JPH0715018A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPH0715018A
JPH0715018A JP14242493A JP14242493A JPH0715018A JP H0715018 A JPH0715018 A JP H0715018A JP 14242493 A JP14242493 A JP 14242493A JP 14242493 A JP14242493 A JP 14242493A JP H0715018 A JPH0715018 A JP H0715018A
Authority
JP
Japan
Prior art keywords
gate
electrode
fet
substrate
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14242493A
Other languages
Japanese (ja)
Inventor
Hirokuni Tokuda
博邦 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14242493A priority Critical patent/JPH0715018A/en
Publication of JPH0715018A publication Critical patent/JPH0715018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce gate length by forming gate electrodes on the side surface of a protrusion of an uneven part formed on a main surface of a compound semiconductor substrate. CONSTITUTION:When bias voltages are so applied that a source electrode 3 is ground, a drain electrode 4, is of a positive potential, and a gate electrode 5 is of a negative potential, a drain current flows from the drain electrode 4 to the source electrode 3, and is controlled by a depletion layer 6 stretching from the gate electrode 5. Since a semiinsulative substrate does not exist in a drain current path, the current component toward the substrate side, as one of short channel effect, is completely controlled. Since the depletion layer 6 under the gate stretches from both side surfaces of a protrusion, a channel thickness can be designed to be large. Thereby the short channel effect can be remarkably reduced. Since the gate length is almost determined by the trench depth of the unnvenness, an FET having an extremely short gate whose length is 0.1mum or smaller can be easily manufactured only by controlling the etching depth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電界効果トランジスタの
改良に関する。
FIELD OF THE INVENTION This invention relates to improvements in field effect transistors.

【0002】[0002]

【従来の技術】GaAsをはじめとする化合物半導体を
用いた電界効果トランジスタ(以下FETと略記する)
は、マイクロ波無線通信システムのキーデバイスとして
広く利用されている。近年のFETの性能向上は目ざま
しく、高周波化、低雑音化、高出力化を目指して今もな
お改良が続けられている。FETの性能向上を図るため
にはいくつかの施策があるが、最も有効な方法はゲート
長の短縮である。ゲート長の短縮により、伝達コンダク
タンス(gm)が増加し、ゲート容量(Cgs)が低減
する結果、高周波化、高利得化が達成される。初期に実
用化されたFETのゲート長は0.5〜1μmが普通で
あったが、電子ビーム露光法を駆使した電極加工技術の
進展により、最近ではゲート長0.2μmのFETが実
用化されるに至っている。
2. Description of the Related Art A field effect transistor (hereinafter abbreviated as FET) using a compound semiconductor such as GaAs.
Is widely used as a key device of a microwave wireless communication system. The performance of FETs has been remarkably improved in recent years, and improvements are still being made aiming at higher frequency, lower noise, and higher output. There are some measures to improve the performance of the FET, but the most effective method is to shorten the gate length. As the gate length is shortened, the transfer conductance (gm) is increased and the gate capacitance (Cgs) is reduced. As a result, higher frequency and higher gain are achieved. The gate length of the FET that was put into practical use in the early days was usually 0.5 to 1 μm, but due to the progress of the electrode processing technology that makes full use of the electron beam exposure method, the FET with a gate length of 0.2 μm has recently been put into practical use. Has reached the end.

【0003】ゲート長の短縮による性能向上を図る上で
問題となるのが「短チャネル効果」である。以下従来例
にかかるFETの問題点として、図4を参照して短チャ
ネル効果について詳述する。
The "short channel effect" is a problem in improving the performance by shortening the gate length. As a problem of the FET according to the conventional example, the short channel effect will be described in detail with reference to FIG.

【0004】図4は従来例に係るGaAs FETの断
面構造を示す図であって、図中101は半絶縁性GaA
s基板、102はチャネルとなるn型GaAs層、10
3,104はn型GaAs層102とオーミック接触を
なす各々ソース及びドレイン電極、105はn型GaA
s層102とショツトキ接合をなすゲート電極である。
図4に示すGaAs FETは、ドレイン電極104か
らソース電極103に流れる電流を、ゲート電極105
に印加する電圧(電界)によりn型GaAs層102中
に形成される空乏層により制御することをその動作原理
としている。
FIG. 4 is a diagram showing a cross-sectional structure of a GaAs FET according to a conventional example, in which 101 is a semi-insulating GaA.
s substrate, 102 is an n-type GaAs layer serving as a channel, 10
Reference numerals 3 and 104 denote source and drain electrodes which make ohmic contact with the n-type GaAs layer 102, and 105 denotes n-type GaA.
It is a gate electrode forming a Schottky junction with the s layer 102.
In the GaAs FET shown in FIG. 4, the electric current flowing from the drain electrode 104 to the source electrode 103
The operating principle is to control by the depletion layer formed in the n-type GaAs layer 102 by the voltage (electric field) applied to the.

【0005】図4に示すGaAs FETにおいてゲー
ト長が短くなると、ゲート下の空乏層の形状が図中に実
線で示される半楕円形106から、破線で示される半円
形106aに近くなり、チャネル中の電流を制御する深
さ方向(図で下方向)の電界成分に比べて、ゲート端か
ら横方向(図で左右方向)に伸びる電界成分が無視し得
なくなる。このためチャネル中の電流をゲート電界で有
効に制御できなくなる。また、ゲート長を短縮すると、
チャネル下の基板側を流れる電流成分が、チャネル中を
流れる電流成分に比べて無視し得ないものとなり、この
場合にも、ゲート電流をゲート電界で制御できなくな
る。
In the GaAs FET shown in FIG. 4, when the gate length is shortened, the shape of the depletion layer under the gate is changed from a semi-elliptical shape 106 shown by a solid line to a semi-circular shape 106a shown by a broken line in the channel. The electric field component extending in the lateral direction (horizontal direction in the figure) from the gate end cannot be ignored as compared with the electric field component in the depth direction (downward direction in the figure) that controls the current. Therefore, the current in the channel cannot be effectively controlled by the gate electric field. Also, if the gate length is shortened,
The current component flowing on the substrate side under the channel becomes ignorable compared to the current component flowing in the channel, and in this case also, the gate current cannot be controlled by the gate electric field.

【0006】[0006]

【発明が解決しようとする課題】以上述べたゲート長短
縮に伴って生じるゲート下の空乏層の形状効果及び基板
側への電流のしみ出し効果をまとめて短チャネル効果と
呼んでいる。短チャネル効果が生じると、チャネル電流
を有効にゲート電圧(電界)で制御できなくなるため、
ピンチオフ近傍のgmが低下し、ドレインコンダクタン
ス(gd)が増加する。この結果ゲート長を短縮すると
却って利得が低下し、雑音指数(NF)が増加するとい
う問題があった。
The shape effect of the depletion layer under the gate and the current leakage effect to the substrate side, which are caused by the shortening of the gate length, are collectively called a short channel effect. When the short channel effect occurs, the channel current cannot be effectively controlled by the gate voltage (electric field).
The gm near the pinch-off decreases and the drain conductance (gd) increases. As a result, if the gate length is shortened, there is a problem that the gain is rather decreased and the noise figure (NF) is increased.

【0007】短チャネル効果を抑止するために従来行な
われている方法は、第一に空乏層の形状効果を緩和する
ためにゲート長の短縮に伴ってn型GaAs層を薄くか
つ高濃度にするという方法であり、第二には基板側を流
れる電流を低減させるために、基板とn型GaAs層と
の界面に例えばp型GaAs層等のポテンシャル障壁と
なる層を挿入する方法である。しかしながら第一の方法
においては、n型GaAs層の高濃度薄層化により、ソ
ース、ドレインのオーミック接触抵抗が増大し、またゲ
ート、ソース間の耐圧が低下するという問題が生じる。
また、第二の方法では、p型GaAs層の挿入によりn
型GaAs層とでpn接合が形成される結果、浮遊容量
が増加するという問題が生じる。
The conventional method for suppressing the short channel effect is to reduce the shape effect of the depletion layer by first reducing the gate length to make the n-type GaAs layer thin and highly concentrated. The second method is to insert a layer such as a p-type GaAs layer serving as a potential barrier at the interface between the substrate and the n-type GaAs layer in order to reduce the current flowing on the substrate side. However, in the first method, there is a problem that the ohmic contact resistance between the source and the drain increases and the breakdown voltage between the gate and the source decreases due to the thinning of the n-type GaAs layer with high concentration.
In the second method, the n-type is formed by inserting the p-type GaAs layer.
As a result of the formation of the pn junction with the type GaAs layer, there arises a problem that the stray capacitance increases.

【0008】以上詳述したように、図4に示す従来構造
のFETにおいては、ゲート長の短縮により性能向上を
図るという方法は、短チャネル効果が障害となって限界
に近づきつつあるのが実状であった。
As described in detail above, in the conventional FET shown in FIG. 4, the method of improving the performance by shortening the gate length is approaching the limit due to the short channel effect. Met.

【0009】本発明は上記事情を考慮してなされたもの
であって、ゲート長を0.2μm以下にまで短縮しても
短チャネル効果が抑止され、更に高周波化、高利得化が
可能となる新規な構造の電界効果トランジスタを提供す
ることを目的としている。
The present invention has been made in consideration of the above circumstances. Even if the gate length is shortened to 0.2 μm or less, the short channel effect is suppressed, and higher frequency and higher gain are possible. It is an object of the present invention to provide a field effect transistor having a novel structure.

【0010】[0010]

【課題を解決するための手段】本発明に係る電界効果ト
ランジスタは、化合物半導体基板の一主面に形成された
凹凸部と、前記凹凸部における凸部上面と凹部底面、ま
たは前記凸部上面と前記化合物半導体基板の他主面に夫
々被着され前記化合物半導体基板とオーミック接合をな
す第一の金属層と、前記凸部側面に被着され前記化合物
半導体基板とショツトキ接合をなす第二の金属層とを具
備したことを特徴とする。また、前記凸部上面に被着さ
れた金属層がドレイン電極、前記凹部底面または前記化
合物半導体基板の他主面に被着された金属層がソース電
極、前記凸部側面に被着された金属層がゲート電極であ
ることを実施態様としている。
A field-effect transistor according to the present invention comprises an uneven portion formed on one main surface of a compound semiconductor substrate, a convex upper surface and a concave lower surface of the uneven portion, or a convex upper surface. A first metal layer deposited on the other principal surface of the compound semiconductor substrate to form an ohmic contact with the compound semiconductor substrate, and a second metal layer deposited on the side surface of the convex portion to form a Schottky junction with the compound semiconductor substrate. And a layer. Further, the metal layer deposited on the upper surface of the convex portion is a drain electrode, the metal layer deposited on the bottom surface of the concave portion or the other main surface of the compound semiconductor substrate is a source electrode, and the metal layer deposited on the side surface of the convex portion. An embodiment is that the layer is a gate electrode.

【0011】[0011]

【作用】上記構成の電界効果トランジスタにあっては、
化合物半導体基板の一主面に形成された凹凸部の凸部側
面にゲート電極を設けたことにより、ゲート長を短くで
きるとともに、ゲート長短縮により生じる短チャネル効
果を抑制できる結果、FETの高周波化、高利得化が可
能になる。
In the field effect transistor having the above structure,
By providing the gate electrode on the convex side surface of the uneven portion formed on the one main surface of the compound semiconductor substrate, the gate length can be shortened and the short channel effect caused by the shortened gate length can be suppressed. , High gain is possible.

【0012】[0012]

【実施例】(実施例1)以下本発明の実施例につき図面
を参照して説明する。
Embodiments Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明にかかるFETの第一の実施
例を示すFETの断面図であって、図中1は半絶縁性G
aAs基板、2はn型GaAs層、3、4は各々ソース
及びドレイン電極、5はゲート電極を示す。図におい
て、ソース及びドレイン電極3、4は、n型GaAs層
2とオーミック接合を形成し、またゲート電極5はn型
GaAs層2とショツトキ接合を形成している。
FIG. 1 is a sectional view of an FET showing a first embodiment of an FET according to the present invention, in which 1 is a semi-insulating G
aAs substrate, 2 is an n-type GaAs layer, 3 and 4 are source and drain electrodes, and 5 is a gate electrode. In the figure, the source and drain electrodes 3 and 4 form an ohmic junction with the n-type GaAs layer 2, and the gate electrode 5 forms a Schottky junction with the n-type GaAs layer 2.

【0014】図1に示すFETにおいて、ソース電極3
が接地電位、ドレイン電極4が正電位、ゲート電極5が
負電位になるようにバイアスを印加すると、ドレイン電
極流4よりソース電極3に向かってドレイン電流が流れ
(図中矢印で示す)、この電流がゲート電極5より伸び
る空乏層6により制御される。図1に示す本発明に係る
FETにおいては、ドレイン電流通路に半絶縁性基板が
存在しないため、短チャネル効果の一つの原因であった
基板側への電流成分が完全に抑止される。また短チャネ
ル効果の他の原因であった空乏層の形状効果について
も、本発明にかかるFETにおいては、ゲート下の空乏
層が凸部両面側から伸びるために、チャネル厚み(図中
Wで示す)を従来構造のFETに比べて厚く設計できる
ため、ドレイン電流を同一にするという条件で比較する
と、短チャネル効果は大幅に軽減される。さらに本発明
に係るFETでは、ゲート長(図中lで示す)が、ほぼ
凹凸の溝の深さで決められるため、従来構造のFETで
は形成が極めて困難であったゲート長0.1μm以下と
いった極短ゲートのFETもエッチング深さを制御する
だけで容易に製造することが可能である。
In the FET shown in FIG. 1, the source electrode 3
When a bias is applied so that is the ground potential, the drain electrode 4 is a positive potential, and the gate electrode 5 is a negative potential, a drain current flows from the drain electrode flow 4 toward the source electrode 3 (indicated by an arrow in the figure). The current is controlled by the depletion layer 6 extending from the gate electrode 5. In the FET according to the present invention shown in FIG. 1, since the semi-insulating substrate does not exist in the drain current path, the current component to the substrate side, which is one cause of the short channel effect, is completely suppressed. Regarding the shape effect of the depletion layer, which is another cause of the short channel effect, in the FET according to the present invention, since the depletion layer under the gate extends from both sides of the convex portion, the channel thickness (shown by W in the figure). ) Can be designed thicker than the FET of the conventional structure, the short channel effect can be greatly reduced when compared under the condition that the drain currents are the same. Further, in the FET according to the present invention, the gate length (indicated by l in the figure) is determined by the depth of the groove having substantially irregularities, so that the gate length is 0.1 μm or less, which is extremely difficult to form in the FET having the conventional structure. An FET with an extremely short gate can be easily manufactured by only controlling the etching depth.

【0015】(実施例2)本発明の第2の実施例を図2
に示す。図2において、10はn型GaAs基板、13
はソース電極、14はドレイン電極、15はゲート電極
を各々示す。図2に示すFETも図1に示したFETと
バイアス電圧印加方法、動作原理は全く同じであるが、
半絶縁性GaAs基板にかわり、n型GaAs基板を用
い、また、ソース電極13を凹部底面にかわりGaAs
基板裏面に配置する点が異なる。図2に示す構造のFE
Tにおいては、図1を用いて説明した如く、短チャネル
効果が従来のFETに比べて抑止されることは勿論であ
るが、これに加えて、基板裏面がそのまま接地電極とな
るため、バイアホールによりソース電極と基板裏面を電
気的に接続する必要がなくなり、電力FETやMMIC
を製造する場合に大きな利点となる。
(Embodiment 2) A second embodiment of the present invention is shown in FIG.
Shown in. In FIG. 2, 10 is an n-type GaAs substrate, 13
Is a source electrode, 14 is a drain electrode, and 15 is a gate electrode. The FET shown in FIG. 2 has exactly the same bias voltage applying method and operating principle as the FET shown in FIG.
An n-type GaAs substrate is used instead of the semi-insulating GaAs substrate, and the source electrode 13 is replaced with the bottom surface of the recess to form GaAs
The difference is that it is placed on the back side of the substrate. FE having the structure shown in FIG.
At T, as described with reference to FIG. 1, the short channel effect is suppressed more than that of the conventional FET, but in addition to this, the back surface of the substrate becomes the ground electrode as it is, so that the via hole is formed. This eliminates the need to electrically connect the source electrode to the back surface of the substrate, and enables power FETs and MMICs.
This is a great advantage when manufacturing.

【0016】(実施例3)図3に本発明にかかる第3の
実施例のFETを断面図で示す。
(Embodiment 3) FIG. 3 is a sectional view showing an FET according to a third embodiment of the present invention.

【0017】図3において、21は半絶縁性GaAs基
板、22はn+ 型GaAs層、27はアンドープGaA
s層、28はn+ 型AlGaAs層、29はn+ 型Ga
As層、23,24は各々ソース及びドレイン電極、2
5はゲート電極を示す。第3の実施例も第1の実施例と
動作原理は同じであり、従って短チャネル効果が抑止さ
れることは勿論であるが、第3の実施例では第1実施例
のn型GaAs層2(図1)にかわり、n+ AlGaA
s層28とアンドープGaAs層27とのヘテロ接合界
面を電流チャネルとして用いており、高電子移動度トラ
ンジスタ(HEMT)の改良型と見なすことができる。
図3のFETにおいては、短チャネル効果の抑止とHE
MTがもつ高電子移動度という二つの効果により、従来
型のFETに比べて動作周波数が飛躍的に向上する。
In FIG. 3, 21 is a semi-insulating GaAs substrate, 22 is an n + type GaAs layer, and 27 is undoped GaA.
s layer, 28 is n + type AlGaAs layer, 29 is n + type Ga
As layers, 23 and 24 are source and drain electrodes, 2
Reference numeral 5 represents a gate electrode. The operation principle of the third embodiment is the same as that of the first embodiment, so that the short channel effect is suppressed, of course, but in the third embodiment, the n-type GaAs layer 2 of the first embodiment is used. N + AlGaA instead of (Fig. 1)
The heterojunction interface between the s layer 28 and the undoped GaAs layer 27 is used as a current channel, and can be regarded as an improved type of a high electron mobility transistor (HEMT).
In the FET of FIG. 3, suppression of the short channel effect and HE
Due to the two effects of high electron mobility of MT, the operating frequency is dramatically improved as compared with the conventional FET.

【0018】なお上述した第1〜第3の実施例において
は化合物半導体基板としてGaAsを用いる場合につい
て例示したが、本発明は何らこれに限定されるものでは
なく、他の化合物半導体、例えばInPを用いる場合に
も広く適用することが可能である。
In the first to third embodiments described above, the case where GaAs is used as the compound semiconductor substrate has been illustrated, but the present invention is not limited to this, and other compound semiconductors such as InP may be used. It can be widely applied when used.

【0019】[0019]

【発明の効果】以上述べたように、本発明によれば、従
来構造のFETでは避けることが困難であったゲート長
の短縮に伴って問題となる短チャネル効果を抑止できる
ため、FETの高周波化、高利得化が可能になる。
As described above, according to the present invention, it is possible to suppress the short channel effect, which is a problem with the shortening of the gate length, which is difficult to avoid in the FET having the conventional structure. And higher gain are possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例1のFETを説明するため
の断面図。
FIG. 1 is a cross-sectional view for explaining an FET according to a first embodiment of the present invention.

【図2】本発明に係る実施例2のFETを示す断面図。FIG. 2 is a sectional view showing an FET according to a second embodiment of the present invention.

【図3】本発明に係る実施例3のFETを示す断面図。FIG. 3 is a sectional view showing an FET of Example 3 according to the present invention.

【図4】従来例のFETを説明するための断面図。FIG. 4 is a cross-sectional view for explaining a conventional FET.

【符号の説明】[Explanation of symbols]

1、21、101 半絶縁性GaAs基板 2、102 n型GaAs層 3、13、23、103 ソース電極 4、14、24、104 ドレイン電極 5、15、25、105 ゲート電極 6、106、106a 空乏層 10 n型GaAs基板 22、29 n+ 型GaAs層 27 アンドープGaAs層 28 n+ 型AlGaAs層1, 21, 101 Semi-insulating GaAs substrate 2, 102 n-type GaAs layer 3, 13, 23, 103 Source electrode 4, 14, 24, 104 Drain electrode 5, 15, 25, 105 Gate electrode 6, 106, 106a Depletion Layer 10 n-type GaAs substrate 22, 29 n + -type GaAs layer 27 undoped GaAs layer 28 n + -type AlGaAs layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体基板の一主面に形成された
凹凸部と、前記凹凸部における凸部上面と凹部底面、ま
たは前記凸部上面と前記化合物半導体基板の他主面に夫
々被着され前記化合物半導体基板とオーミック接合をな
す第一の金属層と、前記凸部側面に被着され前記化合物
半導体基板とショツトキ接合をなす第二の金属層とを具
備してなる電界効果トランジスタ。
1. An uneven portion formed on one main surface of a compound semiconductor substrate, a convex upper surface and a concave bottom surface of the uneven portion, or a convex upper surface and the other main surface of the compound semiconductor substrate, respectively. A field effect transistor comprising: a first metal layer that forms an ohmic contact with the compound semiconductor substrate; and a second metal layer that is deposited on the side surface of the convex portion and forms a Schottky junction with the compound semiconductor substrate.
【請求項2】 前記凸部上面に被着された金属層がドレ
イン電極、前記凹部底面または前記化合物半導体基板の
他主面に被着された金属層がソース電極、前記凸部側面
に被着された金属層がゲート電極であることを特徴とす
る請求項1に記載の電界効果トランジスタ。
2. The metal layer deposited on the upper surface of the convex portion is a drain electrode, the metal layer deposited on the bottom surface of the concave portion or the other main surface of the compound semiconductor substrate is a source electrode, and the metal layer deposited on the side surface of the convex portion. The field effect transistor according to claim 1, wherein the formed metal layer is a gate electrode.
JP14242493A 1993-06-15 1993-06-15 Field-effect transistor Pending JPH0715018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14242493A JPH0715018A (en) 1993-06-15 1993-06-15 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14242493A JPH0715018A (en) 1993-06-15 1993-06-15 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPH0715018A true JPH0715018A (en) 1995-01-17

Family

ID=15315009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14242493A Pending JPH0715018A (en) 1993-06-15 1993-06-15 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPH0715018A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022029A (en) * 2002-04-30 2008-01-31 Furukawa Electric Co Ltd:The GaN-BASED SEMICONDUCTOR DEVICE AND GROUP III-V NITRIDE SEMICONDUCTOR DEVICE
JP2008306200A (en) * 2001-11-27 2008-12-18 Furukawa Electric Co Ltd:The POWER CONVERSION DEVICE AND GaN-BASED SEMICONDUCTOR DEVICE USED THEREFOR
CN106057806A (en) * 2015-04-02 2016-10-26 意法半导体公司 Vertical junction finfet device and method for manufacture
JP2017130579A (en) * 2016-01-21 2017-07-27 ソニー株式会社 Semiconductor device, electronic component, electronic equipment, and method of manufacturing semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306200A (en) * 2001-11-27 2008-12-18 Furukawa Electric Co Ltd:The POWER CONVERSION DEVICE AND GaN-BASED SEMICONDUCTOR DEVICE USED THEREFOR
JP2008022029A (en) * 2002-04-30 2008-01-31 Furukawa Electric Co Ltd:The GaN-BASED SEMICONDUCTOR DEVICE AND GROUP III-V NITRIDE SEMICONDUCTOR DEVICE
CN106057806A (en) * 2015-04-02 2016-10-26 意法半导体公司 Vertical junction finfet device and method for manufacture
JP2017130579A (en) * 2016-01-21 2017-07-27 ソニー株式会社 Semiconductor device, electronic component, electronic equipment, and method of manufacturing semiconductor device
EP3405979B1 (en) * 2016-01-21 2023-10-11 Sony Group Corporation Semiconductor device, electronic part, electronic apparatus, and method for fabricating semiconductor device

Similar Documents

Publication Publication Date Title
US4916498A (en) High electron mobility power transistor
US20090026501A1 (en) Enhancement - depletion semiconductor structure and method for making it
JPH04245650A (en) Complementary type hetero-junction field-effect transistor with anisotropic type n+ gate for p channel-device
JPS61184887A (en) Hetero junction apparatus
JP4670121B2 (en) Semiconductor device
US5153682A (en) HEMT device with doped active layer
US6605831B1 (en) Field-effect semiconductor device
JP2746482B2 (en) Field effect transistor and method for manufacturing the same
JP3127874B2 (en) Field effect transistor and method of manufacturing the same
US6452221B1 (en) Enhancement mode device
JPH0715018A (en) Field-effect transistor
US5670804A (en) PN-junction gate FET
JP2549206B2 (en) Field effect transistor
US5389807A (en) Field effect transistor
JPH023540B2 (en)
JP2005191449A (en) Field-effect transistor
JPH0428149B2 (en)
US6184546B1 (en) High barrier gate and tri-step doped channel field-effect transistor
US20210320198A1 (en) Transistor
JP2553673B2 (en) Field effect transistor
JPH0289324A (en) Modulation dope field effect transistor
JPH1027809A (en) Field-effect transistor
JPH11265896A (en) Field effect transistor and its manufacturing method
JPH01162378A (en) Semiconductor device
JPH01303762A (en) Schottky barrier junction gate type field-effect transistor