JPH0361730B2 - - Google Patents

Info

Publication number
JPH0361730B2
JPH0361730B2 JP20525883A JP20525883A JPH0361730B2 JP H0361730 B2 JPH0361730 B2 JP H0361730B2 JP 20525883 A JP20525883 A JP 20525883A JP 20525883 A JP20525883 A JP 20525883A JP H0361730 B2 JPH0361730 B2 JP H0361730B2
Authority
JP
Japan
Prior art keywords
manganese
recovered
recovering
heating
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20525883A
Other languages
Japanese (ja)
Other versions
JPS6096734A (en
Inventor
Michio Uemura
Akira Kawamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIJU RISAACHI SENTAA KK
NIPPON JUKAGAKU KOGYO KK
Original Assignee
NICHIJU RISAACHI SENTAA KK
NIPPON JUKAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIJU RISAACHI SENTAA KK, NIPPON JUKAGAKU KOGYO KK filed Critical NICHIJU RISAACHI SENTAA KK
Priority to JP58205258A priority Critical patent/JPS6096734A/en
Publication of JPS6096734A publication Critical patent/JPS6096734A/en
Publication of JPH0361730B2 publication Critical patent/JPH0361730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は廃マンガン乾電池より有価物の完全回
収法であつて、その目的とする処はマンガン乾電
池中の有価物を分離回収し、廃棄に伴なう公害問
題を解消すると共に、有価物の完全回収による省
資源対策に資することができる方法を提供するこ
とにある。 近年、携帯用ラジオ、携帯用のテープレコーダ
ー等の電機製品又は各種電動玩具等の開発に伴つ
て使用される乾電池も膨大な量に達し、また廃棄
する廃マンガン乾電池も年々増大している。 而して前記廃棄されるマンガン乾電池には、
鉄、亜鉛、マンガン、水銀、カドミウム、黒鉛等
の各種有価物が含まれており省資源対策上好まし
くない。 これがため、廃マンガン乾電池から有価物を回
収する方法が2,3提案されている(特開昭50−
1094号公報、同51−69261号公報)。 しかし、前述における方法は何れもマンガンと
亜鉛及びマンガン、亜鉛、鉄等の回収を主たる目
的とするものであつて、その他のHg,Cd等の回
収は必らずしも充分ではない。 本発明者等は上述従来の方法につきさらに研究
の結果、特許請求の範囲に記載した構成とするこ
とによつて廃マンガン乾電池中の各種有価物を完
全に回収する方法を得ることができた。 即ち、本発明は、廃マンガン乾電池の気密を破
壊する程度に圧壊し、金属蒸気コンデンサー付加
熱炉中で400〜600℃に加熱して亜鉛を溶解して回
収すると同時に、鉄、マンガン、黒鉛等を固形物
として回収し、他方、加熱により生ずる金属蒸気
又は金属化合物蒸気を回収する第1工程と、前記
第1工程で回収した固形物を、還元雰囲気で700
〜1100℃に加熱し、冷却後磁選によつて鉄を分離
回収し、さらにこれに硫酸水溶液を加えてマンガ
ンを溶解抽出した後、黒鉛を過分離する第2工
程とからなることを特徴とする廃マンガン乾電池
より有価物の完全回収法である。 さらに本発明を詳細に説明すれば、第1工程と
して廃マンガン乾電池(以下乾電池と云う)の気
密を破壊する程度に圧壊する。即ち、前記圧壊は
加熱処理時に、乾電池の爆発を防止すると共に、
乾電池内部のZn缶の溶解及びHg,Cdその他の金
属蒸気の蒸散を促進させるためであつて、乾電池
中の上下のキヤツプが変形し、外側の鉄の保護缶
との気密が破壊される程度に圧壊すれば足りる。
従つて、爾後における固形物の分離が簡単であ
る。 前記の圧壊処理後、乾電池を金属蒸気コンデン
サー付加熱炉中で400〜600℃、1〜6時間程度加
熱する。該加熱炉は、低周波炉又は高周波炉等の
電気炉が有利であるが、加熱方式は必らずしも前
記電気炉に限定する必要はない。 前記加熱炉の加熱処理によつて、Zn缶は溶解
して溶融相を形成すると共に、Hg,Cd等の蒸気
圧の低い金属又はHgCl,ZnCl2等の金属化合物は
蒸発して気相を形成する。 他方、乾電池中に含まれているFe,Mn等の固
相は、前記加熱処理では溶融せず固相の状態で、
取出されるため、簡単に分離できる。尚、亜鉛の
溶融相と、Fe,Mn、黒鉛等の固相を分離するに
は、加熱炉中で、加熱後溶融相のみをタツプして
分離するか又は加熱炉から溶融相と固相とを同時
にタツプし、仕切板を設けた取鍋に溶融相を採取
すること等によつて簡単に分離できる。 また、乾電池中に含まれている各種有機高分子
物は、前記加熱処理によつて分解炭化し、分解ガ
スはコンデンサーによつて冷却し捕集できるた
め、これらの分解ガスによる汚染は避けられる。 前記の加熱処理によつて得られたHg,Cd等の
金属及び化合物(ZnCl2も若干含まれる)は、冷
却固化後、塩酸に溶解した後、適宜NH4OHでPH
調整を行ない、Hgは水銀吸着用キレート樹脂で、
またCd(一部Zn,Pbを含む)はキレート樹脂又
はイオン交換樹脂で、夫々別箇に回収した後、
液を濃縮してNH4Cl溶液として回収する。尚、
Hg蒸気は必要によつては、金属アルミニウムと
反応させてHg−Alアマルガムとして回収しても
よい。 他方、Zoの溶融相は、尚微量のFe,Mn,Pb,
Cd等の金属を含有した粗亜鉛であり、これを塩
酸に溶解した後、酸化してFe,Mn等を酸化して
過分離し、精製して濃度50%の塩化亜鉛溶液と
して回収する。また、この溶融相中にCd,Pbを
含む場合には、Fe,Mn等を酸化除去の後、さら
に分離し、気相たる金属蒸気と共に塩酸に溶解し
て回収することができる。 つぎに、前記第1工程で分離回収したFe,
Mn、黒鉛及び前記第1工程で分離できなかつた
亜鉛及び亜鉛化合物を含む固形物は、第2工程と
して700〜1100℃、1〜6時間加熱処理する。こ
の加熱処理は固形物中に黒鉛が含有されており、
加熱によつて還元雰囲気を形成し、そのため第1
工程で一旦酸化されたMn2O3が硫酸易溶性の
MnOに還元され、また、含有している亜鉛及び
亜鉛化合物は不純物のないものとして回収できる
と云う利点がある。 つぎにこれを振動篩等によつて一旦鉄とその他
の化合物とに分離し、鉄を磁選によつて分離した
後、これに希硫酸を添加してMnOをMnSO4とし
て抽出し、さらに含有している黒鉛を過分離し
た後、Ca(OH)2等で適宜中和した後、必要によ
つては不純物を過分離して硫酸マンガン溶液と
して回収する。また、茲で回収された亜鉛はその
まゝ回収するか又は前記第1工程における溶融相
の回収工程へ送つて回収してもよい。 即ち、本発明は乾電池を圧壊した後、第1工程
の加熱処理によつて蒸気圧の低いHg,Cd等を金
属蒸気として回収すると共に、Znの溶融相とし
て回収し、Znを塩酸に溶解して塩化亜鉛として
回収すると共に、溶融相中に含まれるFe,Mn等
の固形物を酸化し分離し、さらに第2工程に於て
酸化し、分離された固形物からFeを除去分離し、
Mnを硫酸に溶解して抽出し硫酸マンガン水溶液
として回収することによつて、乾電池中に含まれ
るFe,Zn,Mnは勿論Hg,Cd等の有価金属をも
回収することができ、従つて省資源に資すること
ができるばかりか、Hg,Cd等の回収によつて、
所謂クローズドシステムを形成でき、公害問題を
皆無ならしめることができる。 図面は本発明の一実施例を示したものである
が、このフローシートによつて明らかな如く、乾
電池を圧壊した後加熱することによつてHg,Cd
等の金属及びHgCl,ZnCl2等の蒸気圧の低い化合
物を気相として回収することができ、他方、Zn
を溶融相として回収でき、また溶融相中に混合さ
れているFe,Mnは、酸化物として除去した後、
ZnCl2として回収することができる。 また、鉄、マンガン酸化物、黒鉛及び未溶融亜
鉛又は亜鉛化合物等の固相は、加熱によつて亜鉛
等を蒸発除去した後、磁選によつて鉄を除去分離
し、さらにマンガン分を硫酸で抽出して硫酸マン
ガン溶液として回収することによつて乾電池中の
多くの有価物をほゞ完全に分離回収することがで
きる。しかも、本発明によつて回収されるものは
一部薬品として再使用できるほか、硫酸マンガン
溶液は電解二酸化マンガン製造時の電解液として
再使用することができると云う利点があり省資源
対策上有効である。 また、図面から明らかな如く、本発明はFe,
Mn,Zn、黒鉛等を回収できるほか乾電池中特に
公害問題を惹起するHg,Cd等をも有効に回収で
きる所謂クローズドシステムであるため、公害問
題を生ずるおそれは皆無であると云う効果もあ
る。 以下本発明を実施例によつて説明する。 実施例 UM−型二酸化マンガン乾電池の使用済品20
個を、クラツシヤーで圧壊変形した後、石英ルツ
ボに入れ、金属蒸気コンデンサー付20KVA高周
波炉で、500℃、3時間加熱した。 前記加熱によつて蒸発した金属は、水封ホルダ
ーを有する金属蒸気コンデンサーで冷却捕集し、
塩酸に溶解し、アンモニア水によりPH1〜2に調
整した後、水銀吸着樹脂に水銀を吸着させ、さら
にアンモニア水によつてPH7に調整した後キレー
ト樹脂によつてCd,Zn,Pdを吸着して回収す
る。また、液は濃縮した後、塩化アンモニア水
溶液として回収した。 また、前記高周波炉から得られた溶融物と固形
物とを分離した後、溶融物を希塩酸に溶解し、過
酸化水素を添加して酸化し、沈澱物を前記固形物
に混合する。 液はさらに亜鉛粉を添加して精製し、濃縮
し、50%塩化亜鉛水溶液として回収する。 他方、前記固形物を、前記高周波炉中に再たび
投入し、密閉後、1000℃、3時間加熱する。この
際、蒸発する亜鉛蒸気をコンデンサーで冷却、捕
集する。 前記加熱処理後、磁力選鉱機で鉄を回収し、残
渣に希硫酸を添加してマンガンを硫酸マンガンと
して溶解抽出した後、過して黒鉛を回収し、さ
らに炭酸カルシウムで中和後、不純物を除去して
硫酸マンガン溶液を回収する。 前記における廃マンガン乾電池の有価物の重量
組成を第1表に、また各有価物の全回収率を第2
表に示す。
The present invention is a method for completely recovering valuable materials from waste manganese dry batteries.The purpose of the present invention is to separate and recover valuable materials in manganese dry batteries, solve the pollution problem associated with disposal, and completely recover valuable materials from waste manganese dry batteries. The objective is to provide a method that can contribute to resource saving measures through collection. In recent years, with the development of electric appliances such as portable radios and portable tape recorders, and various electric toys, the number of dry batteries used has reached an enormous amount, and the number of waste manganese dry batteries being disposed of is increasing year by year. Therefore, the discarded manganese dry batteries are
It contains various valuable substances such as iron, zinc, manganese, mercury, cadmium, and graphite, which is not desirable in terms of resource conservation measures. For this reason, a few methods have been proposed for recovering valuable materials from waste manganese dry batteries (Japanese Patent Application Laid-Open No. 1989-
Publication No. 1094, Publication No. 51-69261). However, all of the above-mentioned methods have the main purpose of recovering manganese, zinc, manganese, zinc, iron, etc., and recovery of other Hg, Cd, etc. is not necessarily sufficient. As a result of further research on the above-mentioned conventional method, the present inventors were able to obtain a method for completely recovering various valuable materials in waste manganese dry batteries by adopting the configuration described in the claims. That is, the present invention crushes waste manganese dry batteries to the extent that their airtightness is destroyed and heats them to 400 to 600°C in a metal vapor condenser additional heating furnace to melt and recover zinc, while at the same time recovering iron, manganese, graphite, etc. The first step is to collect the metal vapor or metal compound vapor generated by heating as a solid substance, and the solid substance recovered in the first step is heated to 700°C in a reducing atmosphere.
It is characterized by the following steps: heating to ~1100°C, cooling, separating and recovering iron by magnetic separation, adding an aqueous sulfuric acid solution to dissolve and extracting manganese, and then over-separating graphite. This is a method for completely recovering valuable materials from waste manganese dry batteries. To further explain the present invention in detail, in the first step, a waste manganese dry battery (hereinafter referred to as a dry battery) is crushed to the extent that its airtightness is destroyed. That is, the crushing prevents the dry battery from exploding during heat treatment, and
This is to promote the dissolution of the Zn can inside the battery and the evaporation of Hg, Cd, and other metal vapors. It is enough to crush it.
Therefore, subsequent separation of solid matter is easy. After the above-mentioned crushing treatment, the dry battery is heated at 400 to 600° C. for about 1 to 6 hours in a metal vapor condenser additional heating furnace. The heating furnace is advantageously an electric furnace such as a low frequency furnace or a high frequency furnace, but the heating method is not necessarily limited to the electric furnace. Through the heat treatment in the heating furnace, the Zn can is melted to form a molten phase, and metals with low vapor pressure such as Hg and Cd or metal compounds such as HgCl and ZnCl 2 are evaporated to form a gas phase. do. On the other hand, solid phases such as Fe and Mn contained in dry batteries do not melt during the heat treatment and remain in a solid phase.
Since it is taken out, it can be easily separated. In addition, in order to separate the molten phase of zinc from the solid phase of Fe, Mn, graphite, etc., either tap only the molten phase after heating in a heating furnace to separate it, or separate the molten phase and solid phase from the heating furnace. It can be easily separated by tapping the two at the same time and collecting the molten phase in a ladle equipped with a partition plate. Further, various organic polymers contained in the dry cell are decomposed and carbonized by the heat treatment, and the decomposed gas can be cooled and collected by a condenser, so that contamination by these decomposed gases can be avoided. Metals such as Hg and Cd and compounds (including a small amount of ZnCl 2 ) obtained by the above heat treatment are cooled and solidified, dissolved in hydrochloric acid, and then PH-treated with NH 4 OH as appropriate.
Adjustments were made, and Hg was replaced with a chelate resin for mercury adsorption.
In addition, Cd (including some Zn and Pb) is recovered separately using chelate resin or ion exchange resin, and then
The liquid is concentrated and collected as a NH 4 Cl solution. still,
If necessary, the Hg vapor may be recovered as Hg-Al amalgam by reacting with metal aluminum. On the other hand, the molten phase of Z o still contains trace amounts of Fe, Mn, Pb,
This is crude zinc containing metals such as Cd. After dissolving it in hydrochloric acid, it is oxidized to oxidize and over-separate Fe, Mn, etc., and is purified and recovered as a zinc chloride solution with a concentration of 50%. In addition, when Cd and Pb are included in this molten phase, Fe, Mn, etc. can be removed by oxidation, further separated, and recovered by dissolving in hydrochloric acid together with the metal vapor in the gas phase. Next, the Fe separated and recovered in the first step,
The solid material containing Mn, graphite, and zinc and zinc compounds that could not be separated in the first step is heat-treated at 700 to 1100° C. for 1 to 6 hours as a second step. In this heat treatment, graphite is contained in the solid,
A reducing atmosphere is formed by heating, so that the first
Once oxidized in the process, Mn 2 O 3 becomes easily soluble in sulfuric acid.
It has the advantage that it is reduced to MnO and that the contained zinc and zinc compounds can be recovered free of impurities. Next, this is once separated into iron and other compounds using a vibrating sieve, etc., and after the iron is separated by magnetic separation, dilute sulfuric acid is added to this to extract MnO as MnSO 4 and further contain. After over-separating the graphite, it is suitably neutralized with Ca(OH) 2 etc., and if necessary, impurities are over-separated and recovered as a manganese sulfate solution. Further, the zinc recovered by the spool may be recovered as is or may be sent to the molten phase recovery step in the first step and recovered. That is, in the present invention, after crushing a dry battery, Hg, Cd, etc. with low vapor pressure are recovered as metal vapor through heat treatment in the first step, and also recovered as a molten phase of Zn, and the Zn is dissolved in hydrochloric acid. In addition to recovering zinc chloride, solids such as Fe and Mn contained in the molten phase are oxidized and separated, and in a second step, Fe is removed and separated from the oxidized and separated solids,
By dissolving Mn in sulfuric acid, extracting it, and recovering it as an aqueous manganese sulfate solution, it is possible to recover not only Fe, Zn, and Mn contained in dry batteries, but also valuable metals such as Hg and Cd, thus saving money. Not only can it contribute to resources, but also by recovering Hg, Cd, etc.
A so-called closed system can be formed and pollution problems can be completely eliminated. The drawing shows one embodiment of the present invention, and as is clear from this flow sheet, Hg, Cd can be removed by crushing and heating a dry battery.
Metals such as HgCl, ZnCl 2 and other compounds with low vapor pressure can be recovered in the gas phase, while Zn
can be recovered as a molten phase, and after removing Fe and Mn mixed in the molten phase as oxides,
It can be recovered as ZnCl2 . In addition, solid phases such as iron, manganese oxide, graphite, and unmolten zinc or zinc compounds are removed by evaporation of zinc by heating, then separated by magnetic separation to remove iron, and then the manganese is removed by sulfuric acid. By extracting and recovering as a manganese sulfate solution, many valuable substances in dry batteries can be almost completely separated and recovered. In addition, some of the materials recovered by the present invention can be reused as chemicals, and the manganese sulfate solution can be reused as an electrolyte during the production of electrolytic manganese dioxide, which is an effective resource saving measure. It is. In addition, as is clear from the drawings, the present invention has Fe,
It is a so-called closed system that can not only recover Mn, Zn, graphite, etc., but also effectively recover Hg, Cd, etc., which cause pollution problems in dry batteries, so there is no risk of causing pollution problems. The present invention will be explained below with reference to Examples. Example 20 used UM-type manganese dioxide batteries
After the pieces were crushed and deformed using a crusher, they were placed in a quartz crucible and heated at 500°C for 3 hours in a 20KVA high frequency furnace equipped with a metal vapor condenser. The metal vaporized by the heating is cooled and collected in a metal vapor condenser having a water seal holder,
After dissolving in hydrochloric acid and adjusting the pH to 1 to 2 with aqueous ammonia, adsorbing mercury on a mercury adsorption resin, and adjusting the pH to 7 with aqueous ammonia, adsorbing Cd, Zn, and Pd with a chelate resin. to recover. Further, the liquid was concentrated and then recovered as an aqueous ammonia chloride solution. Further, after separating the melt obtained from the high frequency furnace and the solid, the melt is dissolved in dilute hydrochloric acid, hydrogen peroxide is added and oxidized, and the precipitate is mixed with the solid. The liquid is further purified by adding zinc powder, concentrated, and recovered as a 50% zinc chloride aqueous solution. On the other hand, the solid material is again put into the high frequency furnace, sealed and heated at 1000° C. for 3 hours. At this time, the evaporating zinc vapor is cooled and collected in a condenser. After the heat treatment, iron is recovered using a magnetic separator, dilute sulfuric acid is added to the residue, manganese is dissolved and extracted as manganese sulfate, graphite is recovered by filtration, and impurities are removed after neutralization with calcium carbonate. to recover the manganese sulfate solution. The weight composition of the valuable materials in the waste manganese dry batteries mentioned above is shown in Table 1, and the total recovery rate of each valuable material is shown in Table 2.
Shown in the table.

【表】【table】

【表】 尚、Hg,Cdは夫々吸着剤によつてほゞ完全に
回収することができ、反応系外へ排棄されず、ク
ローズドシステムで処理することができた。
[Table] Furthermore, Hg and Cd could be almost completely recovered using adsorbents, and could be treated in a closed system without being disposed of outside the reaction system.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例のフローシートであ
る。
The drawing is a flow sheet of one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 廃マンガン乾電池の気密を破壊する程度に圧
壊し、金属蒸気コンデンサー付加熱炉中で400〜
600℃に加熱して亜鉛を溶解して回収すると同時
に、鉄、マンガン、黒鉛等を固形物として回収
し、他方、加熱により生ずる金属蒸気又は金属化
合物蒸気を回収する第1工程と、前記第1工程で
回収した固形物を還元雰囲気で、700〜1100℃に
加熱し、冷却後磁選によつて鉄を分離回収し、さ
らにこれに硫酸水溶液を加えてマンガンを溶解抽
出した後、黒鉛を過分離する第2工程とからな
ることを特徴とする廃マンガン乾電池より有価物
の完全回収法。
1 Crush waste manganese dry batteries to the extent that their airtightness is destroyed, and heat them in a metal vapor condenser heating furnace for 400~
a first step of heating to 600°C to melt and recover zinc, and at the same time recovering iron, manganese, graphite, etc. as solid substances; on the other hand, recovering metal vapor or metal compound vapor generated by heating; The solids recovered in the process are heated to 700 to 1100℃ in a reducing atmosphere, cooled, and then iron is separated and recovered by magnetic separation. A sulfuric acid aqueous solution is added to this to dissolve and extract manganese, and graphite is overseparated. A method for completely recovering valuables from waste manganese dry batteries.
JP58205258A 1983-11-01 1983-11-01 Perfect recovery of valuable from waste manganese dry battery Granted JPS6096734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205258A JPS6096734A (en) 1983-11-01 1983-11-01 Perfect recovery of valuable from waste manganese dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205258A JPS6096734A (en) 1983-11-01 1983-11-01 Perfect recovery of valuable from waste manganese dry battery

Publications (2)

Publication Number Publication Date
JPS6096734A JPS6096734A (en) 1985-05-30
JPH0361730B2 true JPH0361730B2 (en) 1991-09-20

Family

ID=16504004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205258A Granted JPS6096734A (en) 1983-11-01 1983-11-01 Perfect recovery of valuable from waste manganese dry battery

Country Status (1)

Country Link
JP (1) JPS6096734A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1014406A3 (en) 2001-10-01 2003-10-07 Erachem Europ Sociutu Anonyme Method of preparation of mixed oxide zinc manganese.
CN100431720C (en) * 2003-03-14 2008-11-12 于之涛 Method for producing metal compound by waste zinc-manganese dioxide dry cell
JP2007012527A (en) * 2005-07-01 2007-01-18 Jfe Kankyo Corp Collecting method of metallurgic raw material from waste dry battery
KR100975317B1 (en) * 2009-11-20 2010-08-12 한국지질자원연구원 Method for preparing manganese sulfate and zinc sulfate from waste batteries containing manganese and zinc
RU2486262C2 (en) * 2011-09-09 2013-06-27 Закрытое акционерное общество "Экология" Method of recycling spent chemical cells
JP5948637B2 (en) * 2013-04-03 2016-07-06 東邦亜鉛株式会社 Metal recovery method
CN108002408B (en) * 2016-10-31 2021-06-04 湖南金源新材料股份有限公司 Method for preparing nickel sulfate, manganese, lithium, cobalt and cobaltosic oxide from battery waste

Also Published As

Publication number Publication date
JPS6096734A (en) 1985-05-30

Similar Documents

Publication Publication Date Title
CA3076688C (en) Lithium-ion batteries recycling process
KR102575339B1 (en) Method for recovering valuable metals from waste lithium ion batteries
JP4144820B2 (en) Method for regenerating positive electrode active material from lithium ion secondary battery
JP6612506B2 (en) Disposal of used lithium ion batteries
Shin et al. Development of a metal recovery process from Li-ion battery wastes
JP5847742B2 (en) Waste cathode material and method for recovering metal from waste battery
JP2019160429A (en) Lithium recovery method
JP2019178395A (en) Collection method of lithium from lithium ion battery scrap
KR20200065503A (en) Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery
JP4217292B2 (en) Lithium recovery method
JP2014156648A (en) Metal recovery method from waste positive electrode material and waste battery
JPH116020A (en) Method for recovering high-purity cobalt compound from scrap lithium ion battery
JPS61261443A (en) Method for separating and recovering valuables from waste dry battery
KR100358528B1 (en) recycling method of lithium ion secondary battery
JP3425206B2 (en) Method for recovering valuable resources from used lithium secondary batteries
WO2022085222A1 (en) Method for recovering lithium and method for producing lithium carbonate
JPH1046266A (en) Method for recovering cobalt from spent secondary battery
JPH0361730B2 (en)
JPH11191439A (en) Method for separately recovering manganese dioxide and zinc chloride from waste battery
JP2004300490A (en) Method of recovering cobalt
JP6397111B2 (en) Lithium-ion battery scrap leaching method and valuable metal recovery method
US5728854A (en) Method for separating iron from nickel and/or cadmium from a waste containing the same
JPS5839753A (en) Recovering method for zn component from material containing zn
JP2004182533A (en) Method of recovering cobalt
KR20150075247A (en) Method For Recovering Manganese From Lithium Secondary Battery Cathode