation width Y is wide, the n+ collector diffusion layers 51 and 52.
The voltage between 52 and the depletion layer is high, and the n+ diffusion layer 31
The deep grooves 38 and 39 may be formed to such a depth that the p-channel stopper diffusion layer 43 and the p channel stopper diffusion layer 43 do not come into contact with each other.

またp+ベース拡散層53の側面は素子間分離用SiO
2膜48とベース、コレクタ分離用5i02膜49に接
しているためベース−コレクタ間容量を小さくすること
ができる。
In addition, the side surfaces of the p+ base diffusion layer 53 are made of SiO2 for isolation between elements.
2 film 48 and the base-collector separation 5i02 film 49, the base-collector capacitance can be reduced.

さらに、フィールド5i02膜60は1μmと厚いため
5i02膜So上に形成された配線や抵抗体の寄生容量
を小さくすることができる。しかも、温度を上げること
なく厚い5i02膜48. 49゜5oを形成できるの
で、n十拡散層31中の砒素がエピタキシャル層32中
に拡散することはなくエピタキシャル層32の厚さが薄
くても高いベース。
Furthermore, since the field 5i02 film 60 is as thick as 1 μm, the parasitic capacitance of the wiring and resistor formed on the 5i02 film So can be reduced. Moreover, the thick 5i02 film 48. Since 49°5o can be formed, arsenic in the n+ diffusion layer 31 will not diffuse into the epitaxial layer 32, resulting in a high base even if the epitaxial layer 32 is thin.

コレクタ間耐圧を得ることができる。また、チャンネル
ストッパー拡散層43中のボロンもほとんど拡散しない
ので高濃度ポロンがn十拡散層31と接することがない
ので、コレクタ、基板容量が増大することはない。
A collector-to-collector breakdown voltage can be obtained. Further, since boron in the channel stopper diffusion layer 43 is hardly diffused, high concentration boron does not come into contact with the n+ diffusion layer 31, so that the collector and substrate capacitances do not increase.

また、溝表面にSiO2膜44を形成することによって
、分離領域の界面状態が良くなり、接合リークを防止で
きるとともに絶縁耐圧を向上することができる。
Further, by forming the SiO2 film 44 on the groove surface, the interface condition of the isolation region is improved, junction leakage can be prevented, and the dielectric breakdown voltage can be improved.

なお、第1図Bに示す工程で、溝35.36形成後、直
接ホトレジストパターン37を形成したが、第3図人の
如く全面にホトレジスト膜63を形成した後、ドライエ
ツチング技術により溝36゜36内にホトレジスト膜6
3を残存させ、第3図Bの如くホトレジストパターン6
4を形成しても良い。このような工程にすることによっ
て、より高精度なパターン形成ができる。
In the process shown in FIG. 1B, the photoresist pattern 37 was formed directly after the grooves 35 and 36 were formed, but after forming the photoresist film 63 on the entire surface as shown in FIG. Photoresist film 6 in 36
3 remains, and photoresist pattern 6 is formed as shown in Figure 3B.
4 may be formed. By using such a process, a pattern can be formed with higher precision.

また、5i02膜45形成後もしくは第1図Gに示す表
面平坦化後に900〜1000’Cで、酸化性ガス雰囲
気中もしくは不活性ガス中で熱処理することによって、
 5i02膜48. 49・ 50の弗化水素酸系のエ
ツチング液に対するエツチング速度を遅くすることがで
きる。
Further, after forming the 5i02 film 45 or after surface planarization as shown in FIG.
5i02 membrane 48. The etching rate for hydrofluoric acid-based etching solutions of 49 and 50 can be slowed down.

また、第2図に示すように分離幅Yを広くしたいときは
浅い分離溝の幅Mを犬きくすれば5i02膜45の厚さ
を厚くすることなく溝をSi02膜で埋めることができ
る。
Further, as shown in FIG. 2, when it is desired to widen the isolation width Y, by increasing the width M of the shallow isolation trench, the trench can be filled with the Si02 film without increasing the thickness of the 5i02 film 45.

発明の効果 以上の如く、本発明によれば表面がほぼ平坦な絶縁分離
膜を容易に形成することができる。しかも、半導体基板
を加熱することなく厚い絶縁膜を形成できる。したがっ
て、寄生容量を小さくすることができ、且つ、微細化す
ることができるため、半導体集積回路の低消費電力化、
高密度化に大きく寄与するものである。
Effects of the Invention As described above, according to the present invention, an insulating separation film having a substantially flat surface can be easily formed. Moreover, a thick insulating film can be formed without heating the semiconductor substrate. Therefore, parasitic capacitance can be reduced and miniaturization can be achieved, resulting in lower power consumption of semiconductor integrated circuits,
This greatly contributes to higher density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図人〜工は本発明の一実施例におけるnpn形バイ
ポーラトランジスタの製造方法を示す工程断面図、第2
図は同方法における分離領域の断面図、第3図A、  
Bは同分離領域形成のための他の製造方法を示す工程断
面図、第4図人〜Fは従来のnpn形バイポーラトラン
、ジスタの製造方法を示す工程断面図、第6図人、Bは
従来の分離領域の断面図、第6図は従来の分離領域のコ
レクタ・コレクタ間に電圧を印加した場合における断面
図である。 38.39・・・・・・深い溝、40.41・・・・・
・浅い溝、42・・・・・・凹部、45,48,49.
50・・・・・・5i02膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 43−−一衆子5>離用SiO;z蔑 49−−−ペースコレクタ開分有娼SiO2方東SO−
−−7,+−ルド用5iOz片町、S/、52− = 
−71: :] ]レクタセW堅Q邑S3−−−ビ\人
並j(礒 54−一一几”エミーノタヤ=1ズΔ邑お−P“Fbl
ySL電称 、56−−−5i(h)艮 5Bsq、bo−−−A L ¥E !3図 第4図 第4図 第5図 /S  3i02 第6図
FIG. 1 is a process cross-sectional view showing a method for manufacturing an npn-type bipolar transistor according to an embodiment of the present invention;
The figure is a cross-sectional view of the separation region in the same method, Figure 3A,
B is a process sectional view showing another manufacturing method for forming the same isolation region, FIGS. FIG. 6 is a cross-sectional view of a conventional isolation region when a voltage is applied between the collectors of the conventional isolation region. 38.39...deep groove, 40.41...
- Shallow groove, 42... recess, 45, 48, 49.
50...5i02 membrane. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 43--Isshuko 5 > Separate SiO;
−−7,+−5iOz Katamachi for cold, S/, 52− =
-71: :]] Rectase W Ken Q Eup S3 --- Bi\jinnami j (礒54-11几" Emmy Notaya = 1's Δ Ou-P "Fbl
ySL name, 56---5i(h)艮5Bsq, bo---A L ¥E! Figure 3 Figure 4 Figure 4 Figure 5/S 3i02 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の所定の領域を所望の深さまでエッチ
ングして第1及び第2の溝を形成する工程と、前記第1
と第2の溝の間の半導体基板と前記第1及び第2の溝を
同時に所定の深さまでエッチングして浅い溝と第3及び
第4の深い溝を形成する工程と、前記浅い溝と深い溝の
底部に前記半導体基板と同一導電形形成用不純物を導入
する工程と、酸化防止膜をマスクにして前記浅い溝と深
い溝の表面を選択的に酸化して酸化膜を形成する工程と
、前記半導体基板上に前記浅い溝の深さよりも厚い絶縁
膜を形成する工程と、前記絶縁膜を選択的にエッチング
し前記酸化防止膜表面と溝内に埋めた前記絶縁膜表面と
をほぼ同じ高さにする工程とを備えてなる半導体集積回
路の製造方法。
(1) forming first and second grooves by etching a predetermined region of the semiconductor substrate to a desired depth;
etching the semiconductor substrate between the first and second grooves and the first and second grooves simultaneously to a predetermined depth to form a shallow groove and third and fourth deep grooves; a step of introducing an impurity for forming the same conductivity type as the semiconductor substrate into the bottom of the groove; a step of selectively oxidizing the surfaces of the shallow groove and the deep groove using an oxidation prevention film as a mask to form an oxide film; forming an insulating film thicker than the depth of the shallow trench on the semiconductor substrate; and selectively etching the insulating film so that the surface of the oxidation prevention film and the surface of the insulating film buried in the trench are approximately at the same height. 1. A method for manufacturing a semiconductor integrated circuit, comprising:
(2)絶縁膜を選択的にエッチングした後、酸化防止膜
を除去することによって、半導体基板の露出表面よりも
酸化膜の露出表面が高くなる特許請求の範囲第1項に記
載の半導体集積回路の製造方法。
(2) The semiconductor integrated circuit according to claim 1, wherein the exposed surface of the oxide film is higher than the exposed surface of the semiconductor substrate by selectively etching the insulating film and then removing the antioxidant film. manufacturing method.
JP22669686A 1986-06-16 1986-09-25 Manufacture of semiconductor integrated circuit Pending JPS6381831A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22669686A JPS6381831A (en) 1986-09-25 1986-09-25 Manufacture of semiconductor integrated circuit
US07/396,791 US4910575A (en) 1986-06-16 1989-08-21 Semiconductor integrated circuit and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22669686A JPS6381831A (en) 1986-09-25 1986-09-25 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6381831A true JPS6381831A (en) 1988-04-12

Family

ID=16849218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22669686A Pending JPS6381831A (en) 1986-06-16 1986-09-25 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6381831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169969A (en) * 1989-11-27 1991-07-23 Matsushita Electric Works Ltd Directly laid flooring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861642A (en) * 1981-10-09 1983-04-12 Toshiba Corp Semiconductor device and manufacture thereof
JPS5958838A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Semiconductor device
JPS6319837A (en) * 1986-07-14 1988-01-27 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861642A (en) * 1981-10-09 1983-04-12 Toshiba Corp Semiconductor device and manufacture thereof
JPS5958838A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Semiconductor device
JPS6319837A (en) * 1986-07-14 1988-01-27 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169969A (en) * 1989-11-27 1991-07-23 Matsushita Electric Works Ltd Directly laid flooring

Similar Documents

Publication Publication Date Title
KR900005124B1 (en) Complementary semiconductor device
JPS6118147A (en) Method of forming semiconductor device
US4615746A (en) Method of forming isolated island regions in a semiconductor substrate by selective etching and oxidation and devices formed therefrom
JPH0123949B2 (en)
JP2654607B2 (en) Method for manufacturing semiconductor device
JPS59108325A (en) Manufacture of semiconductor device
US4910575A (en) Semiconductor integrated circuit and its manufacturing method
JPS6381831A (en) Manufacture of semiconductor integrated circuit
JPS6324672A (en) Manufacture of semiconductor device
JPS61289642A (en) Manufacture of semiconductor integrated circuit device
JPS59188141A (en) Semiconductor integrated circuit
JPS6395665A (en) Semiconductor device and manufacture thereof
JPH10308448A (en) Isolation film of semiconductor device and formation method thereof
JPS61172346A (en) Semiconductor integrated circuit device
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPS6132573A (en) Semiconductor integrated circuit device and manufacture thereof
JPH05166919A (en) Semiconductor device and manufacture thereof
JPS6016441A (en) Dielectric isolation of semiconductor substrate surface
JPH0410746B2 (en)
JPS6322065B2 (en)
JP2674568B2 (en) Method for manufacturing semiconductor device
JPS58175843A (en) Manufacture of semiconductor integrated circuit
JPS62132342A (en) Manufacture of semiconductor integrated circuit
JPS6132548A (en) Manufacture of semiconductor device
JPS61135135A (en) Semiconductor device