JPH0385733A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH0385733A
JPH0385733A JP22385789A JP22385789A JPH0385733A JP H0385733 A JPH0385733 A JP H0385733A JP 22385789 A JP22385789 A JP 22385789A JP 22385789 A JP22385789 A JP 22385789A JP H0385733 A JPH0385733 A JP H0385733A
Authority
JP
Japan
Prior art keywords
layer
source
electrode
drain
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22385789A
Other languages
Japanese (ja)
Inventor
Noriaki Kurita
典明 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22385789A priority Critical patent/JPH0385733A/en
Publication of JPH0385733A publication Critical patent/JPH0385733A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the source resistance and to improve gm to reduce generation of noises by forming an active layer which is thinned as it gets near a drain electrode from a source electrode and by forming it by at least one layer of a shallow N-type layer and a deep P-type layer, respectively. CONSTITUTION:The thickness of an ion implantation N<->-layer 4 is formed thin gradually from a source 5 to a drain 6 to reduce the source resistance and to improve the gate withstand voltage. As for a method to increase sharpness of a carrier concentration profile and to improve gm, a P-layer 7 is formed in parallel below the N<->-layer 4 to compensate for the electrons near the N<->- layer to substrate interface with a P-layer. Thereby, a channel is thick at the side of a source electrode and thin at the side of a drain electrode. Since a carrier concentration profile is sharp, the source resistance lowers while the gate withstand voltage increases, thereby improving gm in comparison with a conventional FET.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電界効果トランジスタについて低雑音化と高
利得化を実現できる構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a structure that can realize low noise and high gain in a field effect transistor.

(従来の技術) 従来のイオン注入型電界効果トランジスタ(以下、FE
Tと略称する)の構造は第3図に示すように、 GaA
s基板101の上に、ソース電極およびドレイン電極と
オーミックコンタクトをとるn”M2O3,103と、
動作層となるn−層104を選択イオン注入とその後の
活性化のためのアニールで形成し、その後、ソース電極
105、ドレイン電極106およびゲート電極107を
設けてFETを得る。
(Prior art) Conventional ion implanted field effect transistor (hereinafter referred to as FE)
The structure of GaA (abbreviated as T) is shown in Figure 3.
On the s-substrate 101, an n''M2O3, 103 that makes ohmic contact with the source electrode and the drain electrode,
An n-layer 104, which becomes an active layer, is formed by selective ion implantation and subsequent annealing for activation, and then a source electrode 105, a drain electrode 106, and a gate electrode 107 are provided to obtain an FET.

すなわち、この実施例の場合はSi+イオンを注入し、
不純物濃度を〜I X 10111an−”にしたn+
層102.103の上に、ソース電極105とドレイン
電極106を金・ゲルマニウム(Au−Ge)合金層を
用いて設けるなどの方法でオーミックコンタクトが保た
れている。
That is, in this example, Si + ions are implanted,
n+ with impurity concentration ~I x 10111an-”
Ohmic contact is maintained by providing a source electrode 105 and a drain electrode 106 on the layers 102 and 103 using a gold-germanium (Au-Ge) alloy layer.

次に、アルミニウム(AOなどの金属を用いてゲート電
極107を形成してFETが完成されている。
Next, a gate electrode 107 is formed using a metal such as aluminum (AO) to complete the FET.

ここで従来のFET′a戒で利得向上を目的としてソー
ス抵抗を下げようとすると、エネルギーを高くしてイオ
ン注入を施しn−層104を厚く形成する必要から電子
キャリア濃度プロファイルの急峻性が低下し、その結果
gmも低下し、さらにピンチオフ電圧が大きくなリグ−
1〜耐圧に近づいてしまう。また、逆にgmを向上させ
る目的でn−層1.04 を薄く形成するとソース抵抗
が大きくなるという欠点があった。
If an attempt is made to lower the source resistance for the purpose of improving gain in a conventional FET'a, the steepness of the electron carrier concentration profile decreases because it is necessary to perform ion implantation at high energy and form a thick n-layer 104. As a result, gm also decreases, and rigs with large pinch-off voltage
1 to close to withstand pressure. On the other hand, if the n-layer is formed to be 1.04 thick for the purpose of improving gm, there is a drawback that the source resistance increases.

(発明が解決しようとする課題) 叙上の如き従来の構造のFETにおいて、ソース抵抗を
低くすると共にゲート耐圧を上げ、さらにgmを向上さ
せたいという要望は、互いに相反する関係にあることか
ら実現が困難であった。
(Problems to be Solved by the Invention) In FETs with the conventional structure as described above, the demands for lowering the source resistance, increasing the gate withstand voltage, and further improving the gm have been realized because they are in a contradictory relationship with each other. was difficult.

本発明は、ソース抵抗を低くすると同時に、gmを向上
させ雑音の発生が少なく高利得を得るFETを提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an FET that reduces source resistance, improves gm, generates less noise, and provides high gain.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明にかかるFETは、半導体基板上に選択イオン注
入およびアニールにより形成された活性層を具備するF
ETにおいて、活性層がソース電極からドレイン電極に
近付くに従って小なる層厚に形成されていることを特徴
とし、さらに、活性層が浅いn型層と深いp型層の少な
くとも各1層でなることを特徴とするものである。
(Means for Solving the Problems) An FET according to the present invention includes an active layer formed on a semiconductor substrate by selective ion implantation and annealing.
In ET, the active layer is formed to have a smaller thickness as it approaches from the source electrode to the drain electrode, and furthermore, the active layer consists of at least one layer each of a shallow n-type layer and a deep p-type layer. It is characterized by:

(作 用) 本発明によれば、FETにおけるチャネルがソース電極
の側に厚く、またドレイン電極側に薄い構造をもち、さ
らにキャリア濃度プロファイルが急峻になるため、従来
のFETに比へてソース抵抗は下がる一方、ゲート耐圧
が向上しgmも向上する。
(Function) According to the present invention, the channel in the FET is thicker on the source electrode side and thinner on the drain electrode side, and the carrier concentration profile becomes steeper, so the source resistance is lower than in conventional FETs. While the gate voltage decreases, the gate breakdown voltage improves and the GM also improves.

(実施例) 以下、本発明のFETにかかる1実施例につき図面を参
照して説明する。
(Example) Hereinafter, one example of the FET of the present invention will be described with reference to the drawings.

本発明は第1図に示すように、ソース抵抗を低くし、同
時にゲート耐圧をあげるために、チャネルを形成するイ
オン注入〇−層4の厚さをソース5からドレイン6に向
って、次第に薄くなるように形成するものであり、さら
にキャリア濃度プロファイルの急峻性を高め、gmを大
きくする方法として、このn−層4の下に平行に9層7
を形威し、n−周一基板界面付近の電子を9層で補償す
ることにより実現できる。
As shown in FIG. 1, in order to lower the source resistance and increase the gate breakdown voltage at the same time, the thickness of the ion-implanted layer 4 forming the channel is gradually thinned from the source 5 to the drain 6. As a method of further increasing the steepness of the carrier concentration profile and increasing gm, nine layers 7 are formed in parallel under this n-layer 4.
This can be realized by compensating the electrons near the n-substrate interface with nine layers.

次に2本発明にかかるFETの上記構造の製造方法を工
程順に示す第2図(a)〜(f)によって説明する。
Next, a method for manufacturing the above-described structure of an FET according to the present invention will be explained with reference to FIGS. 2(a) to 2(f) showing the steps in order.

第2図は第1図のFETのn−Jl(動作層)4の厚さ
をソースからドレイン方向に薄く変化させて形成する方
法を示すもので、第2図(a)のようにGaAs基板2
1上に2500ÅのプラズマCVD窒化硅素膜22を形
成した後、レジスト23をスピンコード法により釣上μ
mの厚さに被覆し、次いでソース形成予定域25上の動
作層との接する面26から釣上μmの長さで且つ動作層
の幅を持つフォトレジストの開孔部23aを設け(第2
図(b))、この開孔部より窒化硅素膜をふっ化アンモ
ニウム/ふっ酸溶液(NH,F/14F)28を用いて
約400Å/分の速度でエツチングすることにより、チ
ャネル形成予定域上方の窒化硅素膜22をテーパ角約1
5°の傾斜を有する窒化硅素膜部22aに形成する(第
2図(C))。
Figure 2 shows a method of forming the FET shown in Figure 1 by changing the thickness of the n-Jl (active layer) 4 from the source to the drain direction. 2
After forming a plasma CVD silicon nitride film 22 with a thickness of 2500 Å on top of the resist 23, a resist 23 is coated using a spin code method.
Then, an opening 23a of the photoresist is provided with a length of μm and a width of the active layer from the surface 26 in contact with the active layer on the source formation region 25 (second
Figure (b)), by etching the silicon nitride film from this opening using an ammonium fluoride/hydrofluoric acid solution (NH,F/14F) 28 at a rate of about 400 Å/min, the area above where the channel is to be formed is etched. The silicon nitride film 22 has a taper angle of about 1
It is formed on a silicon nitride film portion 22a having an inclination of 5° (FIG. 2(C)).

その後、このチャネル形成予定域の窒化硅素膜部分をレ
ジスト29で被覆し、この領域以外の窒化硅素膜をCF
4:O7のプラズマエツチング210で除去− する(第2図(d))。次にFETのソース部−チャネ
ル部−ドレイン部形成予定域のレジスト211開孔部に
50KeV及び120KeV(7)エネルギでドーズ量
3.8X10’2Cm−2のSi+イオン212を注入
してn−イオン注入層24を設け、さらに180KeV
のエネルギでドーズ量】、。
Thereafter, the silicon nitride film portion in the area where the channel is to be formed is covered with a resist 29, and the silicon nitride film other than this area is covered with CF.
4: Remove by O7 plasma etching 210 (FIG. 2(d)). Next, Si + ions 212 with a dose of 3.8 x 10'2 Cm-2 are implanted into the openings of the resist 211 in the regions where the source part, channel part, and drain part of the FET are planned to be formed, with an energy of 50 KeV and 120 KeV (7). An injection layer 24 is provided, and further 180 KeV
dose with energy],.

X 10’ 2an−”のIle”213を注入してp
イオン注入M27を形成する(第2図(e))。動作層
上の窒化硅素膜部分28をCF4二〇□のプラズマエツ
チングで除去した後、酸化硅素膜214とレジスト21
5をマスクにしてソース部216とドレイン部217の
開孔部に選択的に120KeVと250KeVのエネル
ギでそれぞれドーズ量2X1013m−2のSi+イオ
ン218を注入し (第2図(f))、酸化硅素膜21
4スペーサとレジスト215除去後、AsH3雰囲気中
で850℃、15分のアニールをおこないイオン注入層
を活性化させる。レジストで再びソース部とドレイン部
の開孔部を形成し、Ni/AuGeを真空蒸着する。リ
フトオフにより、ソースとドレイン電極形成域以外のメ
タルを取り除き、450°Cで約2分間合金化して、オ
ーミックコンタクトを得る。
X 10'2an-''Ile''213 was injected and p
Ion implantation M27 is formed (FIG. 2(e)). After removing the silicon nitride film portion 28 on the active layer by plasma etching with CF4, the silicon oxide film 214 and the resist 21 are removed.
5 as a mask, Si+ ions 218 are selectively implanted into the openings of the source part 216 and the drain part 217 at an energy of 120 KeV and 250 KeV at a dose of 2×1013 m-2, respectively (Fig. 2(f)), and silicon oxide is implanted. Membrane 21
After removing the 4 spacers and the resist 215, annealing is performed at 850° C. for 15 minutes in an AsH3 atmosphere to activate the ion implantation layer. Openings for the source and drain portions are again formed using resist, and Ni/AuGe is vacuum-deposited. Metal is removed from areas other than the source and drain electrode forming regions by lift-off, and alloying is performed at 450° C. for about 2 minutes to obtain ohmic contacts.

レジストによりゲートパターン形成し、ゲート電極予定
域のスペーサ酸化膜をエツチングにより開孔し、AQを
真空蒸着する。リフトオフ法によりグー1〜電極以外の
メタルを取り除きFETが完成する。
A gate pattern is formed using resist, a hole is formed in the spacer oxide film in the area where the gate electrode is to be formed by etching, and AQ is vacuum deposited. Metals other than goo 1 and the electrodes are removed by the lift-off method to complete the FET.

なお、第1図および第2図における5はソース電極、6
はドレイン電極、8はゲート電極である。
Note that 5 in FIGS. 1 and 2 is a source electrode, and 6 is a source electrode.
8 is a drain electrode, and 8 is a gate electrode.

このようにして、ソース抵抗は従来より約50%低くな
り、ゲート耐圧は従来の約2倍上げることができ、さら
に、gmを10%以上向上させることができた。なお、
この場合のn−活性層の長さは2μmであり、このキャ
リア濃度はソース側ではGaAs基板表面から500−
1.000人の深さで2X1017cm”−’となり、
ドレイン側ではGaAs基板表面近傍で約8 X 10
” cw−”であった。また、キャリア濃度プロファイ
ルは8e+を注入したことで急峻になった(第4図)。
In this way, the source resistance was lowered by about 50% than the conventional one, the gate breakdown voltage was raised about twice that of the conventional one, and the gm was improved by more than 10%. In addition,
The length of the n-active layer in this case is 2 μm, and the carrier concentration is 500-μm from the GaAs substrate surface on the source side.
At a depth of 1.000 people, it becomes 2X1017cm"-',
On the drain side, about 8 x 10 near the surface of the GaAs substrate.
It was "cw-". Furthermore, the carrier concentration profile became steeper due to the injection of 8e+ (FIG. 4).

動作層のイオン注入に用いた窒化硅素膜のテーパ角は、
窒化硅素膜のエツチングレートを厚さ方向で連続的に変
化させることで制御でき、プラスマCVDのガス流量比
、チャンバ圧及びRFパワーのいずれかを膜形成時に連
続的に変化させることにより達成できる。この例では、
プラズマCVDのガス流量比はSiH4: NH3: 
N2=4 : 1 : 15、チャンバー圧1.0To
rr、 RFパワー150W、形成温度300℃であっ
たが、ガス流量比をSiH4: Nl(、: N2= 
2.5 :1:15にするとエツチングレートは約2倍
の800人/分となり、この膜が表面になるようにSi
H4流量を連続的に変化させて形成すると、同じエツチ
ング条件でテーパ角をさらに小さい10°以下に形成で
きる。
The taper angle of the silicon nitride film used for ion implantation of the active layer is
This can be controlled by continuously changing the etching rate of the silicon nitride film in the thickness direction, and can be achieved by continuously changing any of the plasma CVD gas flow rate ratio, chamber pressure, and RF power during film formation. In this example,
The gas flow ratio of plasma CVD is SiH4: NH3:
N2=4:1:15, chamber pressure 1.0To
rr, RF power was 150W, and formation temperature was 300℃, but the gas flow rate ratio was changed to SiH4:Nl(,:N2=
When the ratio is 2.5:1:15, the etching rate is about twice as high as 800 people/min.
By continuously changing the H4 flow rate, the taper angle can be made even smaller, 10° or less, under the same etching conditions.

〔発明の効果〕〔Effect of the invention〕

このようにしてつくられたFETにおいてチャネルはソ
ース電極の側は厚く、またドレイン電極側は薄い構造を
もち、さらにキャリア濃度プロファイルが急峻になるた
め従来のFETに比べてソース抵抗は下がる一方、ゲー
ト耐圧が上りgmも向上する。
In FETs made in this way, the channel has a structure that is thick on the source electrode side and thin on the drain electrode side, and the carrier concentration profile is steeper, so the source resistance is lower than in conventional FETs, but the gate The breakdown voltage is increased and the gm is also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる一実施例のFETの断− 面図、第2図(a)〜(f)は第1図に示されるFET
を説明するために、その製造方法を工程順に示すいずれ
も断面図、第3図は従来例のFETの断面図、第4図は
キャリア濃度プロファイルを示す線図である。 1・・・GaAs基板(半導体基板) 2.3.4.216.217  イオン注入層4・・・
n−イオン注入M(動作層) 5・・ソース電極    6・・ドレイン電極7・・・
pイオン注入層  8・・ゲート電極2b・・ソース/
動作層の接線
FIG. 1 is a cross-sectional view of an FET according to an embodiment of the present invention, and FIGS. 2(a) to (f) are FETs shown in FIG. 1.
3 are cross-sectional views showing the manufacturing method in order of steps, FIG. 3 is a cross-sectional view of a conventional FET, and FIG. 4 is a line diagram showing a carrier concentration profile. 1...GaAs substrate (semiconductor substrate) 2.3.4.216.217 Ion implantation layer 4...
N-ion implantation M (active layer) 5... Source electrode 6... Drain electrode 7...
P ion implantation layer 8...Gate electrode 2b...Source/
tangent of the working layer

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に選択イオン注入およびアニールに
より形成された活性層を具備する電界効果トランジスタ
において、活性層がソース電極からドレイン電極に近付
くに従って小なる層厚に形成されていることを特徴とす
る電界効果トランジスタ。
(1) A field effect transistor comprising an active layer formed on a semiconductor substrate by selective ion implantation and annealing, characterized in that the active layer is formed with a thickness that decreases from the source electrode to the drain electrode. field effect transistor.
(2)活性層が浅いn型層と深いp型層の少なくとも各
1層でなる請求項1に記載の電界効果トランジスタ。
(2) The field effect transistor according to claim 1, wherein the active layer comprises at least one layer each of a shallow n-type layer and a deep p-type layer.
JP22385789A 1989-08-30 1989-08-30 Field effect transistor Pending JPH0385733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22385789A JPH0385733A (en) 1989-08-30 1989-08-30 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22385789A JPH0385733A (en) 1989-08-30 1989-08-30 Field effect transistor

Publications (1)

Publication Number Publication Date
JPH0385733A true JPH0385733A (en) 1991-04-10

Family

ID=16804798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22385789A Pending JPH0385733A (en) 1989-08-30 1989-08-30 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH0385733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990060853A (en) * 1997-12-31 1999-07-26 김영환 Transistor Formation Method of Semiconductor Device
JP2008119316A (en) * 2006-11-14 2008-05-29 Hoya Corp Temporary artificial cornea, and ring shape mounting object to be mounted on the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990060853A (en) * 1997-12-31 1999-07-26 김영환 Transistor Formation Method of Semiconductor Device
JP2008119316A (en) * 2006-11-14 2008-05-29 Hoya Corp Temporary artificial cornea, and ring shape mounting object to be mounted on the same

Similar Documents

Publication Publication Date Title
JPH08264562A (en) Semiconductor device and fabrication thereof
US4997779A (en) Method of making asymmetrical gate field effect transistor
JPH0727915B2 (en) Method for manufacturing semiconductor device
JPH0822998A (en) Conductor device and its manufacture
US5362658A (en) Method for producing semiconductor device
JPH05299441A (en) Manufacture of field effect transistor
JP3058040B2 (en) Semiconductor device
JPH0385733A (en) Field effect transistor
US5640029A (en) Field-effect transistor and method of producing same
JPS6254966A (en) Schottky gate field effect transistor and manufacture thereof
JP3277910B2 (en) Field effect transistor and method of manufacturing the same
JPS62115781A (en) Field-effect transistor
JPH0523497B2 (en)
JP3018885B2 (en) Method for manufacturing semiconductor device
JPS62130567A (en) Manufacture of schottky gate field effect transistor
JP3145881B2 (en) Method for manufacturing compound semiconductor device
JP3045862B2 (en) Method for manufacturing semiconductor device
JPH03240243A (en) Manufacture of field effect type transistor
JPH0620080B2 (en) Method for manufacturing semiconductor device
KR0142782B1 (en) Manufacture of semiconductor
JP3030123B2 (en) Method for manufacturing semiconductor device
JPH03231424A (en) Manufacture of compound semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH0897238A (en) Semiconductor element and its manufacture
JPH0797591B2 (en) Field effect transistor and method of manufacturing the same