JPS60235464A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60235464A
JPS60235464A JP9127384A JP9127384A JPS60235464A JP S60235464 A JPS60235464 A JP S60235464A JP 9127384 A JP9127384 A JP 9127384A JP 9127384 A JP9127384 A JP 9127384A JP S60235464 A JPS60235464 A JP S60235464A
Authority
JP
Japan
Prior art keywords
film
impurity
forming
polycrystalline silicon
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9127384A
Other languages
Japanese (ja)
Other versions
JPH0636415B2 (en
Inventor
Fujiki Tokuyoshi
徳吉 藤樹
Hirohiko Yamamoto
山本 宏彦
Tetsushi Sakai
徹志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9127384A priority Critical patent/JPH0636415B2/en
Publication of JPS60235464A publication Critical patent/JPS60235464A/en
Publication of JPH0636415B2 publication Critical patent/JPH0636415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To equalize the junction depth and concentration distribution of a base- contact region and increase concentration thereof by forming an opening for an emitter and adding an impurity. CONSTITUTION:An opening 20 is shaped, and an impurity is added to the whole surface and the added impurity is corrected, thus forming impurity adding regions 25. The diffusion of boron for approximately 20min at 1,000 deg.C is proper as conditions for diffusion, final depth extends over approximately 0.3mum, and the resistance value of a poly Si film layer extends over approximately 100OMEGA/ square. A transistor element is manufactured by shaping an emitter region, etc. according to a conventional process. Consequently, the junction depth of a base- contact section and the distribution of impurity concentration are equalized, and base parasitic resistance is reduced easily, thus improviding the characteristics of the transistor element with ease.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係シ、特に高速、高集
積度を目的とするバイボー2トランジスタのベース・コ
ンタクト領域の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a base contact region of a Bibo 2 transistor aimed at high speed and high integration.

バイポーラ型半導体装置において、その構造についてみ
ると基板平面に垂直刃高では、エミッタ領域、ベース領
域、高抵抗コレクタ領域、及び低抵抗コレクタ領域の4
屑構造となっておシ、これら4層が2〜3μn1の内に
形成されている。これに対し、水平方向でね1、エミッ
タ領域、ベース領域、ベース−コンタクト領域、コレク
タコンタクト領域、絶縁領域等が縦横数十μmの方形の
内に形成されている。このように、水平面内で大きな領
域が必要となる理由は、それぞれの領域を写真食刻法と
拡散、酸化の組み合わせで形成している為、各領域間に
マスク目金せの余裕度が必要である事と、内部素子間配
線用のコンタクト形状が、そのコンタクト抵抗値や信頼
性の問題から小さく出来ない事にある。集積回路装置の
性能向上や、集積度向上の為には、この水平面内での素
子の専有面積をいかに小さくするかが大きな焦点となっ
ておシ、それと同時にベース・コレクタ等の寄生抵抗を
小さくする方法や、写真食刻の使用回数を少なくする方
法が色々と検討されている。その中で、専有面積を小さ
くする方法としては誘電体絶縁分離法や、エミッタeペ
ース、コレクタ等のコンタクトを一度に形成するオール
・コンタクト方式、又、ベース・コンタクト窓から自己
整合的にエミッタを形成する方法等が、又、コンタクト
形状を小さくシ、かつ、コンタクトの信頼性を向上する
方法として多結晶シリコン膜を使用する方法等が注目さ
れている。
Looking at the structure of a bipolar semiconductor device, there are four parts at a height perpendicular to the substrate plane: an emitter region, a base region, a high-resistance collector region, and a low-resistance collector region.
In a scrap structure, these four layers are formed within 2 to 3 μm. On the other hand, in the horizontal direction, the emitter region, base region, base-contact region, collector contact region, insulating region, etc. are formed within a rectangle of several tens of μm in length and width. The reason why such a large area is required in the horizontal plane is that each area is formed using a combination of photo-etching, diffusion, and oxidation, so a margin of mask metallization is required between each area. In addition, the shape of the contact for wiring between internal elements cannot be made small due to problems with contact resistance and reliability. In order to improve the performance and density of integrated circuit devices, a major focus is on how to reduce the area occupied by the elements in this horizontal plane.At the same time, it is important to reduce the parasitic resistance of the base and collector. Various methods are being considered to reduce the number of times photo engraving is used. Among these methods, methods to reduce the occupied area include dielectric insulation separation method, all-contact method in which contacts such as emitter e-pace and collector are formed at the same time, and emitter self-alignment method from base contact window. In addition, a method of forming the contact using a polycrystalline silicon film is attracting attention as a method of reducing the contact shape and improving the reliability of the contact.

第1図〜第6図は従来技術を示すもので、コンタクト部
に多結晶シリコン膜を使用し、ベース・コンタクト窓か
ら自己整合的に、写真食刻法を用いずに、ベース領域、
エミッタ領域及びエミッタコンタクト部を形成するnp
n型トシトランジスター来の製造方法の主たる工程の、
主たる部分の断面図を示す。
1 to 6 show a conventional technique in which a polycrystalline silicon film is used for the contact portion, and the base region and contact window are self-aligned from the base contact window without using photolithography.
np forming the emitter region and emitter contact part
The main steps of the conventional manufacturing method for n-type Toshi transistors are:
A cross-sectional view of the main part is shown.

第1図はn型シリコン基板11上に第1の絶縁体膜12
(酸化膜と窒化膜の重層膜)を約1500Xの膜厚で形
成し、該膜上に多結晶シリコン膜(po−1ysi膜)
13を約2500Xの膜厚で形成し、その上に第2の絶
縁体膜14(酸化膜、polysi膜、窒化膜等の組み
合せによる膜)を約0.7μmの膜厚で形成した所であ
る。次に写真食刻法とリアクティブイオンエッチ等の組
み合わせによシ第2の絶縁体膜14を部分的に除去し、
残存第2の絶縁体膜14をアスクとして、polysi
膜13に不純物添加を行なう(第2図)。この時、不純
物添加法としてはイオン注入法を用い、注入条件として
は、不純物はボロンでエネルギー(E)は5Qkev、
ドーズ量(φ)は5 E 15 an−”が適当である
。しかる後に第2の絶縁体膜14を、等方性プラズマエ
ッチや、湿式エツチングによシ側面エツチングし、Po
1y8i膜13で、ボロンが添加されていない領域を巾
0.3μm程度露出させる。次に露出した、ボロンが添
加されていないPo1y 8i膜13を食刻し、第1の
絶縁体膜12を露出させる。このとき食刻方法としては
KOH系液体を用いた湿式エツチングが適している。そ
の後、順次、第2の絶縁体膜14を除去し、露出した第
1の絶縁体膜12を除去し、開孔16を設け、ボロンが
添加されていないPo1ySt 膜13を除去する(第
3図)。しかる後に、再びPo1ySi膜17を約ao
ooXの膜厚で形成し、該Po1y8i膜15からボロ
ンの拡散を生ぜしめ、Po1y8i膜17中にボロン添
加領域18を形成すると同時に開孔16を通してシリコ
ン基板11中にもボロン添加領域19を形成する(第4
図)。
FIG. 1 shows a first insulating film 12 on an n-type silicon substrate 11.
(multilayer film of oxide film and nitride film) is formed with a film thickness of approximately 1500X, and a polycrystalline silicon film (po-lysi film) is formed on this film.
13 is formed with a film thickness of about 2500×, and a second insulating film 14 (a film made of a combination of oxide film, polysilicon film, nitride film, etc.) is formed on it with a film thickness of about 0.7 μm. . Next, the second insulating film 14 is partially removed by a combination of photolithography, reactive ion etching, etc.
Using the remaining second insulator film 14 as an ask, polysi
Impurities are added to the film 13 (FIG. 2). At this time, the ion implantation method was used as the impurity addition method, and the implantation conditions were that the impurity was boron, the energy (E) was 5Qkev,
An appropriate dose amount (φ) is 5 E 15 an-''. After that, the second insulating film 14 is side-etched by isotropic plasma etching or wet etching.
In the 1y8i film 13, a region to which boron is not added is exposed with a width of about 0.3 μm. Next, the exposed Poly 8i film 13 to which no boron is added is etched to expose the first insulator film 12. At this time, wet etching using a KOH liquid is suitable as an etching method. Thereafter, the second insulating film 14 is removed, the exposed first insulating film 12 is removed, an opening 16 is formed, and the PolySt film 13 to which no boron is added is removed (see FIG. 3). ). After that, the Po1ySi film 17 is again coated to a thickness of about ao
ooX film thickness, causing boron to diffuse from the Po1y8i film 15, forming a boron doped region 18 in the Po1y8i film 17, and at the same time forming a boron doped region 19 in the silicon substrate 11 through the opening 16. (4th
figure).

この時、拡散条件としては900’C,N2.6時間程
度が適当テアシ、Po1y81膜17中に約0.7μm
され、シリコン中に約0.4μm拡散される。その結果
、絶縁体膜12上+7) Po1y 8i !a17 
K モ絶fj1体膜端から約0.4μm入った所まで拡
散される。
At this time, the appropriate diffusion conditions are 900'C and N for about 2.6 hours.
and diffused into silicon to a depth of approximately 0.4 μm. As a result, on the insulating film 12 +7) Po1y 8i ! a17
K is diffused up to approximately 0.4 μm from the edge of the body's membrane.

又、シリコン中のボロン拡散領域は、拡散源であるPo
1y8i膜15が、開孔16の一端に接してしか形成さ
れていない為、そのシリコン中での接合深さや濃度勾配
酸第4図に示した様に、拡散源(Po1y 81膜15
)から離れるに従がって浅く、又薄くなる形状を有して
いる。次にPo1y8i膜17でボロンを添加されてい
ない部分を食刻し、開孔20を設ける(第5図)。次に
Po1y 8i膜18表面を熱酸化し、シリコン酸化膜
24を約3000Xの膜厚で形成する。その後に核酸化
膜24を用いて第1の絶縁体膜を食刻し開孔20をシリ
コン基板に至達させ、その開孔を通してシリコン基板中
にボロンを添加し活性ベース領域21を形成する。
In addition, the boron diffusion region in silicon is a diffusion source of Po.
Since the 1y8i film 15 is formed only in contact with one end of the opening 16, the junction depth in the silicon and the concentration gradient acid as shown in FIG.
) It has a shape that becomes shallower and thinner as it moves away from the surface. Next, the portion of the Po1y8i film 17 to which boron is not added is etched to form an opening 20 (FIG. 5). Next, the surface of the Poly 8i film 18 is thermally oxidized to form a silicon oxide film 24 with a thickness of about 3000×. Thereafter, the first insulator film is etched using the nuclear oxide film 24 to form an opening 20 that reaches the silicon substrate, and boron is added into the silicon substrate through the opening to form an active base region 21.

次に開孔20を覆うPo1y81膜パターン23を形成
し、該Po1y 8i膜23を通してn型不純物をシ 
′リコン中に添加し、エミッタ領域22を形成する(第
6図)。これによシnPn )ランシスターが形成され
る。
Next, a Po1y81 film pattern 23 is formed to cover the opening 20, and an n-type impurity is syringed through the Po1y8i film 23.
'Add into the silicon to form the emitter region 22 (FIG. 6). This forms a run sister (nPn).

以上、従来プロセスを詳細に説明したが、この従来プロ
セスによると、シリコン中に形成されたベース・コンタ
クト領域の接合深さや、不純物濃度分布が大きく不均一
力分布をしておシ、エミッタコンタクト部に近づくにつ
れて接合が浅く、濃度が薄くなる傾向を有している。又
、ポリシリ中の不純物分布も不均一となっている。この
結果、ペース寄生抵抗は太きlり、)ランシスター素子
の動作速度の向上を図るときの大きな欠点となっている
。又Po1y Si膜を内部抵抗素子として使用する場
合、その安定性や再現性等に信頼できない所がある。
The conventional process has been explained in detail above, but according to this conventional process, the junction depth of the base contact region formed in silicon and the impurity concentration distribution are large, and the force distribution is uneven, and the emitter contact region The junction tends to become shallower and the concentration becomes thinner as it approaches . Moreover, the impurity distribution in the polysilicon is also non-uniform. As a result, the pace parasitic resistance increases, which is a major drawback when trying to improve the operating speed of the Runsistor element. Furthermore, when a PolySi film is used as an internal resistance element, its stability and reproducibility are sometimes unreliable.

本発明はこれらの点を改善しようとするもので、前記、
従来プロセスの第5図のエミッタ用開孔を設けた後に、
不純物添加を行ないベース・コンタクト領域の接合深さ
や濃度分布を均一かつ高濃度化する。それと同時にPo
1y Si膜中の不純物濃度も均一化する。この結果、
ベース寄生抵抗を大巾に小さくすることが可能となシ、
又、Po1y8i膜による抵抗も任意にコントロール可
能となシ、その信頼性も向上できる。
The present invention aims to improve these points, and the above-mentioned
After creating the emitter hole shown in Figure 5 in the conventional process,
Impurities are added to make the junction depth and concentration distribution of the base contact region uniform and high. At the same time Po
1y The impurity concentration in the Si film is also made uniform. As a result,
It is possible to greatly reduce the base parasitic resistance,
Furthermore, the resistance due to the Po1y8i film can be controlled arbitrarily, and its reliability can also be improved.

すなわち本発明の特徴は、半導体基板表面に絶縁体膜を
形成し、該絶縁体膜上に不純物を含む第1の多結晶シリ
コン膜を部分的に形成する1槁と、該第1の多結晶シリ
コン膜の周辺の一部に隣接してベース−コンタクト用開
孔を絶縁体膜に形成する工程と、その後に、不純物が添
加されていない第2の多結晶シリコン膜を形成する工程
と、該第1の多結晶シリコン膜から第2の多結晶シリコ
ン膜に不純物の拡散を生せしめ、不純物添加領域を形成
すると同時に、前記開孔を通して基板内に不純物添加を
行なう工程と、不純物添加領域外の第2の多結晶シリコ
ン膜を除去する工程と、残存子る第2の多結晶シリコン
膜の周辺の一部を用いてエミッタ用開孔を絶縁体膜に形
成する工程を含、む半導体装置の製造方法において、前
記第2の多結晶シリコン膜の形成前又はパターン形成後
に、前記不純物と同一の不純物を添加する工程を含む半
導体装置の製造方法にある。次に実施例によシ詳細に説
明する。 、 第7図(a)は従来プロセスの実施例第5図に対応する
断面図である。この後に、全面に不純物添加を行ない添
加されている不純物の補正を行ない、不純物添加領域2
5を形成する(第7図(b))。拡散条件としては10
00℃20分程度のボロン拡散が適当であシ、最終的な
深さは0.3μm程度で、Po1y8i膜の層抵抗値は
約100Ω/口程度となる。以下、従来プロセスに従が
い、エミッタ領域等を形成することによシトランシスタ
ー素子が作られる。
That is, the features of the present invention include forming an insulating film on the surface of a semiconductor substrate, and partially forming a first polycrystalline silicon film containing impurities on the insulating film; forming a base-contact opening in an insulating film adjacent to a portion of the periphery of the silicon film, and thereafter forming a second polycrystalline silicon film to which no impurities are added; A step of causing impurity diffusion from the first polycrystalline silicon film to the second polycrystalline silicon film to form an impurity doped region, and at the same time doping the impurity into the substrate through the opening; A semiconductor device comprising the steps of: removing the second polycrystalline silicon film; and forming an emitter hole in the insulator film using a portion of the periphery of the remaining second polycrystalline silicon film. The method of manufacturing a semiconductor device includes the step of adding an impurity same as the impurity before forming the second polycrystalline silicon film or after forming the pattern. Next, an example will be explained in detail. , FIG. 7(a) is a sectional view corresponding to FIG. 5 of the conventional process embodiment. After this, impurities are added to the entire surface to correct the added impurities, and the impurity doped region 2
5 (Fig. 7(b)). The diffusion condition is 10
It is appropriate to diffuse boron at 00° C. for about 20 minutes, and the final depth is about 0.3 μm, and the layer resistance value of the Poly8i film is about 100 Ω/hole. Thereafter, a citransistor element is manufactured by forming an emitter region and the like according to a conventional process.

以上、詳細に説明した様に、本発明によると、Po1y
Si膜を拡散源としてベース・コンタクト用P型領域を
形成した後に、再び外方よシ、不純物添加を行なう。こ
れによシベース・コンタクト部の接合深さや、不純物濃
度分布の均一化を図シ、ペース寄生抵抗の減少を容易に
行ない、合わせてPo1ySi膜中の不純物の均一化を
行ないPcylySi抵抗の使用を容易とする。これに
より)ランシスター素子の特性向上が容易に可能となシ
、合わせて半導体装置の信頼性向上が期待できる。
As described above in detail, according to the present invention, Po1y
After forming a P-type region for base contact using the Si film as a diffusion source, external doping is again performed. This makes it easier to make the junction depth and impurity concentration distribution of the base contact part uniform, reduce the parasitic resistance of the paste, and also make the impurities in the PolySi film more uniform, making it easier to use PcylySi resistors. shall be. As a result, it is possible to easily improve the characteristics of the Runsistor element, and at the same time, it is expected that the reliability of the semiconductor device will be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は従来プロセスの主たる工程のnpn 
)ランシスターのエミッターベース間の断面図を示す。 又、第7図(、) 、 (b)は本発明と従来プロセス
の相違点を示す断面図である。 図中の記号は下記の事物を表わす。 11・・・・・・n型シリコン基板、12・・・・・・
第1の絶縁体膜(シリコン酸化膜又はシリコン酸化膜と
シリコン窒化膜の二重膜)、13.17・・・・・・多
結晶シリコン膜(不純物添加無)、14・・・・・・第
2の絶縁体−(シリコン酸化膜、シリコン窒化膜、多結
晶シリコン膜等の重ね合せ膜)、15,18.23・・
・・・・多結晶シリコン膜(不純物添加有)、16・・
・・・・ベース・コンタクト用開孔、19,21.25
・・・・・・P型不純物添加領域、20・・・・・・エ
ミッタ形成用の孔、22・・・・・・エミッタ用n 不
純物添加領域、24・・・・・・シリコン酸化膜である
Figures 1 to 6 show the main steps of the conventional process.
) shows a cross-sectional view between the emitter bases of the run sister. 7(a) and (b) are cross-sectional views showing the differences between the present invention and the conventional process. The symbols in the diagram represent the following items. 11...N-type silicon substrate, 12...
First insulator film (silicon oxide film or double film of silicon oxide film and silicon nitride film), 13.17... Polycrystalline silicon film (no impurity added), 14... Second insulator (superimposed film of silicon oxide film, silicon nitride film, polycrystalline silicon film, etc.), 15, 18.23...
...Polycrystalline silicon film (with impurity addition), 16...
...Base contact hole, 19, 21.25
...P-type impurity doped region, 20...hole for emitter formation, 22...n-type impurity doped region for emitter, 24...silicon oxide film be.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に絶縁体膜を形成し、該絶縁体膜上に不
純物を含む第1の多結晶シリコン膜を部分的に形成する
工程と、該第1の多結晶シリコン膜の周辺の一部に隣接
してベース・コンタクト用開孔を絶縁体膜に形成する工
程と、その後に、不純物が添加されていない第2の多結
晶シリコン膜を形成する工程と、該第1の多結晶シリコ
ン膜から第2の多結晶シリコン膜に不純物の拡散を生ぜ
しめ、不純物@切0領域を形成すると同時に、前記開孔
を通して基板内に不純物添加を行なう工程と、不純物添
加領域外の第2の多結晶シリコン膜を除去する工程と、
残存せる該第2の多結晶シリコン膜の周辺の一部を用い
てエミッタ用開孔な絶縁体膜に形成する工程を含む半導
体装m、の製造方法において、前記第2の多結晶シリコ
ン膜の形成前又はパターン形成後に、前記不純物と同一
の不純物を添加する工程を含むととを荷動とする半導体
装置の製造方法。
forming an insulating film on the surface of the semiconductor substrate, partially forming a first polycrystalline silicon film containing impurities on the insulating film, and forming a part of the periphery of the first polycrystalline silicon film; a step of forming an adjacent hole for a base contact in an insulating film, a step of forming a second polycrystalline silicon film to which no impurities are added, and a step of forming a second polycrystalline silicon film from the first polycrystalline silicon film. a step of causing impurity diffusion in the second polycrystalline silicon film to form an impurity@cut region and at the same time doping the impurity into the substrate through the opening; a step of removing the film;
A method for manufacturing a semiconductor device (m) comprising a step of forming an open insulator film for an emitter using a part of the periphery of the remaining second polycrystalline silicon film, wherein the second polycrystalline silicon film is A method for manufacturing a semiconductor device, including the step of adding the same impurity as the impurity before formation or after pattern formation.
JP9127384A 1984-05-08 1984-05-08 Method for manufacturing semiconductor device Expired - Lifetime JPH0636415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9127384A JPH0636415B2 (en) 1984-05-08 1984-05-08 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9127384A JPH0636415B2 (en) 1984-05-08 1984-05-08 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60235464A true JPS60235464A (en) 1985-11-22
JPH0636415B2 JPH0636415B2 (en) 1994-05-11

Family

ID=14021841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9127384A Expired - Lifetime JPH0636415B2 (en) 1984-05-08 1984-05-08 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0636415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170113B2 (en) 2003-04-01 2007-01-30 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170113B2 (en) 2003-04-01 2007-01-30 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0636415B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
JPH0253944B2 (en)
JPH05347383A (en) Manufacture of integrated circuit
JPS62588B2 (en)
US4412378A (en) Method for manufacturing semiconductor device utilizing selective masking, etching and oxidation
US4647958A (en) Bipolar transistor construction
US4735912A (en) Process of fabricating a semiconductor IC device
JPH0241170B2 (en)
JPH0645537A (en) Manufacture of integrated circuit
US4713355A (en) Bipolar transistor construction
JP3923620B2 (en) Manufacturing method of semiconductor substrate
JPH10335344A (en) Self-aligned double polysilicon bipolar transistor and manufacturing method thereof
JPS60235464A (en) Manufacture of semiconductor device
JPS6380567A (en) Self-aligning bipolar transistor and manufacture of the same
JP2633411B2 (en) Method for manufacturing semiconductor device
JP2576664B2 (en) Method for manufacturing NPN transistor
JPH04152531A (en) Manufacture of semiconductor device
JPH0128508B2 (en)
JPH0318738B2 (en)
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JPS61218169A (en) Semiconductor device and manufacture thereof
JPS6295871A (en) Manufacture of semiconductor device
JPH0132669B2 (en)
JPH0669043B2 (en) Method for manufacturing semiconductor device
JPH06244194A (en) Manufacture of high-speed bipolar transistor
JPS5950093B2 (en) Manufacturing method of semiconductor device