JPS6096734A - Perfect recovery of valuable from waste manganese dry battery - Google Patents

Perfect recovery of valuable from waste manganese dry battery

Info

Publication number
JPS6096734A
JPS6096734A JP58205258A JP20525883A JPS6096734A JP S6096734 A JPS6096734 A JP S6096734A JP 58205258 A JP58205258 A JP 58205258A JP 20525883 A JP20525883 A JP 20525883A JP S6096734 A JPS6096734 A JP S6096734A
Authority
JP
Japan
Prior art keywords
recovered
manganese
dry battery
graphite
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58205258A
Other languages
Japanese (ja)
Other versions
JPH0361730B2 (en
Inventor
Michio Uemura
道夫 植村
Akira Kawamata
章 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIJIYUU RES CENTER KK
Japan Metals and Chemical Co Ltd
Original Assignee
NICHIJIYUU RES CENTER KK
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIJIYUU RES CENTER KK, Japan Metals and Chemical Co Ltd filed Critical NICHIJIYUU RES CENTER KK
Priority to JP58205258A priority Critical patent/JPS6096734A/en
Publication of JPS6096734A publication Critical patent/JPS6096734A/en
Publication of JPH0361730B2 publication Critical patent/JPH0361730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To perfectly recover valuables from a dry battery, by applying heat treatment to the dry battery crushed under pressure in a first process to recover Hg and Cd as metal vapor while recovering Zn as a molten phase, and recovering Fe and Mn by reducing treatment in a second process. CONSTITUTION:After dry battery is crushed under pressure, the crushed one is heated to 400-600 deg.C in a heating furnace with a metal vapor condenser in a first process and Zn is recovered as a molten phase, Hg and Cd as metal vapors, and Fe, Mn and graphite are receovered as solids. The solids recovered in the first process are heated to 700-1,100 deg.C in a reductive atmosphere of a second process and, after cooling, Fe is separated and recovered by magnetic flotation. Further, aqueous sulfuric acid solution is added to the solid residue, to dissolve and extract Mn while graphite is separated and recovered by filtering.

Description

【発明の詳細な説明】 本発明は廃マンガン乾電池よシ有価物の完全回収法であ
って、その目的とする処はマンガン乾電池中の有価物を
分離回収し、廃棄に伴なう公害問題を解消すると共に、
有価物の完全回収による省資源対策に資することができ
る方法を提供することにある。
[Detailed Description of the Invention] The present invention is a method for completely recovering valuable materials from waste manganese dry batteries, and its purpose is to separate and recover the valuable materials in manganese dry batteries, thereby eliminating the pollution problem associated with disposal. Along with resolving
The objective is to provide a method that can contribute to resource saving measures by completely recovering valuable materials.

近年、携帯用ラジオ、携帯用のテープレコーダー等の電
機製品又は各種電動玩具等の開発に伴って使用される乾
電池も膨大な量に達し、また廃棄する廃マンガン乾電池
も年々増大している。
In recent years, with the development of electric appliances such as portable radios and portable tape recorders, and various electric toys, the number of dry batteries used has reached an enormous amount, and the number of waste manganese dry batteries being disposed of is increasing year by year.

而して前記廃棄されるマンガン乾電池には、鉄、 亜鉛
、マンガン、水銀、カドミウム、黒鉛等の各種有価物が
含まれておシ省資源対策」二好ましくない。
However, the discarded manganese dry batteries contain various valuable substances such as iron, zinc, manganese, mercury, cadmium, and graphite, which is not desirable for resource conservation measures.

これがため、廃マンガン乾電池から有価物を回収する方
法が2.3提案されている(特開昭50−1094号公
報、同51−69261号公報)。
For this reason, 2.3 methods for recovering valuable materials from waste manganese dry batteries have been proposed (Japanese Unexamined Patent Publications Nos. 50-1094 and 51-69261).

しかし、前述における方法は何れもマンガンと亜鉛及び
マンガン、亜鉛、鉄等の回収を主たる目的とするもので
あって、その他のHf 、 Cd等の回収は必らずしも
充分ではない。
However, all of the above-mentioned methods have the main purpose of recovering manganese, zinc, manganese, zinc, iron, etc., and recovery of other Hf, Cd, etc. is not necessarily sufficient.

本発明者等は上述従来の方法につきさらに研究の結果、
特許請求の範囲に記載した構成とすることによって廃マ
ンガン乾電池中の各種有価物を完全に回収する方法を得
ることができだ。
As a result of further research on the above-mentioned conventional method, the present inventors found that
By adopting the structure described in the claims, it is possible to obtain a method for completely recovering various valuable substances in waste manganese dry batteries.

即ち、本発明は、廃マンガン乾電池の気密を破壊する程
度に圧壊し、金属蒸気コンデンサー付加熱炉中で400
〜600℃に加熱して亜鉛を溶解して回収すると同時に
、鉄、マンガン。
That is, the present invention involves crushing a waste manganese dry battery to the extent that it destroys its airtightness, and then heating it in a metal vapor condenser additional heat furnace for 400 min.
At the same time, iron and manganese are recovered by heating to ~600℃ to dissolve and recover zinc.

黒鉛を固形物として回収し、他方、加熱により生ずる金
属蒸気又は金属化合物蒸気を回収する第1工程と、前記
第1工程で回収した固形物を、還元雰囲気で700〜1
100℃に加熱し、冷却後磁選によって鉄を分離回収し
、さらにこれに硫酸水溶液を加えてマンガンを溶解抽出
した後、黒鉛をf過分能する第2工程とからなることを
特徴とする廃マンガン乾電池より有価物の完全回収法で
ある。
A first step in which graphite is recovered as a solid and metal vapor or metal compound vapor generated by heating is recovered, and the solid recovered in the first step is heated to 700 to 1
Waste manganese comprising the steps of heating to 100°C, cooling, separating and recovering iron by magnetic separation, adding an aqueous sulfuric acid solution to dissolve and extracting manganese, and a second step of overperforming graphite. This is a method for completely recovering valuable materials from dry batteries.

さらに本発明の詳細な説明すれば、第1工程として廃マ
ンガン乾電池(以下乾電池と云う)の気密を破壊する程
度に圧壊する。即ち、前記圧壊は加熱処理時に、乾電池
の爆発を防止すると共に、乾電池内部のZn缶の溶解及
びHf、 Cdその他の金属蒸気の蒸散を促進させるた
めであ、つて、乾電池中の上下のキャップが変形し、外
側の鉄の保護缶との気密が破壊される程度に圧壊すれば
足りる。従って、爾後における固形物の分離が簡単であ
る。
To explain the present invention in more detail, in the first step, a waste manganese dry battery (hereinafter referred to as a dry battery) is crushed to the extent that its airtightness is destroyed. That is, the crushing is to prevent explosion of the dry battery during heat treatment, as well as to promote dissolution of the Zn can inside the battery and evaporation of Hf, Cd, and other metal vapors. It is sufficient to deform it and crush it to the extent that the airtightness with the outer iron protective can is broken. Therefore, subsequent separation of solid matter is easy.

前記の圧壊処理後、乾電池を金属蒸気コンデンサー刊加
熱炉中で400〜600℃、1〜6時間時間別熱する。
After the crushing treatment, the dry battery is separately heated at 400 to 600° C. for 1 to 6 hours in a metal vapor condenser heating furnace.

該加熱炉は、低周波炉又は高周波炉等の電気炉が有利で
あるが、加熱方式は必らずしも前記電気炉に限定する必
要はない。
The heating furnace is advantageously an electric furnace such as a low frequency furnace or a high frequency furnace, but the heating method is not necessarily limited to the electric furnace.

前記加熱炉の加熱処理によって、Zn缶は溶解して溶融
相を形成すると共に、H5’、Cd 等の蒸気圧の低い
金属又はHf/C1、zncz2等の金属化合物は蒸発
して気相を形成する。
By the heat treatment in the heating furnace, the Zn can is melted to form a molten phase, and metals with low vapor pressure such as H5' and Cd or metal compounds such as Hf/C1 and ZNCZ2 are evaporated to form a gas phase. do.

他方、乾電池中に含まれているFe、Mn 等の固相は
、前記加熱処理では溶融せず固相の状態で、取出される
ため、簡単に分離できる。尚、亜鉛の溶融相と、Fe 
、 Mn 、黒鉛等の固相を分離するには、加熱炉中で
、加熱後溶融相のみをタップして分離するか又は加熱炉
から溶融相と固相とを同時にタップし、仕切板を設けた
取鍋に溶融相を採取すると七等によって簡単に分離でき
る。
On the other hand, solid phases such as Fe and Mn contained in the dry cell are not melted in the heat treatment and are taken out in a solid phase, so they can be easily separated. In addition, the molten phase of zinc and the Fe
To separate solid phases such as Mn, graphite, etc., tap only the molten phase after heating in a heating furnace to separate it, or tap the molten phase and solid phase simultaneously from the heating furnace and provide a partition plate. If the molten phase is collected in a ladle, it can be easily separated.

また、乾電池中に含まれている各種有機高分子物は、前
記加熱処理によって分解炭化し、分解ガスはコンデンサ
ーによって冷却し捕集できるだめ、これらの分解ガスに
よる汚染は避けられる。
Further, various organic polymers contained in the dry battery are decomposed and carbonized by the heat treatment, and the decomposed gases can be cooled and collected by the condenser, so that contamination by these decomposed gases can be avoided.

前記の加熱処理によって得られたHF 、 Cd等の金
属及び化合物(ZnCt2も若干含まれる)は、冷却固
化後、塩酸に溶解した後、適宜NH4OHでpH調整を
行ない、Hfは水銀吸着用キレート樹脂で、またCd 
(一部Zn、Pbを含む)はキレート樹脂又はイオン交
換樹脂で、夫々別箇に回収した後、P液を濃縮してNH
4Cl溶液として回収する。尚、Hグ蒸気は必要によっ
ては、金属アルミニウムと反応させてHP −ALアマ
ルガムトシて回収してもよい。
Metals and compounds such as HF and Cd (including some ZnCt2) obtained by the above heat treatment are cooled and solidified, and then dissolved in hydrochloric acid, and the pH is adjusted with NH4OH as appropriate, and Hf is a chelate resin for mercury adsorption. So, Cd again
(containing some Zn and Pb) is a chelate resin or an ion exchange resin, and after recovering each separately, the P solution is concentrated and NH
Collect as a 4Cl solution. Note that, if necessary, the Hg vapor may be recovered by reacting with metal aluminum to form an HP-AL amalgam.

他方、茹の溶融相は、尚微量のFe 、 Mn 、 P
b。
On the other hand, the molten phase of boiling still contains trace amounts of Fe, Mn, and P.
b.

Cd等の金属を含有した粗亜鉛であり、これを塩酸に溶
解した後、酸化してFe、Mn等を酸化してΔゴ過分離
し、精製して濃度50チの塩化亜鉛溶液として回収する
。また、この溶融相中にCd 、 Pbを含む場合には
、Fe、Mn等を酸化除去の後、さらに分離し、気相た
る金属蒸気と共に塩酸に溶解して回収することができる
This is crude zinc containing metals such as Cd. After dissolving it in hydrochloric acid, it is oxidized to oxidize Fe, Mn, etc., separated by Δgol, purified, and recovered as a zinc chloride solution with a concentration of 50%. . If Cd, Pb, etc. are included in this molten phase, Fe, Mn, etc. can be removed by oxidation, further separated, and recovered by dissolving in hydrochloric acid together with the metal vapor in the gas phase.

つぎに、前記第1工程で分離回収したFe。Next, Fe separated and recovered in the first step.

Mn 、黒鉛及び前記第1工程で分離できなかった亜鉛
及び亜鉛化合物を含む固形物は、第2工程として700
〜1100℃、1〜6時間加熱処理する。この加熱処理
は固形物中に黒鉛が含有されておシ、加熱によって還元
雰囲気を形成し、そのため第1工程で一旦酸化されたM
n+ 03が硫酸易溶性のMnOに還元され、また、含
有している亜鉛及び亜鉛化合物は不純物のないものとし
て回収できると云う利点がある。
The solid material containing Mn, graphite, zinc and zinc compounds that could not be separated in the first step was separated at 700 ml as the second step.
Heat treatment at ~1100°C for 1 to 6 hours. In this heat treatment, graphite is contained in the solid material, and a reducing atmosphere is formed by heating, so that the M
There is an advantage that n+ 03 is reduced to MnO which is easily soluble in sulfuric acid, and that the contained zinc and zinc compounds can be recovered as impurity-free.

つぎにこれを振動篩等によって一旦鉄とその他の化合物
とに分離し、鉄を磁選によって分離した後、これに希硫
酸を添加してMnOをMnSO4として抽出し、さらに
含有している黒鉛をr過分能した後、Ca(OH)z等
で適宜中和した後、必要によっては不純物をf過分能し
て硫酸マンガン溶液として回収する。まだ、鼓で回収さ
れた亜鉛はそのま\回収するか又は前記第1工程におけ
る溶融相の回収工程へ送って回収してもよい。
Next, this is once separated into iron and other compounds using a vibrating sieve, etc., and after the iron is separated by magnetic separation, dilute sulfuric acid is added to this to extract MnO as MnSO4, and the graphite contained is After being overperformed, it is suitably neutralized with Ca(OH)z, etc., and if necessary, impurities are overperformed and recovered as a manganese sulfate solution. The zinc recovered by the drum may be recovered as is or sent to the molten phase recovery step in the first step.

即ち、本発明は乾電池を圧壊した後、第1工程の加熱処
理によって蒸気圧の低いHグ、 Cd 等を金属蒸気と
して回収すると共に、Znの溶融相として回収し、第奏
笈程に於%※Znを塩酸に溶解して塩化亜鉛として回収
すると共に、溶融相中に含まれるFe 、 Mn等の固
形物を酸化し分離し、さらに第2工程に於て酸化し、分
離された固形物からFeを除去分離し、Mnを硫酸に溶
解して抽出し硫酸マンガン水溶液として回収することに
よって、乾電池中に含まれるlee 、 Zn +Mn
は勿論Hf、Cd等の有価金属をも回収することができ
、従って省資源に資することができるばかりか、Hr 
、 Cd等の回収によって、所謂クローズドシステムを
形成でき、公害問題を皆無ならしめることができる。
That is, in the present invention, after crushing the dry battery, Hg, Cd, etc. with low vapor pressure are recovered as metal vapor by the heat treatment in the first step, and also as a molten phase of Zn. *Zn is dissolved in hydrochloric acid and recovered as zinc chloride, and solids such as Fe and Mn contained in the molten phase are oxidized and separated. In the second step, solids such as Fe and Mn are further oxidized and separated. By removing and separating Fe, dissolving and extracting Mn in sulfuric acid, and recovering it as an aqueous solution of manganese sulfate, the lee, Zn + Mn contained in the dry battery can be removed.
Of course, valuable metals such as Hf and Cd can also be recovered, which not only contributes to resource conservation but also reduces Hr.
By recovering , Cd, etc., a so-called closed system can be formed, and pollution problems can be completely eliminated.

図面は本発明の一実施例を示したものであるが、このフ
ローノートによって明らかガ如く、乾電池を圧壊した後
加熱することによってHP。
The drawing shows one embodiment of the present invention, and as is clear from this flow note, HP is produced by crushing and heating a dry battery.

Cd等の金属及びH?C1、ZnCtz等の蒸気圧の低
い化合物を気相として回収することができ、他方、Zn
を溶融相として回収でき、また溶融相中に混合されてい
るFe、Mnは、酸化物として除去した後、ZnC4と
して回収することができる。
Metals such as Cd and H? Compounds with low vapor pressure such as C1 and ZnCtz can be recovered as a gas phase, while Zn
can be recovered as a molten phase, and Fe and Mn mixed in the molten phase can be recovered as ZnC4 after being removed as oxides.

また、鉄、マンガン酸化物、黒鉛及び未溶融亜鉛又は亜
鉛化合物等の固相は、加熱によって亜鉛等を蒸発除去し
た後、磁選によって鉄を除去分離し、さらにマンガン分
を硫酸で抽出して硫酸マンガン溶液として回収すること
によって乾電池中の多くの有価物をはソ完全に分離回収
することができる。しかも、本発明によって回収される
ものは一部薬品として再使用できるほか、硫酸マンガン
溶液は電解二酸化マンガン製造時の電解液として再使用
することができると云う利点があシ省資源対策上有効で
ある。
In addition, solid phases such as iron, manganese oxide, graphite, and unmolten zinc or zinc compounds are removed by heating to evaporate zinc, etc., then separated by magnetic separation to remove iron, and then extracted with sulfuric acid to extract the manganese component. By recovering it as a manganese solution, many valuable substances in dry batteries can be completely separated and recovered. In addition, some of the materials recovered by the present invention can be reused as chemicals, and the manganese sulfate solution can be reused as an electrolyte during the production of electrolytic manganese dioxide, which is an effective resource saving measure. be.

また、図面から明らかな如く、本発明はFe。Further, as is clear from the drawings, the present invention uses Fe.

Mn、Zn、黒鉛等を回収できるほか乾電池中特に公害
問題を惹起するH!i’ 、 Cd 等をも有効に回収
できる所謂クローズトンステムであるため、公害問題を
生ずるおそれは皆無であると云う効果もある。
In addition to recovering Mn, Zn, graphite, etc., H! Since it is a so-called closed stem that can effectively recover i', Cd, etc., there is also the effect that there is no risk of causing pollution problems.

以下本発明を実施例によって説明する。The present invention will be explained below with reference to Examples.

実施例 UM−I型二酸化マンガン乾電池の使用済品20個を、
クラッシャーで圧壊変形した後、石英ルツボに入れ、金
属蒸気コンデンサー伺2゜KVA高周波炉で、500℃
、3時間加熱した。
Example 20 used UM-I type manganese dioxide batteries,
After being crushed and deformed in a crusher, it was placed in a quartz crucible and heated to 500°C in a 2°KVA high frequency furnace with a metal vapor condenser.
, heated for 3 hours.

前記加熱によって蒸発した金属は、水封ボルダ−を有す
る金属蒸気コンデンサーで冷却捕集し、塩酸に溶解し、
アンモニア水によりpH1〜2に調整した後、水銀吸着
樹脂に水銀を吸着させ、さらにアンモニア水によってp
H7に調整した後キレート樹脂によってCd、Zn、P
bを吸着して回収する。壕だ、P′o、は濃縮した後、
塩化アンモニア水溶液として回収した。
The metal vaporized by the heating is cooled and collected in a metal vapor condenser with a water-sealed boulder, and dissolved in hydrochloric acid.
After adjusting the pH to 1 to 2 with ammonia water, mercury is adsorbed on a mercury adsorption resin, and then pH is adjusted with ammonia water.
After adjusting to H7, Cd, Zn, P
b is adsorbed and recovered. After concentrating P'o,
It was recovered as an aqueous ammonia chloride solution.

また、前記高周波炉から得られた溶融物と固形物とを分
離した後、溶融物を希塩酸に溶解し、過酸化水素を添加
して酸化し、沈澱物を前記固形物に混合する。
Further, after separating the melt obtained from the high frequency furnace and the solid, the melt is dissolved in dilute hydrochloric acid, hydrogen peroxide is added and oxidized, and the precipitate is mixed with the solid.

r液はさらに亜鉛粉を添加して精製し、濃縮し、50%
塩化亜鉛水溶液として回収する。
The R solution is further purified by adding zinc powder and concentrated to 50%.
Recover as zinc chloride aqueous solution.

他方、前記固形物を、前記高周波炉中に再たび投入し、
密閉後、1000℃、3時間加熱する。この際、蒸発す
る亜鉛蒸気をコンデンサーで冷却、捕集する。
On the other hand, the solid material is again introduced into the high frequency furnace,
After sealing, heat at 1000°C for 3 hours. At this time, the evaporating zinc vapor is cooled and collected in a condenser.

前記加熱処理後、磁力選鉱機で鉄を回収し、残直に希硫
酸を添加してマンガンを硫酸マンガンとして溶解抽出し
た後、沢過して黒鉛を回収し、さらに炭酸カルシウムで
中和後、不純物を除去して硫酸マンガン溶液を回収する
After the heat treatment, iron is recovered using a magnetic separator, dilute sulfuric acid is added to the residue to dissolve and extract manganese as manganese sulfate, the graphite is recovered by filtration, and after neutralization with calcium carbonate, The manganese sulfate solution is recovered by removing impurities.

前記における廃マンガン乾電池の有価物の重量組成を第
1表に、また各有価物の全回収率を第2表に示す。
Table 1 shows the weight composition of the valuable materials in the waste manganese dry battery, and Table 2 shows the total recovery rate of each valuable material.

第 1 表 第 2 表 尚、Hグ、 Cdは夫々吸着剤によってはソ完全に回収
することができ、反応系外へ排臭されず、クローズドシ
ステムで処理することができだ。
Table 1 Table 2 Note that Hg and Cd can be completely recovered using adsorbents, and can be treated in a closed system without being emitted outside the reaction system.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例の70−/−トである。 The drawings are 70-/- sheets of one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 廃マンガン乾電池の気密を破壊する程度に圧壊し、金属
蒸気コンデンサー付加熱炉中で400〜600℃に加熱
して亜鉛を溶解して回収すると同時に、鉄、マンガン、
黒鉛等を固形物として回収し、他方、加熱により生ずる
金属蒸気又は金属化合物蒸気を回収する第1工程と、前
記第1工程で回収した固形物を還元雰囲気で、700〜
1100℃に加熱し、冷却後磁選によって鉄を分離回収
し、さらにこれに硫酸水溶液を加えてマンガンを溶解抽
出した後、黒鉛を沢過分離する第2工程とからなること
を特徴とする廃マンガン乾電池より有価物の完全回収法
The waste manganese dry battery is crushed to the extent that its airtightness is destroyed, and the zinc is melted and recovered by heating it to 400-600°C in a metal vapor condenser additional heat furnace, while iron, manganese,
A first step in which graphite etc. is recovered as a solid substance and metal vapor or metal compound vapor generated by heating is recovered, and the solid substance recovered in the first step is heated in a reducing atmosphere for 700~
Waste manganese comprising the steps of heating to 1100°C, cooling, separating and recovering iron by magnetic separation, adding an aqueous sulfuric acid solution to dissolve and extracting manganese, and then filtering and separating graphite. Complete recovery method for valuables from dry batteries
JP58205258A 1983-11-01 1983-11-01 Perfect recovery of valuable from waste manganese dry battery Granted JPS6096734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205258A JPS6096734A (en) 1983-11-01 1983-11-01 Perfect recovery of valuable from waste manganese dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205258A JPS6096734A (en) 1983-11-01 1983-11-01 Perfect recovery of valuable from waste manganese dry battery

Publications (2)

Publication Number Publication Date
JPS6096734A true JPS6096734A (en) 1985-05-30
JPH0361730B2 JPH0361730B2 (en) 1991-09-20

Family

ID=16504004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205258A Granted JPS6096734A (en) 1983-11-01 1983-11-01 Perfect recovery of valuable from waste manganese dry battery

Country Status (1)

Country Link
JP (1) JPS6096734A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029148A2 (en) 2001-10-01 2003-04-10 Erachem Comilog Method for preparing a mixed zinc and manganese oxide
JP2007012527A (en) * 2005-07-01 2007-01-18 Jfe Kankyo Corp Collecting method of metallurgic raw material from waste dry battery
CN100431720C (en) * 2003-03-14 2008-11-12 于之涛 Method for producing metal compound by waste zinc-manganese dioxide dry cell
JP2011105581A (en) * 2009-11-20 2011-06-02 Korea Inst Of Geoscience & Mineral Resources Method for producing manganese sulfate and zinc sulfate from waste battery containing manganese and zinc
RU2486262C2 (en) * 2011-09-09 2013-06-27 Закрытое акционерное общество "Экология" Method of recycling spent chemical cells
JP2014201784A (en) * 2013-04-03 2014-10-27 東邦亜鉛株式会社 Metal recovery method
JP2019530795A (en) * 2016-10-31 2019-10-24 湖南金源新材料股▲ふん▼有限公司 Method for producing nickel sulfate, manganese sulfate, lithium sulfate, cobalt sulfate and tricobalt tetroxide from battery waste

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029148A2 (en) 2001-10-01 2003-04-10 Erachem Comilog Method for preparing a mixed zinc and manganese oxide
CN100431720C (en) * 2003-03-14 2008-11-12 于之涛 Method for producing metal compound by waste zinc-manganese dioxide dry cell
JP2007012527A (en) * 2005-07-01 2007-01-18 Jfe Kankyo Corp Collecting method of metallurgic raw material from waste dry battery
JP2011105581A (en) * 2009-11-20 2011-06-02 Korea Inst Of Geoscience & Mineral Resources Method for producing manganese sulfate and zinc sulfate from waste battery containing manganese and zinc
RU2486262C2 (en) * 2011-09-09 2013-06-27 Закрытое акционерное общество "Экология" Method of recycling spent chemical cells
JP2014201784A (en) * 2013-04-03 2014-10-27 東邦亜鉛株式会社 Metal recovery method
JP2019530795A (en) * 2016-10-31 2019-10-24 湖南金源新材料股▲ふん▼有限公司 Method for producing nickel sulfate, manganese sulfate, lithium sulfate, cobalt sulfate and tricobalt tetroxide from battery waste

Also Published As

Publication number Publication date
JPH0361730B2 (en) 1991-09-20

Similar Documents

Publication Publication Date Title
CA3076688C (en) Lithium-ion batteries recycling process
JP6819827B2 (en) How to recover valuable metals from waste lithium-ion batteries
JP4144820B2 (en) Method for regenerating positive electrode active material from lithium ion secondary battery
JP6612506B2 (en) Disposal of used lithium ion batteries
KR20200065503A (en) Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery
JP2019178395A (en) Collection method of lithium from lithium ion battery scrap
JPS61261443A (en) Method for separating and recovering valuables from waste dry battery
JPH116020A (en) Method for recovering high-purity cobalt compound from scrap lithium ion battery
TWI717948B (en) Valuable metal recovery method
KR20190065882A (en) Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery
JPS6096734A (en) Perfect recovery of valuable from waste manganese dry battery
JPH1046266A (en) Method for recovering cobalt from spent secondary battery
JP4215547B2 (en) Cobalt recovery method
JPH11191439A (en) Method for separately recovering manganese dioxide and zinc chloride from waste battery
WO2022085222A1 (en) Method for recovering lithium and method for producing lithium carbonate
JP6397111B2 (en) Lithium-ion battery scrap leaching method and valuable metal recovery method
JP4439804B2 (en) Cobalt recovery method
JPH1060551A (en) Separation of iron from waste containing nickel and cadmium
US20220416324A1 (en) System and method for recovering constituents from batteries
WO2022176709A1 (en) Valuable metal recovery method and recovery apparatus
KR20150075247A (en) Method For Recovering Manganese From Lithium Secondary Battery Cathode
WO2023176545A1 (en) Method for processing lithium ion secondary battery
JP2023129361A (en) Method for producing lithium concentrate and method for producing lithium phosphate for use therein
JP2024053446A (en) Metal recovery method
US5221325A (en) Process for recovering silver oxide and metals from spent silver oxide button cells