JPS61154176A - Manufacture of field effect type transistor - Google Patents

Manufacture of field effect type transistor

Info

Publication number
JPS61154176A
JPS61154176A JP27686084A JP27686084A JPS61154176A JP S61154176 A JPS61154176 A JP S61154176A JP 27686084 A JP27686084 A JP 27686084A JP 27686084 A JP27686084 A JP 27686084A JP S61154176 A JPS61154176 A JP S61154176A
Authority
JP
Japan
Prior art keywords
active layer
layer
field effect
thickness
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27686084A
Other languages
Japanese (ja)
Inventor
Kazukiyo Tsunenobu
和清 常信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27686084A priority Critical patent/JPS61154176A/en
Publication of JPS61154176A publication Critical patent/JPS61154176A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Drying Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To implement low noises and high gain in an FET, by making the thickness of a channel provided in the active layer in the FET thinner along the path from a source electrode to a drain electrode as the drain electrode is approached. CONSTITUTION:A channel 10 is formed in an asymmetrical shape so that the thickness of an active layer 3 becomes thinner toward the side of a drain elec trode 5 from the side of a source electrode 4 as the drain electrode 5 is approached. The minimum thickness is about 1,200Angstrom . In this structure, the source resistance is made lower than the conventional value by about 50%. The gate withstanding voltage can be increased by about twice. The impurity concentration of the active layer 3 is 2-4 X 10<17> cm<-3>, and the gate length is 0.5-1mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低雑音化と高利得化を実現した電界効果型トラ
ンジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a field effect transistor that achieves low noise and high gain.

マイクロ波の周波数帯域で使用する増幅器としてキャリ
アの易動度の大きなガリウム砒素(GaAs)化合物半
導体を使用した電界効果型トランジスタが使用されてい
る。
Field effect transistors using gallium arsenide (GaAs) compound semiconductors with high carrier mobility are used as amplifiers used in the microwave frequency band.

ここでトランジスタの必要条件は使用に当たってなるべ
く雑音の発生が少なく、また高利得が得られることであ
り、これを達成したトランジスタの実用化が要望されて
いる。
Here, the necessary conditions for a transistor are to generate as little noise as possible during use and to obtain a high gain, and there is a desire for a transistor that achieves this to be put into practical use.

[従来の技術〕 従来の電界効果トランジスタ(以下略してPET)の構
造は第4図に示すようにGaAs基板1の上にバッファ
層2が、更にその上に活性層3が何れもエピタキシャル
成長法で形成されており、この活性層3を用いてPET
が形成されている。
[Prior Art] As shown in FIG. 4, the structure of a conventional field effect transistor (hereinafter abbreviated as PET) is such that a buffer layer 2 is formed on a GaAs substrate 1, and an active layer 3 is further formed on the buffer layer 3 by epitaxial growth. is formed, and using this active layer 3, PET
is formed.

すなわちこの実施例の場合はドナーとしてシリコン(S
i)を使用し、不純物濃度を2〜5XIQ”aJに調整
した活性層3を例えば200 X50μ−のIHT形成
領域を残してエツチングにより除去した後、ソース電極
4とドレイン電極5とがパターン形成されている。
In other words, in this example, silicon (S) is used as the donor.
i), the active layer 3 whose impurity concentration was adjusted to 2 to 5XIQ"aJ is removed by etching leaving an IHT formation region of, for example, 200X50μ, and then a source electrode 4 and a drain electrode 5 are patterned. ing.

この場合、活性層3とソース及びドレイン電極4.5と
の接合は金・ゲルマニウム(Au−Ge)合金層を設け
るなどの方法でオーミック接触が保たれている。
In this case, ohmic contact is maintained between the active layer 3 and the source and drain electrodes 4.5 by providing a gold-germanium (Au-Ge) alloy layer or the like.

次にGaAs基板1の全域にレジストを被覆した後、ゲ
ート形成領域を窓開けし、この状態でドライエツチング
などの方法で活性層3をリセス(recess)し、チ
ャネル6が形成される。
Next, after covering the entire area of the GaAs substrate 1 with a resist, a window is opened in the gate forming region, and in this state, the active layer 3 is recessed by a method such as dry etching, and a channel 6 is formed.

その後、リフトオフ法によりリセス領域にアルミニウム
(^l)などの金属からなるゲート電極7を形成してP
ETが完成されている。
Thereafter, a gate electrode 7 made of metal such as aluminum (^l) is formed in the recessed region by a lift-off method, and the gate electrode 7 is made of metal such as aluminum (^l).
ET has been completed.

ここで従来はチャネル6の形成に当たって活性層3のリ
セスは均等に行われているためにソース抵抗を下げよう
とすると活性層3を厚く形成する必要があり、然し活性
層3が厚いとピンチオフ電圧が大きくなってゲート耐圧
に近くなる。
Conventionally, when forming the channel 6, the active layer 3 is recessed evenly, so in order to lower the source resistance, it is necessary to form the active layer 3 thickly.However, if the active layer 3 is thick, the pinch-off voltage increases and approaches the gate breakdown voltage.

また活性層3が薄いとソース抵抗が大きくなると云う欠
点があった。
Another drawback is that if the active layer 3 is thin, the source resistance increases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明したようにFETにおいてソース抵抗を低くす
ると共にゲート耐圧を上げたいと云う要舅は相反する関
係にあることから実現することは困難な問題であった。
As explained above, it has been difficult to achieve the goals of lowering the source resistance and increasing the gate breakdown voltage in an FET because they are contradictory.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は半導体基板のバッファ層上に設けた活性層
の厚さをソース電極からドレイン電極に近づくに従って
次第に薄く形成することを特徴とする電界効果型トラン
ジスタの製造方法により解決することができる。
The above problem can be solved by a method of manufacturing a field effect transistor, which is characterized in that the thickness of the active layer provided on the buffer layer of the semiconductor substrate is gradually reduced from the source electrode to the drain electrode.

〔作用〕[Effect]

本発明はソース抵抗を低くしたままゲート耐圧を上げる
方法としてチャネル6の厚さをソース電極4からドレイ
ン電極5に行くに従って薄くなるように非対称に形成す
るものであり、これを実現する方法として活性層3のリ
セスを非対称に行う方法とチャネル6にバフフッ層2か
ら非対称な空乏層を設ける方法とがある。
The present invention is to form the channel 6 asymmetrically so that it becomes thinner as it goes from the source electrode 4 to the drain electrode 5 as a method of increasing the gate breakdown voltage while keeping the source resistance low. There are two methods: a method of recessing the layer 3 asymmetrically, and a method of providing an asymmetrical depletion layer in the channel 6 from the buffing layer 2.

〔実施例〕〔Example〕

第1図は活性層3を非対称にリセスする方法を示スモの
で、バッファ層2の上にパターン形成した厚さ約400
0人の活性層3を含む基板上の全域に互ってスピンコー
ド法などの方法でレジスト膜8を約1μ−の厚さに被覆
し、ゲート電極形成領域9を窓開けしてドライエツチン
グを行う際に図に示すように基板を斜めに例えば傾斜角
を15度に配置してイオンミーリング、リアクティブイ
オンエツチングなどのような方向性のあるイオンエツチ
ングを行うものである。
FIG. 1 shows how to recess the active layer 3 asymmetrically, so that a patterned layer on the buffer layer 2 with a thickness of approximately 400 nm is shown in FIG.
A resist film 8 is coated over the entire area of the substrate including the active layer 3 to a thickness of about 1 μm by a method such as a spin code method, a window is opened in the gate electrode forming region 9, and dry etching is performed. In this process, as shown in the figure, the substrate is placed obliquely, for example, at an inclination angle of 15 degrees, and directional ion etching such as ion milling or reactive ion etching is performed.

第2図はこのようにして形成したチャネル10を備えた
FETの断面構造を示すもので、ソース電極4の側より
ドレイン電極5の側にゆくに従って活性層3の厚さが薄
<、最小厚が約1200人になるようにチャネル10が
非対称に形成しである。
FIG. 2 shows a cross-sectional structure of an FET equipped with a channel 10 formed in this manner, in which the thickness of the active layer 3 decreases from the source electrode 4 side to the drain electrode 5 side. The channel 10 is formed asymmetrically so that there are about 1200 people.

このようにすればソース抵抗は従来よりも約50%低く
なり、またゲート耐圧を従来より約2倍上げることがで
きる。
In this way, the source resistance can be lowered by about 50% than in the conventional case, and the gate breakdown voltage can be increased by about twice that in the conventional case.

なお、この場合に活性層3の不純物濃度は2〜4×10
げam”’であり、またゲート長は0.5〜1μ−とし
た。
In this case, the impurity concentration of the active layer 3 is 2 to 4×10
The gate length was 0.5 to 1 .mu.m.

次に第3図は活性層11の中に空乏層12を設けること
により実質的に非対称なチャネルを形成するものである
Next, in FIG. 3, a depletion layer 12 is provided in the active layer 11 to form a substantially asymmetric channel.

ここで活性層11の中に空乏層12を設けるにはバッフ
ァ層13としてトラップ源をもつ半導体層を使用する。
Here, in order to provide the depletion layer 12 in the active layer 11, a semiconductor layer having a trap source is used as the buffer layer 13.

具体的にはバッファ層13としてアルミニウム・ガリウ
ム砒素(AI 、 Ga1.lAs  但しX≧0.3
)にシリコン(St)元素を5〜10 X 10 ” 
am−1の濃度にドープしてn型としたものを用いる。
Specifically, the buffer layer 13 is made of aluminum gallium arsenide (AI, Ga1.lAs, where X≧0.3
) with 5 to 10 x 10 ” silicon (St) elements
It is doped to a concentration of am-1 to make it n-type.

ここでドープした層の厚さは約200人であり、不純物
ドナーはドレイン電圧を印加する前には基板準位と電子
親和力の違いがら空乏化し、電子のトラップ源となって
いる。
The thickness of the doped layer here is about 200 nm, and the impurity donor is depleted before the drain voltage is applied due to the difference in electron affinity with the substrate level, and becomes a trap source for electrons.

この上にn型のGaAsからなる活性層11を形成し、
以後従来と同様な方法によりソース電極4.ドレイン電
極5およびゲート電極7を形成する。
An active layer 11 made of n-type GaAs is formed on this,
Thereafter, the source electrode 4. A drain electrode 5 and a gate electrode 7 are formed.

ここでゲート電極7の下に形成されるチャネル部は従来
のようにリセスして薄く形成してもよく、また第3図に
示すように活性層11をそのまま使用してもよい。
Here, the channel portion formed under the gate electrode 7 may be formed thinly by recessing as in the conventional method, or the active layer 11 may be used as is as shown in FIG.

このようにして作られたPETにおいてドレイン電極5
とソース電極4の間に電圧を加えると、ソース電極4か
らの電子はドレイン電極5に近づくに従って加速電界が
大きくなり、AlGaAsバフファJila中に移って
トラップに取り込まれる。
In the PET made in this way, the drain electrode 5
When a voltage is applied between the source electrode 4 and the source electrode 4, the accelerating electric field increases as the electrons from the source electrode 4 approach the drain electrode 5, move into the AlGaAs buffer Jila, and are trapped.

このようにしてバッファ層13に電子がトラップされる
とこれによって図に示すように活性層11の中に空乏層
重2がバッファ層13の側から延びてゆき実効的にチャ
ネルが薄くなる。
When electrons are trapped in the buffer layer 13 in this way, the depletion layer 2 extends from the buffer layer 13 side into the active layer 11 as shown in the figure, and the channel becomes effectively thinner.

なおゲート電極7は常に逆バイアスが印加され−でいる
状態で使用されているのでゲート電ti7の側にも空乏
層14が形成され、これら二つの空乏層12、14に挟
まれてチャネルが形成される。
Note that since the gate electrode 7 is always used with a reverse bias applied to it, a depletion layer 14 is also formed on the side of the gate electrode ti7, and a channel is formed between these two depletion layers 12 and 14. be done.

ここでバッファ層13から延びる空乏層12は図に示す
ように加速電界が大きくなる方向に非対称な形状に形成
されているためにチャネルはソース電極4の側は厚く、
またドレイン電極5の側は薄く形成されるためにソース
抵抗は下がり、一方ゲート耐圧は向上する。
Here, the depletion layer 12 extending from the buffer layer 13 is formed in an asymmetrical shape in the direction in which the accelerating electric field increases as shown in the figure, so the channel is thicker on the source electrode 4 side.
Furthermore, since the drain electrode 5 side is formed thin, the source resistance is reduced, while the gate breakdown voltage is improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はFETの活性層に設けられ
るチャネルの厚さをソース電極からドレイン電極に近づ
くに従って薄く形成するものであり、本発明の実施によ
りPUTの低雑音化と高利得化が達成できる。
As explained above, in the present invention, the thickness of the channel provided in the active layer of the FET is made thinner as it approaches from the source electrode to the drain electrode, and by implementing the present invention, it is possible to reduce the noise and increase the gain of the PUT. It can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は非対称形状のチャネルの形成法を説明する断面
図、 第2図は本発明に係る非対称形状のチャネルを備えたP
H7の断面構造図、 第3図は本発明に係る別な構造のPETの断面構造図、 第4図は従来のFETの断面構造図、 である。 図において、 1はGaAs基板、     2.13はバッファ層、
3.11は活性層、    4はソース電極、5はドレ
イン電極、   6,10はチャネル、7はゲート電極
、   8はレジスト膜、12、14は空乏層、 である。
FIG. 1 is a cross-sectional view illustrating a method for forming an asymmetrically shaped channel, and FIG. 2 is a P
FIG. 3 is a cross-sectional structural diagram of a PET with a different structure according to the present invention; FIG. 4 is a cross-sectional structural diagram of a conventional FET. In the figure, 1 is a GaAs substrate, 2.13 is a buffer layer,
3.11 is an active layer, 4 is a source electrode, 5 is a drain electrode, 6 and 10 are channels, 7 is a gate electrode, 8 is a resist film, and 12 and 14 are depletion layers.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板のバッファ層上に設けた活性層の厚さ
をソース電極からドレイン電極に近づくに従って次第に
薄く形成することを特徴とする電界効果型トランジスタ
の製造方法。
(1) A method for manufacturing a field effect transistor, characterized in that the thickness of an active layer provided on a buffer layer of a semiconductor substrate is gradually reduced from a source electrode to a drain electrode.
(2)均一な厚さの活性層に斜め方向にドライエッチン
グを行い、該活性層を不均一にエッチングしてゲート電
極を設けることを特徴とする特許請求の範囲第1項記載
の電界効果型トランジスタの製造方法。
(2) A field effect type according to claim 1, characterized in that a gate electrode is provided by performing dry etching in an oblique direction on an active layer having a uniform thickness, and etching the active layer non-uniformly. Method of manufacturing transistors.
(3)半導体基板上に深いトラップ源をもつバッファ層
を形成し、該バッファ層に電子をトラップすることによ
り活性層中に空乏層を形成し、該空乏層の存在により実
効的に活性層の膜厚を薄くすることを特徴とする特許請
求の範囲第1項記載の電界効果型トランジスタの製造方
法。
(3) A buffer layer with a deep trap source is formed on the semiconductor substrate, and a depletion layer is formed in the active layer by trapping electrons in the buffer layer, and the existence of the depletion layer effectively reduces the active layer. A method of manufacturing a field effect transistor according to claim 1, characterized in that the film thickness is reduced.
JP27686084A 1984-12-27 1984-12-27 Manufacture of field effect type transistor Pending JPS61154176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27686084A JPS61154176A (en) 1984-12-27 1984-12-27 Manufacture of field effect type transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27686084A JPS61154176A (en) 1984-12-27 1984-12-27 Manufacture of field effect type transistor

Publications (1)

Publication Number Publication Date
JPS61154176A true JPS61154176A (en) 1986-07-12

Family

ID=17575416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27686084A Pending JPS61154176A (en) 1984-12-27 1984-12-27 Manufacture of field effect type transistor

Country Status (1)

Country Link
JP (1) JPS61154176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638801B2 (en) 2001-03-29 2003-10-28 Nec Corporation Semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638801B2 (en) 2001-03-29 2003-10-28 Nec Corporation Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH10209434A (en) Heterojunction field effect transistor, and its manufacturing method
JPH07118484B2 (en) Method for manufacturing Schottky gate field effect transistor
JPS61154176A (en) Manufacture of field effect type transistor
JPS61156887A (en) Manufacture of fet
JPS63208275A (en) Field effect transistor
JPH07273129A (en) Schottky gate type field effect transistor and its fabrication
JPH0715018A (en) Field-effect transistor
JPH0645363A (en) Arsenic gallium field effect transistor
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
JP3106747B2 (en) Method for manufacturing compound semiconductor FET
JPH0472384B2 (en)
JP3077653B2 (en) Field effect transistor and method of manufacturing the same
JPS6155967A (en) Manufacture of field-effect transistor
JPH03280552A (en) Manufacture of field effect transistor
JP3534370B2 (en) Method for manufacturing semiconductor device
JP2508173B2 (en) Method for manufacturing semiconductor device
JPS62296566A (en) Field-effect transistor and manufacture thereof
JPH0217935B2 (en)
JPH028454B2 (en)
JPH0385733A (en) Field effect transistor
JPS5850434B2 (en) Method for manufacturing field effect transistors
JPH04184939A (en) Manufacture of semiconductor device
JPS6038883A (en) Manufacture of schottky gate type field effect transistor
JPS61108174A (en) Manufacture of field effect transistor
JPS6265378A (en) Field effect transistor and manufacture thereof