JPS6111441B2 - - Google Patents

Info

Publication number
JPS6111441B2
JPS6111441B2 JP54022039A JP2203979A JPS6111441B2 JP S6111441 B2 JPS6111441 B2 JP S6111441B2 JP 54022039 A JP54022039 A JP 54022039A JP 2203979 A JP2203979 A JP 2203979A JP S6111441 B2 JPS6111441 B2 JP S6111441B2
Authority
JP
Japan
Prior art keywords
alloy
ihc
magnet material
less
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54022039A
Other languages
Japanese (ja)
Other versions
JPS55115304A (en
Inventor
Takashi Furuya
Yoshihiro Sumida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2203979A priority Critical patent/JPS55115304A/en
Publication of JPS55115304A publication Critical patent/JPS55115304A/en
Publication of JPS6111441B2 publication Critical patent/JPS6111441B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は希土類元素とコバルトを主とする3d
遷移金属からなるR2Co17型金属間化合物を主体
とするR―Co―Cu―Fe系の永久磁石合金の改良
に関するものである。 一般にR2Co17系の磁石合金はRCo5の合金にく
らべて理論的な最大エネルギー積が極めて大き
く、有望な磁石材料であるが、現在得られている
最大エネルギー積は理論値にくらべてかなり低い
うえ、結晶磁気異方性が小さく、保磁力が低いた
め薄物の磁石材料などには不向きである。 しかしながらR2Co17系合金の飽和磁束密度、
従つてBrそのものはRCo5系合金にくらべて優れ
ているため、保磁力(IHc)を改善することによ
り優れた最大エネルギー積を有することが期待で
きる。 このような観点から本発明者等はR2Co17系の
代表的な合金であるR―Co―Cu―Fe系を基本組
成にして、保磁力に及ぼす各種成分元素の影響を
詳細に調査した結果、ボロンの少量添加はきわめ
て有効であることを見い出した。またさらに、ボ
ロンとともに限定された範囲内でチタン、バナジ
ウムを複合添加することにより、保磁力の向上に
たいする効果がより顕著に認められることを見い
出した。 すなわち本発明は (1) 重量百分率でR(Yおよび希土類元素の1種
以上):20〜35%、Cu:5〜15%、Fe:3〜
20%、B:0.002〜0.5%残部が実質的にCoから
なるR2Co17型永久磁石材料。 (2) 重量百分率でR(Yおよび希土類元素の1種
以上):20〜35%、Cu:5〜15%、Fe:3〜
20%、B:0.002〜0.5%とさらにTi,Vから選
んだ1種または2種以上の元素をそれぞれ20%
以下であつて、かつB/Ti+V:0.1以上の範
囲で含有し、残部が実質的にCoからなる
R2Co17型永久磁石材料である。 次に本発明磁石材料の成分範囲の限定理由を以
下に述べる。 R:20〜35% R―Co―Cu―Fe系の基本組成において優れた
(BH)maxを確保するためにはRを20%以上添加
する必要がある。一方多量に添加するとBrが低
くなり、最大エネルギー積が減少するだけでな
く、経済的にも不利となるため35%以下に限定し
た。 なおRとしてはSmのほかLa、Ce、Pr、Nd、
En、Gd、Tb、Dy、Ho、Er、Pm、Tm、Yb、
LuおよびYのいずれを用いてもよい。 Cu:5〜15% R―Co―Cu―Fe系の基本組成において優れた
IHcを確保するためにはCuを5.0%以上添加する
必要がある。ただし多量に添加するとBrが低く
なり、最大エネルギー積が減少するため15%以下
に限定した。 Fe:3〜20% R―Co―Cu―Fe系の基本組成において優れた
Brを確保するためにはFeを3.0%以上添加する必
要がある。ただし多量に添加するとIHcが急減す
るため20%以下に限定した。 B:0.002〜0.5% Bは本発明磁石材料の主要元素であり、少量の
添加でIHcを著るしく向上させることができる。
R―Co―Cu―Fe系の場合ボライドが誘出されは
じめる0.002%以上の添加で効果が認められる。
一方多く添加すると非磁性のボライド占有率が極
端に大きくなり、BrおよびIHcが低下するため
0.5%以下に限定した。 またBの添加に際してCo、Cu、Fe、などとの
低融点共晶化による液相焼結を利用するときは、
これら成分の組成範囲内では共晶組成の粉末が多
い方が生成する液相も多く、焼結体の高密度化が
期待できる。 さらにBは溶解時に脱酸剤として働くとともに
焼結磁石の製造においては粉砕時に粉末を粉砕し
やすくし、均一微細な粉末が得られると同時に焼
結を促進するため磁気などにたいする材質改善に
も有効であり、Bの添加効果は本発明磁石材料の
場合著大である。 Ti、V:1種または2種以上それぞれ2.0%以下
でかつB/Ti+V:0.1以上 上記元素はいずれもBと金属間化合物を形成
し、Bの効果を助長する作用があり、IHcの改善
に有効な元素である。 ただし多量に添加するとBrを低下させ、最大
エネルギー積を減少させるため単独添加ではそれ
ぞれ1.5%以下であつて、かつ総量ではB含有量
の10倍以下が望ましい。 次に本発明磁石材料の特徴を実施例により詳細
に説明する。 実施例 1 アルゴン雰囲気に調整したボタンアーク溶解炉
を用い、27%Sm―10%Cu―7%Fe―Coを基本
成分とし、さらにBを0.005%、0.03%、0.15%、
0.27%、0.041%および0.70%添加した6種類の合
金を溶製した。これを乳鉢中で粗粉砕後、ジエツ
トミルにて平均粒径4μ程度まで微粉した。この
場合Bを多く含む合金ほど短時間で所定の粒度に
粉砕された。 上記粉末を10KOe印加した磁場中で約5t/cm2
圧力をかけプレス成形した。この成形体をアルゴ
ン雰囲気で1200℃×1時間の焼結を行い、続いて
溶体化処理したのち800℃で時効処理した。上記
の方法によつて製造した各焼結体について磁気特
性を調査した。その結果をB含有量で整理して第
1図に示した。 同図にみられるごとくB含有量の増加とともに
Brは漸減する傾向がみられる。反面IHcは急増
し、したがつて(BH)maxも著るしく向上する
ことを示している。 しかしながらB含有量が0.3%以上ではIHc、
Brともに低下しはじめ、0.5%以上では、Bを含
有させないものよりも(BH)maxは低くなるこ
とを示している。以上のごとく27Sm―10Cu―
7Fe―Co合金にたいしてBの少量添加は(BH)
maxの向上にきわめて有効であることを示してい
る。 実施例 2 実施例1と同じ手順により29Sm―10.8Cu残り
Coよりなる合金を溶製した。また上記合金に別
途調整した純Feを重量比で7%混ぜたもの、お
よび同じく上記合金に3.8%のBを含有したFe―
B塊を重量比で7%混ぜたものをそれぞれ別々に
粗粉砕後ジエツトミルで微粉砕した。上記2種類
すなわち27Sm―10Cu―7Fe―Coおよび27Sm―
10Cu―7Fe―0.26B―Coの混合粉末を磁場中
(10KOe印加)でプレス圧5t/cm2で成形を製造
し、これをアルゴン雰囲気中で1180℃×1時間の
焼結を行い、続いて溶体化処理したのち800℃で
時効処理した。 つぎに上記焼結体について磁気特性を調査し
た。その結果を第1図に×印で併記した。同図に
みられるごとく本実施例で用いた27Sm―10Cu―
7Fe―Co合金は実施例1の当該合金系とほぼ同等
の磁気特性を示している。これにたいして本実施
例の27Sm―10Cu―7Fe―0.26B―Co合金はB無
添加の合金にくらべて焼結密度およびIHc、
(BH)maxともに著るしく優れていることを示し
ている。また本実施例のB含有合金は実施例1の
B含有合金にくらべても焼結密度、Br、(BH)
maxともに優れている。これはFe―B粉末その
ものの融点が低く(約1150℃)、したがつて焼結
時にFe―B粉末が液相となるため焼結体の密度
が向上することがBr、(BH)maxの向上に大きく
寄与したものと思われる。 本実施例のような液相焼結を利用することがで
きる粉末はFe―Bのほか、Co―B(融点:1100
℃)、Cu―B(融点:1060℃)などがある。 実施例 3 実施例1と同じ手順により27Sm―10Cu―7Fe
―0.12B―Coを基本組成とし、これにTi、Vおよ
びZrを単独もしくは複合添加した8種類の合金を
作り、粗粉砕後ジエツトミルで微粉砕した。上記
粉末を磁場中(10KOe印加)でプレス圧5t/cm2
成形体を製造し、これをアルゴン雰囲気中で1200
℃×1時間の焼結を行い、続いて溶体化処理した
のち800℃で時効処理した。つぎに上記焼結体に
ついて磁気特性を調査した。その結果を第1表に
示した。
The present invention is a 3D material mainly containing rare earth elements and cobalt.
This invention relates to the improvement of R--Co--Cu--Fe based permanent magnet alloys that are mainly composed of R 2 Co 17 type intermetallic compounds made of transition metals. In general, R 2 Co 17 -based magnet alloys have an extremely large theoretical maximum energy product compared to RCo 5 alloys, making them promising magnet materials, but the maximum energy product currently obtained is considerably lower than the theoretical value. In addition, it has low magnetocrystalline anisotropy and low coercive force, making it unsuitable for thin magnet materials. However, the saturation magnetic flux density of R 2 Co 17 alloy,
Therefore, since Br itself is superior to RCo 5 alloys, it can be expected to have an excellent maximum energy product by improving coercive force (IHc). From this perspective, the present inventors used the R-Co-Cu-Fe system, which is a typical alloy of the R 2 Co 17 system, as the basic composition, and investigated in detail the effects of various component elements on the coercive force. As a result, we found that adding a small amount of boron was extremely effective. Furthermore, it has been found that by adding titanium and vanadium together within a limited range together with boron, the effect of improving coercive force is more pronounced. That is, the present invention has (1) weight percentages of R (one or more of Y and rare earth elements): 20-35%, Cu: 5-15%, Fe: 3-35%;
20%, B: 0.002 to 0.5% R 2 Co 17 type permanent magnet material with the balance essentially consisting of Co. (2) Weight percentage R (Y and one or more rare earth elements): 20-35%, Cu: 5-15%, Fe: 3-35%
20%, B: 0.002 to 0.5%, and 20% each of one or more elements selected from Ti and V.
and contains B/Ti+V in a range of 0.1 or more, with the remainder substantially consisting of Co.
R 2 Co 17 type permanent magnet material. Next, the reason for limiting the component range of the magnet material of the present invention will be described below. R: 20 to 35% In order to ensure an excellent (BH)max in the basic composition of the R-Co-Cu-Fe system, it is necessary to add 20% or more of R. On the other hand, if added in a large amount, Br will be low and the maximum energy product will not only decrease, but it will also be economically disadvantageous, so it was limited to 35% or less. In addition to Sm, R includes La, Ce, Pr, Nd,
En, Gd, Tb, Dy, Ho, Er, Pm, Tm, Yb,
Either Lu or Y may be used. Cu: 5-15% Excellent in basic composition of R-Co-Cu-Fe system
In order to ensure IHc, it is necessary to add 5.0% or more of Cu. However, adding a large amount lowers Br and reduces the maximum energy product, so it was limited to 15% or less. Fe: 3-20% Excellent in basic composition of R-Co-Cu-Fe system
In order to secure Br, it is necessary to add 3.0% or more of Fe. However, since IHc decreases rapidly if added in large amounts, it was limited to 20% or less. B: 0.002 to 0.5% B is a main element in the magnet material of the present invention, and adding a small amount can significantly improve IHc.
In the case of the R-Co-Cu-Fe system, the effect is observed at additions of 0.002% or more, at which point boride begins to be extracted.
On the other hand, if a large amount is added, the non-magnetic boride occupancy becomes extremely large and Br and IHc decrease.
Limited to 0.5% or less. Also, when adding B, when using liquid phase sintering by low melting point eutectic formation with Co, Cu, Fe, etc.
Within the composition range of these components, the more the powder has a eutectic composition, the more liquid phase will be produced, and higher density of the sintered body can be expected. In addition, B acts as a deoxidizing agent during melting, and in the production of sintered magnets, it makes it easier to crush the powder during pulverization, resulting in a uniform and fine powder. At the same time, it promotes sintering, so it is also effective in improving the material properties for magnetism, etc. Therefore, the effect of adding B is significant in the case of the magnet material of the present invention. Ti, V: 1 type or 2 or more types, each 2.0% or less, and B/Ti + V: 0.1 or more The above elements form intermetallic compounds with B, have the effect of promoting the effect of B, and are effective in improving IHc. It is a valid element. However, if added in a large amount, Br decreases and the maximum energy product decreases, so it is desirable that each element be added individually in an amount of 1.5% or less, and that the total amount be 10 times or less than the B content. Next, the characteristics of the magnet material of the present invention will be explained in detail using examples. Example 1 Using a button arc melting furnace adjusted to an argon atmosphere, the basic components were 27% Sm-10% Cu-7% Fe-Co, and further B was 0.005%, 0.03%, 0.15%,
Six types of alloys with additions of 0.27%, 0.041% and 0.70% were produced. This was coarsely pulverized in a mortar and then pulverized in a jet mill to an average particle size of about 4 μm. In this case, the alloy containing more B was ground to a predetermined particle size in a shorter time. The above powder was press-molded under a pressure of about 5 t/cm 2 in a magnetic field with 10 KOe applied. This compact was sintered at 1200°C for 1 hour in an argon atmosphere, followed by solution treatment, and then aged at 800°C. The magnetic properties of each sintered body produced by the above method were investigated. The results are shown in Figure 1, organized by B content. As seen in the same figure, as the B content increases
There is a tendency for Br to gradually decrease. On the other hand, IHc increases rapidly, indicating that (BH)max also improves markedly. However, if the B content is 0.3% or more, IHc,
Both Br begins to decrease, and at 0.5% or more, (BH)max becomes lower than that without B. As above, 27Sm―10Cu―
Adding a small amount of B to 7Fe-Co alloy (BH)
This shows that it is extremely effective in improving max. Example 2 29Sm-10.8Cu remaining by the same procedure as Example 1
An alloy made of Co was produced. In addition, the above alloy was mixed with 7% by weight of pure Fe prepared separately, and the same alloy was mixed with 3.8% B of Fe-
A mixture of 7% by weight of lump B was separately coarsely ground and then finely ground using a jet mill. The above two types namely 27Sm-10Cu-7Fe-Co and 27Sm-
A mixed powder of 10Cu-7Fe-0.26B-Co was molded in a magnetic field (10KOe applied) with a press pressure of 5t/ cm2 , and this was sintered at 1180℃ for 1 hour in an argon atmosphere. After solution treatment, it was aged at 800℃. Next, the magnetic properties of the above sintered body were investigated. The results are also shown in Figure 1 with an x mark. As seen in the figure, the 27Sm―10Cu― used in this example
The 7Fe--Co alloy exhibits almost the same magnetic properties as the alloy system of Example 1. On the other hand, the 27Sm-10Cu-7Fe-0.26B-Co alloy of this example has a higher sintered density, IHc, and
It shows that both (BH) max are significantly superior. In addition, the B-containing alloy of this example has a higher sintered density, Br, (BH) than the B-containing alloy of Example 1.
Both max are excellent. This is because the melting point of the Fe-B powder itself is low (approximately 1150℃), so the Fe-B powder becomes a liquid phase during sintering, which improves the density of the sintered body. This seems to have contributed greatly to the improvement. In addition to Fe-B, Co-B (melting point: 1100
℃), Cu-B (melting point: 1060℃), etc. Example 3 27Sm-10Cu-7Fe was prepared using the same procedure as in Example 1.
-0.12B-Co was the basic composition, and 8 types of alloys were made by adding Ti, V, and Zr singly or in combination to this, and after coarsely pulverizing them, they were finely pulverized using a jet mill. A molded body was produced from the above powder at a pressing pressure of 5t/ cm2 in a magnetic field (10KOe applied), and this was molded at 1200 m2 in an argon atmosphere.
Sintering was performed for 1 hour at ℃, followed by solution treatment and aging treatment at 800℃. Next, the magnetic properties of the above sintered body were investigated. The results are shown in Table 1.

【表】 同表にみられるごとくBとともにそれぞれ2.0
%以下のTi、Vを添加した供試材No.2、4はこ
れらの元素が添加されていないNo.1にくらべて
IHc、(BH)maxはあきらかに向上している。た
だしNo.3のようにB量にたいしてTiの量が多す
ぎるとIHc、(BH)maxはむしろ低下することを
示している。このほかTi、V量の効果的な範囲
について詳細に調査した結果、それぞれ単独では
2.0%以下であつて総量はB含有量の10倍以下が
好ましいことを確認した。 以上のごとく本発明の磁石材料は少量のBまた
はこれにTi、Vを単独または複合添加した
R2Co17型の磁石合金であり、従来のこの種磁石
合金の保磁力(IHc)を著るしく改善し、したが
つて優れた最大エネルギー積を有するR―Co―
Cu―Fe系の磁石材料である。
[Table] As seen in the same table, each with B is 2.0.
Sample materials No. 2 and 4 with Ti and V added below % have a lower resistance than No. 1 to which these elements are not added.
IHc and (BH)max have clearly improved. However, as in No. 3, if the amount of Ti is too large relative to the amount of B, IHc and (BH)max are shown to actually decrease. In addition, as a result of detailed investigation into the effective range of Ti and V amounts, we found that each
It was confirmed that the B content is preferably 2.0% or less, and the total amount is preferably 10 times or less than the B content. As described above, the magnet material of the present invention contains a small amount of B or Ti and V added to it alone or in combination.
R 2 Co 17 type magnet alloy, which significantly improves the coercive force (IHc) of conventional magnet alloys of this type and therefore has an excellent maximum energy product.
It is a Cu-Fe based magnet material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はボロン含有量と磁気特性の関係を示す
図である。
FIG. 1 is a diagram showing the relationship between boron content and magnetic properties.

Claims (1)

【特許請求の範囲】 1 重量百分率でR(Yおよび希土類元素の1種
以上):20〜35%、Cu:5〜15%、Fe:3〜20
%、B:0.002〜0.5%、残部が実質的にCoからな
るR2Co17型永久磁石材料。 2 重量百分率でR(Yおよび希土類元素の1種
以上):20〜35%、Cu:5〜15%、Fe:3〜20
%、B:0.002〜0.5%と、さらにTiVから選んだ
1種または2種の元素をそれぞれ20%以下であつ
て、かつB/Ti+V=0.1以上の範囲で含有し残
部が実質的にCoからなるR2Co17型永久磁石材
料。
[Claims] 1 Weight percentage: R (Y and one or more rare earth elements): 20 to 35%, Cu: 5 to 15%, Fe: 3 to 20
%, B: 0.002 to 0.5%, R 2 Co 17 type permanent magnet material with the remainder substantially consisting of Co. 2 Weight percentage R (Y and one or more rare earth elements): 20-35%, Cu: 5-15%, Fe: 3-20
%, B: 0.002 to 0.5%, and further contains 20% or less of one or two elements selected from TiV, and in a range of B/Ti + V = 0.1 or more, with the remainder substantially consisting of Co. Becomes R 2 Co 17 type permanent magnet material.
JP2203979A 1979-02-28 1979-02-28 Permanent magnet material Granted JPS55115304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2203979A JPS55115304A (en) 1979-02-28 1979-02-28 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2203979A JPS55115304A (en) 1979-02-28 1979-02-28 Permanent magnet material

Publications (2)

Publication Number Publication Date
JPS55115304A JPS55115304A (en) 1980-09-05
JPS6111441B2 true JPS6111441B2 (en) 1986-04-03

Family

ID=12071795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2203979A Granted JPS55115304A (en) 1979-02-28 1979-02-28 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPS55115304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388864U (en) * 1989-12-27 1991-09-11

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647540A (en) * 1979-09-27 1981-04-30 Hitachi Metals Ltd Alloy for permanent magnet
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet
EP0108474B2 (en) * 1982-09-03 1995-06-21 General Motors Corporation RE-TM-B alloys, method for their production and permanent magnets containing such alloys
EP0125347B1 (en) * 1983-05-06 1990-04-18 Sumitomo Special Metals Co., Ltd. Isotropic magnets and process for producing same
US4840684A (en) * 1983-05-06 1989-06-20 Sumitomo Special Metals Co, Ltd. Isotropic permanent magnets and process for producing same
US4902361A (en) * 1983-05-09 1990-02-20 General Motors Corporation Bonded rare earth-iron magnets
US4597938A (en) * 1983-05-21 1986-07-01 Sumitomo Special Metals Co., Ltd. Process for producing permanent magnet materials
US4601875A (en) * 1983-05-25 1986-07-22 Sumitomo Special Metals Co., Ltd. Process for producing magnetic materials
JPS6032306A (en) * 1983-08-02 1985-02-19 Sumitomo Special Metals Co Ltd Permanent magnet
DE3575231D1 (en) * 1984-02-28 1990-02-08 Sumitomo Spec Metals METHOD FOR PRODUCING PERMANENT MAGNETS.
JPS6328844A (en) * 1986-07-23 1988-02-06 Toshiba Corp Permanent magnet material
CN103887028B (en) * 2012-12-24 2017-07-28 北京中科三环高技术股份有限公司 A kind of Sintered NdFeB magnet and its manufacture method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388864U (en) * 1989-12-27 1991-09-11

Also Published As

Publication number Publication date
JPS55115304A (en) 1980-09-05

Similar Documents

Publication Publication Date Title
US5071493A (en) Rare earth-iron-boron-based permanent magnet
JPH0531807B2 (en)
JPH09186010A (en) Large electric resistance rare earth magnet and its manufacture
JPS6111441B2 (en)
JP2904667B2 (en) Rare earth permanent magnet alloy
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JP4900085B2 (en) Rare earth magnet manufacturing method
JPH0551656B2 (en)
JP3222482B2 (en) Manufacturing method of permanent magnet
JP3524941B2 (en) Method for producing permanent magnet containing NdFeB as a main component
JP2002299110A (en) Method of manufacturing rare-earth element permanent magnet
JPS60144908A (en) Permanent magnet material
JP2002025810A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP2002124407A (en) Anisotropic sintered rare-earth manget and its manufacturing method
JPS61253805A (en) Rare-earth permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPH056321B2 (en)
JPS619551A (en) Rare earth element-iron type permanent magnet alloy
JPS62291903A (en) Permanent magnet and manufacture of the same
JP3255593B2 (en) Manufacturing method of sintered permanent magnet with good thermal stability
JP2825449B2 (en) Manufacturing method of permanent magnet
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet