JP2014156648A - Metal recovery method from waste positive electrode material and waste battery - Google Patents

Metal recovery method from waste positive electrode material and waste battery Download PDF

Info

Publication number
JP2014156648A
JP2014156648A JP2013029399A JP2013029399A JP2014156648A JP 2014156648 A JP2014156648 A JP 2014156648A JP 2013029399 A JP2013029399 A JP 2013029399A JP 2013029399 A JP2013029399 A JP 2013029399A JP 2014156648 A JP2014156648 A JP 2014156648A
Authority
JP
Japan
Prior art keywords
leachate
metal
mixture
waste
impurity element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013029399A
Other languages
Japanese (ja)
Other versions
JP5847741B2 (en
Inventor
Yosuke Yamaguchi
陽介 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013029399A priority Critical patent/JP5847741B2/en
Publication of JP2014156648A publication Critical patent/JP2014156648A/en
Application granted granted Critical
Publication of JP5847741B2 publication Critical patent/JP5847741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a simple and economical metal recovery method useful for recovering positive electrode material from a waste battery, a waste positive electrode, or a mixture thereof.SOLUTION: A method for recovering a metal group A consisting of at least two of Co, Ni, and Mn from a waste battery, a waste positive electrode, or a mixture thereof which contains the metal group A and impurities, includes recovering the metal group A as a mixture of metal salts after removal of the impurities from the waste battery, the waste positive electrode, or the mixture thereof.

Description

本発明は、廃正極材及び廃電池からの金属回収方法に関する。とりわけ、本発明はリチウムイオン電池の廃正極材や廃電池から正極材を構成する金属を回収する方法に関する。   The present invention relates to a waste cathode material and a method for recovering metal from a waste battery. In particular, the present invention relates to a waste cathode material of a lithium ion battery and a method for recovering a metal constituting the cathode material from the waste battery.

リチウムイオン電池はハイブリッド自動車用として急速に用途が広がっている。更にはユニットの高容量化により大型電池の生産量が急増することが予想される。また、リチウムイオン電池の需要拡大に伴い、リチウムイオン電池からの有価金属回収方法の確立が求められている。   Lithium ion batteries are rapidly expanding their applications for hybrid vehicles. Furthermore, the production volume of large batteries is expected to increase rapidly as the capacity of the unit increases. Further, with the growing demand for lithium ion batteries, establishment of a method for recovering valuable metals from lithium ion batteries is required.

リチウムイオン電池は、主に正極、負極、セパレーター、筐体からなっており、正極はアルミニウム箔等の集電体上にマンガン、コバルト、ニッケル及びリチウム等を含む正極活物質がフッ素系樹脂等のバインダーを介して接着した構造となっている。負極には集電体として銅箔が使用される。筐体には鉄やアルミニウムが使用される。その他、クロム、炭素、燐なども廃電池から検出されることが多い。   Lithium-ion batteries mainly consist of a positive electrode, a negative electrode, a separator, and a casing. The positive electrode is made of a positive electrode active material containing manganese, cobalt, nickel, lithium, etc. on a current collector such as an aluminum foil. It has a structure in which it is bonded via a binder. A copper foil is used as a current collector for the negative electrode. The casing is made of iron or aluminum. In addition, chromium, carbon, phosphorus, etc. are often detected from waste batteries.

リチウムイオン電池のリサイクル方法としては、使用済みリチウムイオン電池を焼却、破砕して選別した後の原料を用いて酸浸出を行った後、得られた浸出液から溶媒抽出によってそれぞれの金属を抽出分離する方法が提案されている。   As a recycling method for lithium ion batteries, acid leaching is performed using raw materials after incineration, crushing and sorting used lithium ion batteries, and then each metal is extracted and separated by solvent extraction from the obtained leachate. A method has been proposed.

例えば、特開2010−180439号公報(特許文献1)では、中和処理によって鉄及びアルミニウムを除去する方法が記載されている。具体的には、ニッケル及びコバルトと、鉄、アルミニウム及びマンガンその他の不純物元素とを含有する硫酸酸性水溶液から、ニッケルを回収する方法であって、下記の工程(1)〜(5)を含むことを特徴とする硫酸酸性水溶液からのニッケル回収方法が開示されている。
工程(1):前記硫酸酸性水溶液に、亜硫酸ガスと空気又は酸素ガスからなる混合ガスを吹き込みながら、炭酸カルシウムを添加して酸化中和処理に付し、生成された鉄及びアルミニウムを含有する沈殿物(a)を除去する。
工程(2):前記工程(1)で得られた酸化中和処理後液に、水酸化カルシウムを添加して中和処理に付し、ニッケル及びコバルトを含有する混合水酸化物を分離回収する。
工程(3):前記工程(2)で得られた混合水酸化物を、濃度50質量%以上の硫酸溶液中で溶解処理に付し、生成されたマンガン及び石膏を含有する沈殿物(b)を除去してニッケル及びコバルトの濃縮液を得る。
工程(4):前記工程(3)で得られた濃縮液を、燐酸エステル系酸性抽出剤を用いて溶媒抽出処理に付し、ニッケルを含有する抽出残液とコバルトを含有する逆抽出液を得る。
工程(5):前記工程(4)で得られた抽出残液に、中和剤を添加して中和処理に付し、生成された水酸化ニッケルを分離回収する。
For example, JP 2010-180439 A (Patent Document 1) describes a method of removing iron and aluminum by neutralization treatment. Specifically, it is a method for recovering nickel from a sulfuric acid aqueous solution containing nickel and cobalt and iron, aluminum, manganese and other impurity elements, and includes the following steps (1) to (5): A method for recovering nickel from an acidic sulfuric acid aqueous solution is disclosed.
Process (1): Precipitation containing iron and aluminum produced by adding calcium carbonate to the acidic aqueous sulfuric acid solution while blowing a mixed gas composed of sulfurous acid gas and air or oxygen gas, and subjecting to oxidation neutralization treatment. Product (a) is removed.
Step (2): Calcium hydroxide is added to the post-oxidation neutralized solution obtained in the above step (1) and subjected to neutralization to separate and recover the mixed hydroxide containing nickel and cobalt. .
Step (3): The mixed hydroxide obtained in the step (2) is subjected to a dissolution treatment in a sulfuric acid solution having a concentration of 50% by mass or more, and a precipitate (b) containing manganese and gypsum produced. Is removed to obtain a nickel and cobalt concentrate.
Step (4): The concentrated solution obtained in the step (3) is subjected to solvent extraction using a phosphoric acid ester-based acidic extractant, and an extraction residual solution containing nickel and a back extract containing cobalt are obtained. obtain.
Step (5): A neutralizing agent is added to the extraction residual liquid obtained in the step (4) and subjected to neutralization treatment, and the produced nickel hydroxide is separated and recovered.

特開2010−180439号公報JP 2010-180439 A

特許文献1に記載の方法は、ニッケル及びコバルトと、鉄、アルミニウム及びマンガンその他の不純物元素とを含有する硫酸酸性水溶液から、ニッケル、コバルト及びマンガンをそれぞれ分離して回収する方法である。しかしながら、リチウムイオン電池の正極活物質の構成元素としてニッケル、コバルト及びマンガンは組み合わせられて使用されているので、これらをわざわざ分離する必要性は少ない。正極活物質中には使用されない不純物となる元素を分離できれば十分と考えられる。また、これらを分離回収しようとすればそれだけ回収プロセスが複雑化し、回収コストも割高となってしまう。   The method described in Patent Document 1 is a method in which nickel, cobalt, and manganese are separated and recovered from an acidic sulfuric acid aqueous solution that contains nickel, cobalt, and iron, aluminum, manganese, and other impurity elements. However, since nickel, cobalt, and manganese are used in combination as constituent elements of the positive electrode active material of the lithium ion battery, there is little need to separate them. It is considered sufficient to be able to separate elements that are not used in the positive electrode active material. Also, if these are separated and recovered, the recovery process becomes more complicated and the recovery cost becomes higher.

そこで、本発明は、廃電池、廃正極材又はこれらの混合物から正極材を再生するのに有用であり、簡便で経済的な金属回収方法を提供することを課題とする。   Therefore, an object of the present invention is to provide a simple and economical metal recovery method that is useful for regenerating a positive electrode material from a waste battery, a waste positive electrode material, or a mixture thereof.

本発明は、一側面において、
Co、Ni及びMnの少なくとも二種からなる金属群Aと不純物とを含有する廃電池、廃正極材又はこれらの混合物から金属群Aを回収する方法であって、廃電池、廃正極材又はこれらの混合物から不純物を除去した後、金属群Aを金属塩の混合物として回収することを含む方法である。
In one aspect, the present invention provides:
A method for recovering a metal group A from a waste battery, a waste cathode material or a mixture thereof containing a metal group A consisting of at least two kinds of Co, Ni and Mn and impurities, the waste battery, a waste cathode material, or these After removing impurities from the mixture, the metal group A is recovered as a mixture of metal salts.

本発明に係る方法の一実施形態においては、金属塩が固体である。   In one embodiment of the method according to the invention, the metal salt is a solid.

本発明に係る方法の別の一実施形態においては、不純物としてC、P及びFの少なくとも一種からなる不純物元素群Bが含まれ、次の工程(1)、(2)、(5)、(6)及び(7)を以下の条件に従って実施することを含む。
工程(1):廃電池、廃正極材又はこれらの混合物に対して硫酸浸出し、浸出液を得る工程、
工程(2):不純物元素群B中にPが含まれる場合、浸出液にFe3+供給源を添加して燐酸鉄を沈澱させる工程、
工程(5):不純物元素群B中にFが含まれる場合、浸出液にカルシウム化合物を添加し、pHを5〜8の範囲に調整することでフッ化カルシウムを沈澱させる工程、
工程(6):工程(2)及び(5)の内、少なくとも最後の工程を実施した後に、固液分離することにより不純物を浸出液から分離する工程、
工程(7):工程(6)で得られた分離液から金属群Aを、金属塩の混合物として回収する工程。
In another embodiment of the method according to the present invention, the impurity element group B consisting of at least one of C, P and F is included as an impurity, and the following steps (1), (2), (5), ( 6) and (7) are performed according to the following conditions.
Step (1): A step of leaching sulfuric acid from a waste battery, a waste cathode material or a mixture thereof to obtain a leachate,
Step (2): if it contains P in an impurity element group B, step to precipitate the iron phosphate by addition of Fe 3+ source leachate,
Step (5): When F is contained in the impurity element group B, a step of adding calcium compound to the leachate and precipitating calcium fluoride by adjusting the pH to a range of 5 to 8,
Step (6): A step of separating impurities from the leachate by performing solid-liquid separation after performing at least the last step among steps (2) and (5),
Step (7): A step of recovering the metal group A as a mixture of metal salts from the separated liquid obtained in the step (6).

本発明に係る方法の更に別の一実施形態においては、不純物としてFe、Cr、Al及びCuの少なくとも一種からなる不純物元素群Cが含まれ、次の工程(1)、(3)、(4)、(6)及び(7)を以下の条件に従って実施することを含む。
工程(1):廃電池、廃正極材又はこれらの混合物に対して硫酸浸出し、浸出液を得る工程、
工程(3):不純物元素群C中にFe、Cr及びAlの少なくとも一種が含まれる場合、塩基性中和剤を添加し、浸出液のpHを5〜6の範囲に調整して当該金属の中和物を沈殿させる工程、
工程(4):不純物元素群C中にCuが含まれる場合、浸出液に硫化剤を添加して硫化銅を沈澱させる工程、
工程(6):工程(3)及び(4)の内、少なくとも最後の工程を実施した後に、固液分離することにより不純物を浸出液から分離する工程、
工程(7):工程(6)で得られた分離液から金属群Aを、金属塩の混合物として回収する工程。
In still another embodiment of the method according to the present invention, an impurity element group C composed of at least one of Fe, Cr, Al, and Cu is included as an impurity, and the following steps (1), (3), (4 ), (6) and (7) according to the following conditions.
Step (1): A step of leaching sulfuric acid from a waste battery, a waste cathode material or a mixture thereof to obtain a leachate,
Step (3): When the impurity element group C contains at least one of Fe, Cr, and Al, a basic neutralizing agent is added, and the pH of the leachate is adjusted to a range of 5 to 6 in the metal. A step of precipitating the sum,
Step (4): When Cu is contained in the impurity element group C, a step of adding a sulfiding agent to the leachate to precipitate copper sulfide,
Step (6): A step of separating impurities from the leachate by performing solid-liquid separation after performing at least the last step among steps (3) and (4).
Step (7): A step of recovering the metal group A as a mixture of metal salts from the separated liquid obtained in the step (6).

本発明に係る方法の更に別の一実施形態においては、不純物として、C、P及びFの少なくとも一種からなる不純物元素群Bと、Fe、Cr、Al及びCuの少なくとも一種からなる不純物元素群Cとが含まれ、工程(1)〜(7)を以下の条件に従って実施することを含む。
工程(1):廃電池、廃正極材又はこれらの混合物に対して硫酸浸出し、浸出液を得る工程、
工程(2):不純物元素群B中にPが含まれる場合、浸出液にFe3+供給源を添加して燐酸鉄を沈澱させる工程、
工程(3):不純物元素群C中にFe、Cr及びAlの少なくとも一種が含まれる場合、塩基性中和剤を添加し、浸出液のpHを5〜6の範囲に調整して当該金属成分の中和物を沈殿させる工程、
工程(4):不純物元素群C中にCuが含まれる場合、浸出液に硫化剤を添加して硫化鉄を沈澱させる工程、
工程(5):不純物元素群B中にFが含まれる場合、浸出液にカルシウム化合物を添加し、pHを5〜8の範囲に調整することでフッ化カルシウムを沈澱させる工程、
工程(6):工程(2)〜(5)の内、少なくとも最後の工程を実施した後に、固液分離することにより不純物を浸出液から分離する工程、
工程(7):工程(6)で得られた分離液から金属群Aを、金属塩の混合物として回収する工程。
In still another embodiment of the method according to the present invention, as impurities, an impurity element group B consisting of at least one of C, P and F and an impurity element group C consisting of at least one of Fe, Cr, Al and Cu are used as impurities. And includes performing steps (1) to (7) according to the following conditions.
Step (1): A step of leaching sulfuric acid from a waste battery, a waste cathode material or a mixture thereof to obtain a leachate,
Step (2): if it contains P in an impurity element group B, step to precipitate the iron phosphate by addition of Fe 3+ source leachate,
Step (3): When at least one of Fe, Cr and Al is contained in the impurity element group C, a basic neutralizing agent is added, and the pH of the leachate is adjusted to a range of 5 to 6 to adjust the metal component. A step of precipitating the neutralized product,
Step (4): When Cu is contained in the impurity element group C, a step of adding iron sulfide to the leachate to precipitate iron sulfide,
Step (5): When F is contained in the impurity element group B, a step of adding calcium compound to the leachate and precipitating calcium fluoride by adjusting the pH to a range of 5 to 8,
Step (6): A step of separating impurities from the leachate by performing solid-liquid separation after performing at least the last step among steps (2) to (5),
Step (7): A step of recovering the metal group A as a mixture of metal salts from the separated liquid obtained in the step (6).

本発明に係る方法の更に別の一実施形態においては、前記金属塩が水酸化物、硫酸塩、炭酸塩、又は硝酸塩である。   In a further embodiment of the method according to the invention, the metal salt is a hydroxide, sulfate, carbonate or nitrate.

本発明に係る方法の更に別の一実施形態においては、工程(7)は、工程(6)で得られた分離液に塩基性中和剤を添加して浸出液のpHを8〜11の範囲に調整し、金属群Aの混合水酸化物を沈澱させ、金属群Aの混合水酸化物を固液分離により固体側に回収する工程、或いは、工程(6)で得られた分離液に硫酸を添加し、次いで加熱濃縮することによって金属群Aの硫酸塩混合物を生成させる工程である。   In yet another embodiment of the method according to the present invention, in step (7), a basic neutralizing agent is added to the separation liquid obtained in step (6), and the pH of the leachate is in the range of 8-11. In which the mixed hydroxide of metal group A is precipitated and the mixed hydroxide of metal group A is recovered on the solid side by solid-liquid separation, or sulfuric acid is added to the separated liquid obtained in step (6). Is added, and then heated and concentrated to form a sulfate group of metal group A.

本発明に係る方法の更に別の一実施形態においては、廃電池、廃正極材又はこれらの混合物が、金属群AとしてCo、Ni及びMnを含有する。   In yet another embodiment of the method according to the present invention, the waste battery, the waste cathode material or a mixture thereof contains Co, Ni and Mn as the metal group A.

本発明に係る方法の更に別の一実施形態においては、廃電池、廃正極材又はこれらの混合物が、不純物としてC、P、F、Fe、Cr、Al及びCuを含有する。   In yet another embodiment of the method according to the present invention, the waste battery, the waste cathode material or a mixture thereof contains C, P, F, Fe, Cr, Al and Cu as impurities.

本発明に係る方法の更に別の一実施形態においては、工程(2)〜(5)は、工程(2)→工程(3)→工程(4)→工程(5)の順番に全て実施される。   In still another embodiment of the method according to the present invention, steps (2) to (5) are all performed in the order of step (2) → step (3) → step (4) → step (5). The

本発明に係る方法の更に別の一実施形態においては、硫酸浸出は還元剤を添加して実施する。   In a further embodiment of the method according to the invention, the sulfuric acid leaching is carried out with the addition of a reducing agent.

本発明に係る方法の更に別の一実施形態においては、工程(7)において金属群Aの混合水酸化物を沈澱させた後、当該混合水酸化物に対してリパルプ洗浄を少なくとも一回実施することを含む。   In still another embodiment of the method according to the present invention, after the mixed hydroxide of the metal group A is precipitated in the step (7), repulp washing is performed on the mixed hydroxide at least once. Including that.

本発明は別の一側面において、本発明に係る方法によって得られた金属塩の混合物を正極活物質の原料として使用することを含む正極活物質の製造方法である。   In another aspect, the present invention is a method for producing a positive electrode active material, comprising using a mixture of metal salts obtained by the method according to the present invention as a raw material for the positive electrode active material.

本発明に係る正極活物質の製造方法の一実施形態においては、正極活物質がリチウムイオン電池用である。   In one embodiment of the method for producing a positive electrode active material according to the present invention, the positive electrode active material is for a lithium ion battery.

本発明によれば、廃電池、廃正極材又はこれらの混合物からCo、Ni及びMnの少なくとも二種からなる金属群Aを金属塩の混合物として回収するので、これらを個別に分離する手間が省略できる。その結果、正極材の再生コストの削減に大きく寄与すると思われる。   According to the present invention, the metal group A consisting of at least two of Co, Ni, and Mn is recovered as a mixture of metal salts from a waste battery, a waste cathode material, or a mixture thereof. it can. As a result, it seems to contribute greatly to the reduction of the regeneration cost of the positive electrode material.

なお、回収された金属塩中に含まれるCo、Ni及びMnの比率は一定ではないが、成分分析することにより、当該金属塩に含まれるCo、Ni及びMnの比率は確認可能である。従って、正極活物質を再生するにあたって、当該比率が適切ではないときはCo、Ni及びMnの任意の成分を所要量追加することで、比率調整は可能である。   The ratio of Co, Ni, and Mn contained in the recovered metal salt is not constant, but the ratio of Co, Ni, and Mn contained in the metal salt can be confirmed by component analysis. Therefore, when regenerating the positive electrode active material, if the ratio is not appropriate, the ratio can be adjusted by adding a desired amount of arbitrary components of Co, Ni, and Mn.

<原料>
本発明においては、廃電池、廃正極材又はこれらの混合物を原料として、金属群Aを金属塩の混合物として回収する。廃電池、廃正極材又はこれらの混合物としては、Co、Ni及びMnの少なくとも二種、典型的にはこれら三種類からなる金属群Aと不純物とを含有する限り特に制限はないが、リチウムイオン電池の正極活物質を含む廃正極材、電池メーカーから出てくる正極活物質(場合によっては負極活物質及び溶剤(PVDFやNMP)が混練されている)を焼却・乾燥したもの、アルミニウム箔等の集電体にバインダーを介して正極活物質が接着された正極材、正極材から正極活物質を分離したもの、一般に電池滓や電池破砕粉と呼ばれる電池そのものを焼却・破砕・篩別などして正極活物質を分離したようなものが挙げられる。
<Raw material>
In the present invention, the metal group A is recovered as a mixture of metal salts using a waste battery, a waste cathode material or a mixture thereof as a raw material. The waste battery, the waste cathode material, or a mixture thereof is not particularly limited as long as it contains at least two kinds of Co, Ni and Mn, typically these three kinds of metal group A and impurities. Waste cathode material containing positive electrode active material for batteries, incinerated and dried positive electrode active material (possibly mixed with negative electrode active material and solvent (PVDF and NMP)), aluminum foil, etc. A positive electrode material in which a positive electrode active material is bonded to a current collector through a binder, a material in which the positive electrode active material is separated from the positive electrode material, and a battery generally called a battery tub or battery pulverized powder are incinerated, crushed, and sieved. And the like, in which the positive electrode active material is separated.

廃電池、廃正極材又はこれらの混合物に含まれる不純物としては、各種の不純物が考えられるものの、典型的にはC、P、F、Fe、Cr、Al及びCuの何れか一種以上が挙げられる。これらは単体の他、様々な化合物の形態で存在していることが通常である。本発明においては、不純物をC、P及びFの少なくとも一種からなる不純物元素群Bと、Fe、Cr、Al及びCuの少なくとも一種からなる不純物元素群Cに便宜上区別している。不純物元素群Bは非金属元素であり、不純物元素群Cは金属元素である。正極材の再生に当たって、非金属元素の除去まで考慮することは従来十分な検討がなされていなかったと考えられる。本発明においては、このような非金属元素の除去も視野に入れ、回収される金属塩の混合物の純度を高めることとしている。   As the impurities contained in the waste battery, the waste cathode material, or a mixture thereof, various impurities can be considered, but typically one or more of C, P, F, Fe, Cr, Al, and Cu are included. . These are usually present in the form of various compounds in addition to simple substances. In the present invention, impurities are distinguished for convenience into an impurity element group B consisting of at least one of C, P and F and an impurity element group C consisting of at least one of Fe, Cr, Al and Cu. The impurity element group B is a non-metallic element, and the impurity element group C is a metallic element. In the regeneration of the positive electrode material, it has been considered that sufficient consideration has not been made so far to consider the removal of nonmetallic elements. In the present invention, the removal of such non-metallic elements is also taken into consideration, and the purity of the recovered metal salt mixture is increased.

原料中にはLiも有意に比率で含まれていることが多い。Liはリチウムイオン電池の正極活物質を構成する成分であり、不純物ではない。従って、本発明に係る方法によって回収された金属塩の混合物中にLiが含まれていることに何ら問題はない。但し、本願発明においてはLiの回収効率は問わず、Co、Ni及びMnの回収に焦点を当てることとする。   In many cases, Li is also included in the raw material in a significant proportion. Li is a component constituting the positive electrode active material of the lithium ion battery, and is not an impurity. Therefore, there is no problem that Li is contained in the metal salt mixture recovered by the method according to the present invention. However, the present invention focuses on the recovery of Co, Ni, and Mn regardless of the recovery efficiency of Li.

<工程(1)>
工程(1)では、廃電池、廃正極材又はこれらの混合物に対して硫酸浸出し、浸出液を得る。硫酸浸出によって、Co、Ni及びMnの他、硫酸に溶解性の不純物が浸出液中に移行する。原料中に不純物としてバインダー、負極活物質等に由来するCが含まれている場合、Cは硫酸に不溶性であることが多いので、大部分のCは硫酸浸出時に除去可能である。硫酸浸出は、主にCo、Ni及びMnの回収効率の観点から、例えば以下の条件で実施することが望ましい。
浸出時の液温は低すぎると反応速度が遅いので、20℃以上が好ましく、40℃以上がより好ましく、60℃以上が更により好ましい。一方、浸出時の液温は高すぎると設備や機器の耐久性を超えるので、90℃以下が好ましく、80℃以下がより好ましい。
浸出時のpHは低すぎると後工程でのアルカリの使用量が増えるので、2以上が好ましく、3以上がより好ましい。一方、浸出時のpHは高すぎると浸出率が低くなるので、5以下が好ましい。
次工程に移行する前に浸出液から残渣を固液分離によって分離しておくことも可能であるが、コスト低減の観点から固液分離せずにそのまま次工程に移行することも可能である。
<Step (1)>
In the step (1), sulfuric acid is leached from a waste battery, a waste cathode material or a mixture thereof to obtain a leachate. By sulfuric acid leaching, impurities soluble in sulfuric acid as well as Co, Ni and Mn migrate into the leaching solution. When C derived from a binder, a negative electrode active material, or the like is contained as an impurity in the raw material, since C is often insoluble in sulfuric acid, most of C can be removed during sulfuric acid leaching. The sulfuric acid leaching is desirably performed under the following conditions, for example, mainly from the viewpoint of the recovery efficiency of Co, Ni, and Mn.
When the liquid temperature at the time of leaching is too low, the reaction rate is slow, so 20 ° C. or higher is preferable, 40 ° C. or higher is more preferable, and 60 ° C. or higher is even more preferable. On the other hand, if the liquid temperature at the time of leaching is too high, it exceeds the durability of the equipment or equipment, so 90 ° C. or lower is preferable, and 80 ° C. or lower is more preferable.
If the pH during leaching is too low, the amount of alkali used in the subsequent step increases, so it is preferably 2 or more, and more preferably 3 or more. On the other hand, if the pH during leaching is too high, the leaching rate is lowered, so 5 or less is preferable.
Although it is possible to separate the residue from the leachate by solid-liquid separation before moving to the next step, it is also possible to move directly to the next step without solid-liquid separation from the viewpoint of cost reduction.

原料中の金属成分は酸化物として存在することも多いところ、酸化物は浸出されにくい。そこで、Co、Ni又はMnが酸化物として存在し硫酸のみでは浸出率が低い場合には、亜硫酸ナトリウム、SO2ガス、ヒドラジン、過酸化水素等の還元剤を添加し、これらを還元させて浸出するのが浸出率を高める上で好ましい。Co、Ni又はMnが還元されたかどうかは分析や酸化還元電位で判断可能である。Co、Ni又はMnが複合酸化物として存在する正極材が多いと、硫酸添加後の酸化還元電位(ORP:Ag/AgCl基準)が800mV超となる場合もある。そのような場合、これに還元剤を添加することでORPを下げていくことができる。Co、Ni又はMnを十分に還元する観点からは、ORPが600mV以下とすることが好ましい。当然ながら、硫酸添加直後にORPが100mV以下になる場合もあり、その場合は還元剤を添加する必要はない。例えば電池滓の焼成物は、焼成条件にもよるが、硫酸添加のみでも十分にORPが低いときには、還元剤を添加しなくてもよい場合がある。 Since the metal component in the raw material often exists as an oxide, the oxide is not easily leached. Therefore, when Co, Ni, or Mn exists as an oxide and the leaching rate is low only with sulfuric acid, a reducing agent such as sodium sulfite, SO 2 gas, hydrazine, hydrogen peroxide, etc. is added, and these are reduced and leached. It is preferable to increase the leaching rate. Whether Co, Ni or Mn has been reduced can be determined by analysis or oxidation-reduction potential. When there are many positive electrode materials in which Co, Ni, or Mn exists as a composite oxide, the redox potential (ORP: Ag / AgCl standard) after addition of sulfuric acid may exceed 800 mV. In such a case, the ORP can be lowered by adding a reducing agent thereto. From the viewpoint of sufficiently reducing Co, Ni or Mn, the ORP is preferably set to 600 mV or less. Of course, the ORP may be 100 mV or less immediately after the addition of sulfuric acid, in which case it is not necessary to add a reducing agent. For example, although the fired product of the battery case depends on the firing conditions, it may not be necessary to add a reducing agent when the ORP is sufficiently low even when only sulfuric acid is added.

<工程(2)>
不純物元素群B中にPが含まれることがある。Pは例えば電解液等に由来する。この場合、工程(1)によって得られた浸出液にFe3+の供給源、例えば硫酸第二鉄(Fe2(SO43)を添加して燐酸鉄を沈澱させる工程を実施し、Pを除去することが望ましい。この際、主にPの除去効率の観点から、例えば以下の条件で実施することが望ましい。なお、本発明において、硫酸第二鉄はポリ硫酸第二鉄を含む概念とする。Fe3+の供給源としてはその他、塩化鉄(FeCl3)、酸化鉄(Fe23)などが挙げられる。水に溶解してFe3+を供給し得るものであればよく、特に限定されるものではない。その他、Fe屑などを添加し、溶解させてから、Airを吹き込んで3価のFe3+イオンにして使用することもできる。
<Step (2)>
P may be contained in the impurity element group B. P is derived from, for example, an electrolytic solution. In this case, a Fe 3+ supply source, for example, ferric sulfate (Fe 2 (SO 4 ) 3 ) is added to the leachate obtained in step (1) to precipitate iron phosphate, and P is It is desirable to remove. At this time, it is desirable to carry out under the following conditions, mainly from the viewpoint of P removal efficiency. In the present invention, ferric sulfate is a concept including ferric sulfate. Other sources of Fe 3+ include iron chloride (FeCl 3 ), iron oxide (Fe 2 O 3 ), and the like. There is no particular limitation as long as it can dissolve in water and supply Fe 3+ . In addition, after adding and dissolving Fe scraps or the like, Air can be blown into trivalent Fe 3+ ions for use.

Fe3+の供給源の添加量は少なすぎると十分なP除去効率が得られないので、Pに対して1当量以上が好ましく、1.2当量以上がより好ましく、1.3当量以上が更により好ましい。一方、添加量は多すぎると鉄が過剰になるので、1.5当量以下が好ましく、1.4当量以下がより好ましい。
液のpHは低すぎるとリン酸鉄が沈澱しないので、3以上が好ましく、3.5以上がより好ましい。一方、液のpHは高すぎるとCoやNiが沈殿する問題がある。一方、液のpHは高すぎるとCoやNiの沈殿量が増えるので、6以下が好ましく、5以下がより好ましい。
If the addition amount of the Fe 3+ source is too small, sufficient P removal efficiency cannot be obtained, so 1 equivalent or more is preferable with respect to P, 1.2 equivalents or more is more preferable, and 1.3 equivalents or more are further added. Is more preferable. On the other hand, since iron will become excessive when there is too much addition amount, 1.5 equivalent or less is preferable and 1.4 equivalent or less is more preferable.
If the pH of the solution is too low, iron phosphate does not precipitate, so 3 or more is preferable, and 3.5 or more is more preferable. On the other hand, if the pH of the liquid is too high, there is a problem that Co and Ni are precipitated. On the other hand, if the pH of the solution is too high, the amount of precipitation of Co and Ni increases, so it is preferably 6 or less, more preferably 5 or less.

<工程(3)>
不純物元素群C中にFe、Cr及びAlの少なくとも一種が含まれることがあり、時としてこれらのすべてが含まれることもある。Feは例えば筐体等に由来する。Crは例えば筐体等に由来する。Alは例えば集電体、筐体等に由来する。この場合、工程(1)によって得られた浸出液に塩基性中和剤を添加し、浸出液のpHを5〜6の範囲に調整して当該金属の中和物を沈殿させる工程を実施し、これらの金属元素を除去することが望ましい。この際、主にこれらの金属元素の除去効率の観点から、例えば以下の条件で実施することが望ましい。
<Step (3)>
The impurity element group C may contain at least one of Fe, Cr, and Al, and sometimes all of them may be contained. Fe is derived from, for example, a housing. Cr is derived from, for example, a housing. Al is derived from, for example, a current collector, a housing, and the like. In this case, a basic neutralizing agent is added to the leachate obtained in step (1), the pH of the leachate is adjusted to a range of 5 to 6, and the neutralized product of the metal is precipitated, It is desirable to remove the metal element. At this time, it is desirable to carry out, for example, under the following conditions mainly from the viewpoint of the removal efficiency of these metal elements.

塩基性中和剤としては、限定的ではないが、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等が挙げられ、取扱上の観点から、水酸化ナトリウムが好ましい。これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。
液のpHは低すぎると沈殿しないので、5以上が好ましく、5.5以上がより好ましい。一方、液のpHは高すぎるとCoやNiの沈殿量が増えるので、6.5以下が好ましく、6以下がより好ましい。
Examples of the basic neutralizing agent include, but are not limited to, sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia and the like, and sodium hydroxide is preferable from the viewpoint of handling. These may be used alone or in combination of two or more.
If the pH of the liquid is too low, precipitation does not occur, so 5 or more is preferable, and 5.5 or more is more preferable. On the other hand, if the pH of the solution is too high, the amount of Co and Ni precipitated increases, so 6.5 or less is preferable, and 6 or less is more preferable.

<工程(4)>
不純物元素群C中にCuが含まれることがある。Cuは例えば集電体、リード線、基板等に由来する。この場合、工程(1)によって得られた浸出液に硫化剤を添加して硫化銅を沈澱させる工程を実施し、これらの金属元素を除去することが望ましい。この際、主にCuの除去効率の観点から、例えば以下の条件で実施することが望ましい。
<Process (4)>
The impurity element group C may contain Cu. Cu is derived from, for example, a current collector, a lead wire, and a substrate. In this case, it is desirable to add a sulfiding agent to the leachate obtained in the step (1) to precipitate copper sulfide and remove these metal elements. At this time, for example, it is desirable to carry out under the following conditions mainly from the viewpoint of Cu removal efficiency.

硫化剤としては、限定的ではないが、硫化水素ガスを使用することができるほか、硫化ナトリウムや水硫化ナトリウムなどの硫化アルカリから硫化水素ガスを発生させ、それを利用することも可能である。硫化のためには、有毒ガスである硫化水素ガスを直接取り扱うより、硫化アルカリから硫化水素ガスを発生させた方が取り扱いやすい。
硫化水素ガス又は硫化アルカリから発生させる硫化水素ガスは、液中のCuに対して1当量より若干多い量とすることが好ましい。つまり、1.05当量以上とするのが好ましく、経済性の観点から1.05〜1.5当量が好ましい。
液のpHは低すぎると硫化水素が多く発生するので、1.5以上が好ましく、2以上がより好ましい。
The sulfurizing agent is not limited, but hydrogen sulfide gas can be used, and hydrogen sulfide gas can be generated from an alkali sulfide such as sodium sulfide or sodium hydrosulfide and used. For sulfidation, it is easier to handle hydrogen sulfide gas generated from alkali sulfide than to directly handle toxic gas, hydrogen sulfide gas.
The hydrogen sulfide gas generated from hydrogen sulfide gas or alkali sulfide is preferably slightly more than 1 equivalent with respect to Cu in the liquid. That is, it is preferable to set it as 1.05 equivalent or more, and 1.05-1.5 equivalent is preferable from a viewpoint of economical efficiency.
If the pH of the liquid is too low, a large amount of hydrogen sulfide is generated, so 1.5 or more is preferable and 2 or more is more preferable.

<工程(5)>
不純物元素群B中にFが含まれることがある。Fは例えば電解液、バインダー等に由来する。バインダーそのものは樹脂であるため酸で浸出しないが、焼却炉で電池を加熱した時の熱分解等によりバインダー由来のFも考えられる。この場合、工程(1)によって得られた浸出液にカルシウム化合物を添加し、pHを5〜8の範囲に調整することでフッ化カルシウムを沈澱させる工程を実施し、Fを除去することが望ましい。カルシウム化合物としては、例えば水酸化カルシウム、酸化カルシウム、塩化カルシウム、硫酸カルシウム、カルシウムアルコキシド及びカルボン酸カルシウムが挙げられる。但し、有機物は廃液処理に留意する必要が出てくるため、水酸化カルシウム、酸化カルシウム、塩化カルシウム、及び硫酸カルシウムが好適である。これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。工程(5)は、主にFの除去効率の観点から、例えば以下の条件で実施することが望ましい。
<Step (5)>
F may be contained in the impurity element group B. F is derived from, for example, an electrolytic solution and a binder. Since the binder itself is a resin, it does not leach out with acid, but F derived from the binder can also be considered due to thermal decomposition when the battery is heated in an incinerator. In this case, it is desirable to remove F by adding a calcium compound to the leachate obtained in step (1) and adjusting the pH to a range of 5 to 8 to precipitate calcium fluoride. Examples of the calcium compound include calcium hydroxide, calcium oxide, calcium chloride, calcium sulfate, calcium alkoxide, and calcium carboxylate. However, since it is necessary to pay attention to waste liquid treatment for organic substances, calcium hydroxide, calcium oxide, calcium chloride, and calcium sulfate are preferable. These may be used alone or in combination of two or more. Step (5) is preferably carried out, for example, under the following conditions, mainly from the viewpoint of F removal efficiency.

カルシウム化合物の添加量は少なすぎると十分なF除去効率が得られないので、液中のFに対して1当量以上が好ましく、1.1当量以上がより好ましく、1.2当量以上が更により好ましい。一方、添加量は多すぎると硫酸カルシウムの析出やCoやNiの沈殿が生じるので、1.5当量以下が好ましく、1.4当量以下がより好ましく、1.3当量以下が更により好ましい。
液のpHは低すぎるとCaF2が沈殿しないので、5以上が好ましく、6以上がより好ましい。一方、液のpHは高すぎるとCoやNiの沈殿が生じるので、8以下が好ましい。
If the amount of the calcium compound added is too small, sufficient F removal efficiency cannot be obtained, so 1 equivalent or more is preferable with respect to F in the liquid, 1.1 equivalent or more is more preferable, and 1.2 equivalent or more is even more. preferable. On the other hand, if the addition amount is too large, precipitation of calcium sulfate and precipitation of Co and Ni occur, so 1.5 equivalents or less is preferable, 1.4 equivalents or less is more preferable, and 1.3 equivalents or less is even more preferable.
If the pH of the solution is too low, CaF 2 does not precipitate, so 5 or more is preferable, and 6 or more is more preferable. On the other hand, if the pH of the liquid is too high, precipitation of Co or Ni occurs, so 8 or less is preferable.

<工程(2)〜(5)の組み合わせ>
上述した工程(2)〜(5)は、原料中に含まれる不純物に応じて任意の順番で組み合わせて行うことが可能である。例えば、不純物元素群Bを構成する元素のうちP及びFが共に原料中に含まれる場合、工程(2)と工程(5)を組み合わせることができる。更には、不純物としてCの有無を問わずP、F、Fe、Cr、Al及びCuすべてを含有する場合、工程(2)〜(5)のすべてを組み合わせることもできる。
<Combination of steps (2) to (5)>
The steps (2) to (5) described above can be performed in combination in any order depending on the impurities contained in the raw material. For example, when P and F are included in the raw material among the elements constituting the impurity element group B, the step (2) and the step (5) can be combined. Furthermore, when all of P, F, Fe, Cr, Al, and Cu are contained as impurities regardless of the presence or absence of C, all of the steps (2) to (5) can be combined.

工程(2)〜(5)は、一部の工程を省略する場合も含めて、工程(2)→工程(3)→工程(4)→工程(5)の順番に実施されるのが好ましい。これは薬剤使用量を低減できるからである。   Steps (2) to (5) are preferably performed in the order of step (2) → step (3) → step (4) → step (5), including the case where some steps are omitted. . This is because the amount of medicine used can be reduced.

<工程(6)>
工程(2)〜(5)の内、少なくとも最後の工程を実施した後に、固液分離することにより不純物を浸出液から分離する工程を実施する。これは、例えば工程(2)及び(5)のみを順に実施するときは、工程(2)及び工程(5)のそれぞれの終了時に固液分離してその工程において発生した沈殿物を除去することも可能であるし、工程(2)及び工程(5)の間に固液分離工程を挟むことなく、コスト低減の観点から最後の工程(5)が終了した後に固液分離することも可能であるということを意味する。各工程において生じた沈殿物を除去した後に次工程に移行することが工程管理上は好ましいと思われるが、少なくとも最後の工程(5)が終了した後に固液分離すれば本発明は実施可能である。
<Step (6)>
Among the steps (2) to (5), after performing at least the last step, a step of separating impurities from the leachate by solid-liquid separation is performed. For example, when only steps (2) and (5) are performed sequentially, solid-liquid separation is performed at the end of each of steps (2) and (5) to remove precipitates generated in that step. It is also possible to perform solid-liquid separation after the last step (5) is completed from the viewpoint of cost reduction without interposing a solid-liquid separation step between steps (2) and (5). It means that there is. Although it is preferable in terms of process control to remove the precipitate generated in each process from the viewpoint of process control, the present invention can be implemented if solid-liquid separation is performed after at least the last process (5) is completed. is there.

但し、硫化の際はpHが下がるのと、硫化物は管理上分けておくことが望ましいので、少なくとも工程(3)及び工程(4)の後は固液分離を実施することが好ましい。従って、例えば工程(1)→工程(2)→工程(3)→工程(4)→工程(5)の順番に実施するときには、工程(3)の終了時、工程(4)の終了時、及び工程(5)の終了時にそれぞれ固液分離することが好適である。   However, since it is desirable to separate the sulfide from the viewpoint of lowering the pH during sulfurization, it is preferable to carry out solid-liquid separation at least after step (3) and step (4). Therefore, for example, when performing in order of step (1) → step (2) → step (3) → step (4) → step (5), at the end of step (3), at the end of step (4), In addition, it is preferable to perform solid-liquid separation at the end of step (5).

固液分離の方法としては、特に制限はないが、濾過、圧搾、デカント、遠心分離などの公知の方法が挙げられ、回収物の低水分化の理由により、濾過、圧搾が好ましい。   The solid-liquid separation method is not particularly limited, and may be a known method such as filtration, pressing, decanting, and centrifugation. Filtration and pressing are preferred because of the low water content of the recovered material.

<工程(7)>
工程(6)を経て清浄化された浸出液には、Mn、Co及びNiの少なくとも一種が高純度で含まれている。本発明においては、浸出液からこれらをそれぞれ分離することなく、金属塩の混合物として回収する。これらを個別に分離する手間が存在しないので、正極材の再生コストの削減につながる。金属塩の混合物は、特に制限はないが、水酸化物、硫酸塩、炭酸塩、硝酸塩、塩酸塩などの形態で回収可能である。金属塩は、水溶液の形態とすることもできるが、輸送コストなどを考慮すると、固体とするほうが便利である。具体例として、水酸化物及び硫酸塩として回収する方法を以下に示す。
<Step (7)>
The leachate cleaned through the step (6) contains at least one of Mn, Co, and Ni with high purity. In the present invention, these are recovered as a mixture of metal salts without separating them from the leachate. Since there is no effort to separate them individually, this leads to a reduction in the regeneration cost of the positive electrode material. The mixture of metal salts is not particularly limited, but can be recovered in the form of hydroxide, sulfate, carbonate, nitrate, hydrochloride and the like. The metal salt can be in the form of an aqueous solution, but it is more convenient to use a solid in consideration of transportation costs and the like. As a specific example, a method of recovering as a hydroxide and a sulfate is shown below.

まず、水酸化物として回収する方法について説明する。工程(6)で得られた分離液に塩基性中和剤を添加して浸出液のpHを8〜12の範囲に調整し、金属群Aの混合水酸化物を沈澱させ、金属群Aの混合水酸化物を固液分離により固体側に回収することができる。この際、主に金属元素群Aの回収効率及び不純物低減の観点から、例えば以下の条件で実施することが望ましい。
塩基性中和剤としては、限定的ではないが、水酸化ナトリウム、水酸化カリウム等が挙げられ、一般的に、水酸化ナトリウムが使用される。
液のpHは低すぎると沈殿しないので、8以上が好ましく、8.5以上がより好ましい。一方、液のpHは高すぎるとNaが増えるので、12以下が好ましく、11以下がより好ましい。
固液分離の方法としては、特に制限はないが、濾過、圧搾、デカント、遠心分離などの公知の方法が挙げられ、回収物の低水分化の理由により、濾過、圧搾が好ましい。
First, a method for recovering as a hydroxide will be described. A basic neutralizing agent is added to the separation liquid obtained in the step (6) to adjust the pH of the leachate to a range of 8 to 12, and the mixed hydroxide of the metal group A is precipitated to mix the metal group A. The hydroxide can be recovered on the solid side by solid-liquid separation. At this time, it is desirable to carry out under the following conditions, for example, mainly from the viewpoint of recovery efficiency of the metal element group A and impurity reduction.
Examples of the basic neutralizing agent include, but are not limited to, sodium hydroxide and potassium hydroxide, and sodium hydroxide is generally used.
If the pH of the liquid is too low, precipitation does not occur, so 8 or more is preferable, and 8.5 or more is more preferable. On the other hand, if the pH of the solution is too high, Na increases, so it is preferably 12 or less, and more preferably 11 or less.
The solid-liquid separation method is not particularly limited, and may be a known method such as filtration, pressing, decanting, and centrifugation. Filtration and pressing are preferred because of the low water content of the recovered material.

金属群Aの混合水酸化物を沈澱させた後は、不純物低減のために、当該混合水酸化物に対してリパルプ洗浄を少なくとも一回、望ましくは複数回実施することが好ましい。   After the mixed hydroxide of the metal group A is precipitated, it is preferable to perform repulp washing on the mixed hydroxide at least once, desirably a plurality of times, in order to reduce impurities.

次に、硫酸塩として回収する方法について説明する。別法として、工程(6)で得られた分離液に硫酸を添加し、次いで加熱濃縮することによって金属群Aの硫酸塩混合物を生成させることができる。加熱濃縮は蒸発缶、冷凍機等を用いて実施可能である。この際、主に金属元素群Aの回収効率及び不純物低減の観点から、例えば以下の条件で実施することが望ましい。   Next, a method for recovering as a sulfate will be described. Alternatively, a sulfuric acid mixture of metal group A can be produced by adding sulfuric acid to the separation liquid obtained in step (6) and then concentrating with heating. Heating concentration can be performed using an evaporator, a refrigerator, or the like. At this time, it is desirable to carry out under the following conditions, for example, mainly from the viewpoint of recovery efficiency of the metal element group A and impurity reduction.

加熱濃縮前の液中の硫酸濃度は低すぎると結晶が析出しないので、10g/L以上が好ましく、50g/L以上がより好ましい。   If the sulfuric acid concentration in the solution before heating and concentration is too low, crystals do not precipitate.

<正極活物質の製造>
本発明に係る上記の方法によって回収された金属塩の混合物を原料として正極活物質を製造することが可能であり、特にリチウムイオン電池用の正極活物質を好適に製造することができる。典型的な正極活物質は、リチウムに加えて、コバルト、ニッケル、マンガン等の遷移金属を含む複合酸化物で構成されている。正極活物質の製造方法自体は公知であり、特に説明を要しないと思われるが、簡単に説明する。
<Manufacture of positive electrode active material>
A positive electrode active material can be produced using a mixture of metal salts recovered by the above method according to the present invention as a raw material, and in particular, a positive electrode active material for a lithium ion battery can be suitably produced. A typical positive electrode active material is composed of a composite oxide containing a transition metal such as cobalt, nickel, and manganese in addition to lithium. The manufacturing method of the positive electrode active material itself is publicly known, and it is considered that no explanation is required.

目的とする金属複合酸化物の組成に応じて、硫酸塩、硝酸塩、塩酸塩、炭酸塩、水酸化物などの形態にある金属塩を湿式で所望のモル比率となるように混合し、アルカリ沈殿法、ゾルゲル法、噴霧熱分解法などの公知の技術により、リチウムと遷移金属の複合物を調整する。これらの複合物を熱処理することにより、正極活物質を得ることができる。本発明に係る方法により得られた金属塩の成分を予め分析しておくことにより、所望の組成をもつ金属複合酸化物を調製可能である。正極活物質を構成する金属としてコバルト、ニッケル、マンガン以外の金属を添加することも当然に可能である。   Depending on the composition of the target metal composite oxide, the metal salt in the form of sulfate, nitrate, hydrochloride, carbonate, hydroxide, etc. is wet mixed to the desired molar ratio, and alkali precipitation is performed. The composite of lithium and transition metal is prepared by a known technique such as a sol-gel method, a sol-gel method, or a spray pyrolysis method. A positive electrode active material can be obtained by heat-treating these composites. By analyzing in advance the components of the metal salt obtained by the method according to the present invention, a metal composite oxide having a desired composition can be prepared. It is naturally possible to add a metal other than cobalt, nickel, and manganese as the metal constituting the positive electrode active material.

以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。   Examples of the present invention will be described below, but the examples are for illustrative purposes and are not intended to limit the invention.

(実施例1)
表1に記載の組成をもつリチウムイオン電池を焼却、破砕、篩別した焼却破砕粉を100g用意した。組成分析は、FとC以外は王水溶解してICP分析した。Fは王水溶解したものを蒸留してイオン電極で測定した。Cは燃焼法により測定した。
Example 1
100 g of incinerated crushed powder obtained by incineration, crushing, and sieving a lithium ion battery having the composition shown in Table 1 was prepared. The composition analysis was ICP analysis by dissolving aqua regia except F and C. F was measured by an ion electrode after distilling aqua regia dissolved. C was measured by a combustion method.

これに純水400mL、98質量%濃硫酸62.7mLを加えて撹拌し、液温:約70℃、ORP(Ag/AgCl基準):約0mV、最終pH:約2.5の条件で浸出操作を2時間行い、濾過した。濾過後の浸出液の濃度分析結果を表2に示す。C及びCuがほとんど除去されていることが分かる。分析はICPにより行った。但し、Fは蒸留してイオン電極で測定した。CはTOC測定機で測定した。   400 mL of pure water and 62.7 mL of 98% by mass concentrated sulfuric acid were added to this and stirred, and leaching was performed under the conditions of liquid temperature: about 70 ° C., ORP (Ag / AgCl standard): about 0 mV, final pH: about 2.5. For 2 hours and filtered. Table 2 shows the concentration analysis results of the leachate after filtration. It can be seen that C and Cu are almost removed. Analysis was performed by ICP. However, F was distilled and measured with an ion electrode. C was measured with a TOC measuring machine.

次いで、浸出液約460mLに対して硫酸第二鉄(210g/Lの水溶液)を3.8g添加し、引き続き25質量%水酸化ナトリウム水溶液を添加して、pHを5.5に調整すると、沈殿物が生成した。沈殿物は濾過により除去した。沈殿物が生成した後の液側の濃度分析結果を表3に示す。Fe、Al、Cr及びPがほとんど除去されていることが分かる。濃度分析はICPにより行った。但し、Fは蒸留してイオン電極で測定した。CはTOC測定器による測定により行った。   Next, 3.8 g of ferric sulfate (210 g / L aqueous solution) was added to about 460 mL of the leachate, and subsequently 25% by mass aqueous sodium hydroxide solution was added to adjust the pH to 5.5. Generated. The precipitate was removed by filtration. Table 3 shows the concentration analysis results on the liquid side after the precipitate was formed. It can be seen that Fe, Al, Cr and P are almost removed. Concentration analysis was performed by ICP. However, F was distilled and measured with an ion electrode. C was measured by measurement with a TOC measuring device.

次いで、浸出液に水硫化ナトリウム(35質量%の水溶液)を0.56g添加すると、硫化銅の沈殿物を生成した。このときpHは約5.0に変化した。液側の濃度分析結果を表4に示す。Cuがほとんど除去されていることが分かる。濃度分析はICPにより行った。但し、Fは蒸留してイオン電極で測定した。CはTOC測定器による測定により行った。   Next, when 0.56 g of sodium hydrosulfide (35% by mass aqueous solution) was added to the leachate, a copper sulfide precipitate was produced. At this time, the pH changed to about 5.0. The results of concentration analysis on the liquid side are shown in Table 4. It can be seen that Cu is almost removed. Concentration analysis was performed by ICP. However, F was distilled and measured with an ion electrode. C was measured by measurement with a TOC measuring device.

次いで、浸出液に粉末状の水酸化カルシウムを3.2g添加すると、フッ化カルシウムの沈殿物が生成した。このときpHは約6.0に変化した。液側の濃度分析結果を表5に示す。Fがほとんど除去されていることが分かる。濃度分析はICPにより行った。但し、Fは蒸留してイオン電極で測定した。CはTOC測定器による測定により行った。   Next, when 3.2 g of powdered calcium hydroxide was added to the leachate, a calcium fluoride precipitate was formed. At this time, the pH changed to about 6.0. The results of concentration analysis on the liquid side are shown in Table 5. It can be seen that F is almost removed. Concentration analysis was performed by ICP. However, F was distilled and measured with an ion electrode. C was measured by measurement with a TOC measuring device.

濾過によって沈殿物を分離した後、浸出液に25質量%水酸化ナトリウム水溶液を添加してpHを9.5に調整したところ、Mn、Co及びNiを主体とする水酸化物の沈殿物が生成した。液側の濃度分析結果を表6に示す。濃度分析はICPにより行った。但し、Fは蒸留してイオン電極で測定した。CはTOC測定器による測定により行った。   After separating the precipitate by filtration, a 25% by weight aqueous sodium hydroxide solution was added to the leachate to adjust the pH to 9.5. As a result, a hydroxide precipitate mainly composed of Mn, Co and Ni was produced. . The results of concentration analysis on the liquid side are shown in Table 6. Concentration analysis was performed by ICP. However, F was distilled and measured with an ion electrode. C was measured by measurement with a TOC measuring device.

上記沈殿物を濾過により回収し、これを通水洗浄した結果、表7に示す品位のMn、Co及びNiの水酸化物の混合物の固体を得た。組成分析は、FとC以外は王水溶解してICP分析した。Fは王水溶解したものを蒸留してイオン電極で測定した。Cは燃焼法により測定した。   The precipitate was collected by filtration and washed with water. As a result, solids of a mixture of Mn, Co and Ni hydroxides having the grades shown in Table 7 were obtained. The composition analysis was ICP analysis by dissolving aqua regia except F and C. F was measured by an ion electrode after distilling aqua regia dissolved. C was measured by a combustion method.

更に、リパルプ洗浄(リパルプ濃度100g/L)及びフィルタープレスを用いた濾過を2回繰り返したところ、表8に示す品位のMn、Co及びNi水酸化物の混合物の固体を得た。組成分析は、FとC以外は王水溶解してICP分析した。Fは王水溶解したものを蒸留してイオン電極で測定した。Cは燃焼法により測定した。Na濃度が有意に低下したことが分かる。   Furthermore, when repulp washing (repulp concentration 100 g / L) and filtration using a filter press were repeated twice, solids of a mixture of Mn, Co and Ni hydroxides of the grade shown in Table 8 were obtained. The composition analysis was ICP analysis by dissolving aqua regia except F and C. F was measured by an ion electrode after distilling aqua regia dissolved. C was measured by a combustion method. It can be seen that the Na concentration was significantly reduced.

(実施例2)
実施例1と同じリチウムイオン電池の廃正極材100gに対して、フッ化カルシウムの沈殿物を生成させ、濾過によって沈殿物を分離するまでは実施例1と同一の操作を行った。その後、得られた液200mLに対して、98質量%濃硫酸を10g添加した。得られた液の濃度分析結果を表9に示す。濃度分析はICPにより行った。但し、Fは蒸留してイオン電極で測定した。CはTOC測定器による測定により、酸濃度は酸濃度測定器により酸濃度を測定した。
(Example 2)
The same operation as in Example 1 was performed until a precipitate of calcium fluoride was produced from 100 g of the waste cathode material of the same lithium ion battery as in Example 1 and the precipitate was separated by filtration. Thereafter, 10 g of 98% by mass concentrated sulfuric acid was added to 200 mL of the obtained liquid. Table 9 shows the concentration analysis results of the obtained liquid. Concentration analysis was performed by ICP. However, F was distilled and measured with an ion electrode. C was measured by a TOC measuring device, and the acid concentration was measured by an acid concentration measuring device.

この液を蒸発缶で加熱濃縮したところ、表10に示す品位のMn、Co及びNiの硫酸塩の混合物の固体を得た。FとC以外は王水溶解してICP分析した。Fは王水溶解したものを蒸留してイオン電極で測定した。Cは燃焼法により測定した。   When this liquid was heated and concentrated with an evaporator, solids of a mixture of sulfates of Mn, Co and Ni having the grades shown in Table 10 were obtained. Aside from F and C, the samples were dissolved in aqua regia and analyzed by ICP. F was measured by an ion electrode after distilling aqua regia dissolved. C was measured by a combustion method.

Claims (14)

Co、Ni及びMnの少なくとも二種からなる金属群Aと不純物とを含有する廃電池、廃正極材又はこれらの混合物から金属群Aを回収する方法であって、廃電池、廃正極材又はこれらの混合物から不純物を除去した後、金属群Aを金属塩の混合物として回収することを含む方法。   A method for recovering a metal group A from a waste battery, a waste cathode material or a mixture thereof containing a metal group A consisting of at least two kinds of Co, Ni and Mn and impurities, the waste battery, a waste cathode material, or these Recovering metal group A as a mixture of metal salts after removing impurities from the mixture. 金属塩が固体である請求項1に記載の方法。   The method of claim 1, wherein the metal salt is a solid. 不純物としてC、P及びFの少なくとも一種からなる不純物元素群Bが含まれ、次の工程(1)、(2)、(5)、(6)及び(7)を以下の条件に従って実施することを含む請求項1又は2に記載の方法。
工程(1):廃電池、廃正極材又はこれらの混合物に対して硫酸浸出し、浸出液を得る工程、
工程(2):不純物元素群B中にPが含まれる場合、浸出液にFe3+供給源を添加して燐酸鉄を沈澱させる工程、
工程(5):不純物元素群B中にFが含まれる場合、浸出液にカルシウム化合物を添加し、pHを5〜8の範囲に調整することでフッ化カルシウムを沈澱させる工程、
工程(6):工程(2)及び(5)の内、少なくとも最後の工程を実施した後に、固液分離することにより不純物を浸出液から分離する工程、
工程(7):工程(6)で得られた分離液から金属群Aを、金属塩の混合物として回収する工程。
Impurity element group B consisting of at least one of C, P and F is included as an impurity, and the following steps (1), (2), (5), (6) and (7) are performed according to the following conditions: The method according to claim 1 or 2, comprising:
Step (1): A step of leaching sulfuric acid from a waste battery, a waste cathode material or a mixture thereof to obtain a leachate,
Step (2): if it contains P in an impurity element group B, step to precipitate the iron phosphate by addition of Fe 3+ source leachate,
Step (5): When F is contained in the impurity element group B, a step of adding calcium compound to the leachate and precipitating calcium fluoride by adjusting the pH to a range of 5 to 8,
Step (6): A step of separating impurities from the leachate by performing solid-liquid separation after performing at least the last step among steps (2) and (5),
Step (7): A step of recovering the metal group A as a mixture of metal salts from the separated liquid obtained in the step (6).
不純物としてFe、Cr、Al及びCuの少なくとも一種からなる不純物元素群Cが含まれ、次の工程(1)、(3)、(4)、(6)及び(7)を以下の条件に従って実施することを含む請求項1又は2に記載の方法。
工程(1):廃電池、廃正極材又はこれらの混合物に対して硫酸浸出し、浸出液を得る工程、
工程(3):不純物元素群C中にFe、Cr及びAlの少なくとも一種が含まれる場合、塩基性中和剤を添加し、浸出液のpHを5〜6の範囲に調整して当該金属の中和物を沈殿させる工程、
工程(4):不純物元素群C中にCuが含まれる場合、浸出液に硫化剤を添加して硫化銅を沈澱させる工程、
工程(6):工程(3)及び(4)の内、少なくとも最後の工程を実施した後に、固液分離することにより不純物を浸出液から分離する工程、
工程(7):工程(6)で得られた分離液から金属群Aを、金属塩の混合物として回収する工程。
Impurity element group C consisting of at least one of Fe, Cr, Al and Cu is included as an impurity, and the following steps (1), (3), (4), (6) and (7) are performed according to the following conditions: The method according to claim 1 or 2, comprising:
Step (1): A step of leaching sulfuric acid from a waste battery, a waste cathode material or a mixture thereof to obtain a leachate,
Step (3): When the impurity element group C contains at least one of Fe, Cr, and Al, a basic neutralizing agent is added, and the pH of the leachate is adjusted to a range of 5 to 6 in the metal. A step of precipitating the sum,
Step (4): When Cu is contained in the impurity element group C, a step of adding a sulfiding agent to the leachate to precipitate copper sulfide,
Step (6): A step of separating impurities from the leachate by performing solid-liquid separation after performing at least the last step among steps (3) and (4).
Step (7): A step of recovering the metal group A as a mixture of metal salts from the separated liquid obtained in the step (6).
不純物として、C、P及びFの少なくとも一種からなる不純物元素群Bと、Fe、Cr、Al及びCuの少なくとも一種からなる不純物元素群Cとが含まれ、工程(1)〜(7)を以下の条件に従って実施することを含む請求項1又は2に記載の方法。
工程(1):廃電池、廃正極材又はこれらの混合物に対して硫酸浸出し、浸出液を得る工程、
工程(2):不純物元素群B中にPが含まれる場合、浸出液にFe3+供給源を添加して燐酸鉄を沈澱させる工程、
工程(3):不純物元素群C中にFe、Cr及びAlの少なくとも一種が含まれる場合、塩基性中和剤を添加し、浸出液のpHを5〜6の範囲に調整して当該金属成分の中和物を沈殿させる工程、
工程(4):不純物元素群C中にCuが含まれる場合、浸出液に硫化剤を添加して硫化鉄を沈澱させる工程、
工程(5):不純物元素群B中にFが含まれる場合、浸出液にカルシウム化合物を添加し、pHを5〜8の範囲に調整することでフッ化カルシウムを沈澱させる工程、
工程(6):工程(2)〜(5)の内、少なくとも最後の工程を実施した後に、固液分離することにより不純物を浸出液から分離する工程、
工程(7):工程(6)で得られた分離液から金属群Aを、金属塩の混合物として回収する工程。
As impurities, an impurity element group B composed of at least one of C, P and F and an impurity element group C composed of at least one of Fe, Cr, Al and Cu are included, and steps (1) to (7) are described below. The method according to claim 1, comprising performing according to the following conditions.
Step (1): A step of leaching sulfuric acid from a waste battery, a waste cathode material or a mixture thereof to obtain a leachate,
Step (2): if it contains P in an impurity element group B, step to precipitate the iron phosphate by addition of Fe 3+ source leachate,
Step (3): When at least one of Fe, Cr and Al is contained in the impurity element group C, a basic neutralizing agent is added, and the pH of the leachate is adjusted to a range of 5 to 6 to adjust the metal component. A step of precipitating the neutralized product,
Step (4): When Cu is contained in the impurity element group C, a step of adding iron sulfide to the leachate to precipitate iron sulfide,
Step (5): When F is contained in the impurity element group B, a step of adding calcium compound to the leachate and precipitating calcium fluoride by adjusting the pH to a range of 5 to 8,
Step (6): A step of separating impurities from the leachate by performing solid-liquid separation after performing at least the last step among steps (2) to (5),
Step (7): A step of recovering the metal group A as a mixture of metal salts from the separated liquid obtained in the step (6).
前記金属塩が水酸化物、硫酸塩、炭酸塩、又は硝酸塩である請求項1〜5のいずれか一項に記載の方法。   The method according to any one of claims 1 to 5, wherein the metal salt is a hydroxide, sulfate, carbonate, or nitrate. 工程(7)は、工程(6)で得られた分離液に塩基性中和剤を添加して浸出液のpHを8〜11の範囲に調整し、金属群Aの混合水酸化物を沈澱させ、金属群Aの混合水酸化物を固液分離により固体側に回収する工程、或いは、工程(6)で得られた分離液に硫酸を添加し、次いで加熱濃縮することによって金属群Aの硫酸塩混合物を生成させる工程である請求項3〜5のいずれか一項に記載の方法。   In the step (7), a basic neutralizing agent is added to the separation liquid obtained in the step (6) to adjust the pH of the leachate to a range of 8 to 11, and the mixed hydroxide of the metal group A is precipitated. The step of recovering the mixed hydroxide of metal group A to the solid side by solid-liquid separation, or the addition of sulfuric acid to the separated liquid obtained in step (6), followed by concentration by heating, causes the sulfuric acid of metal group A The method according to any one of claims 3 to 5, which is a step of forming a salt mixture. 廃電池、廃正極材又はこれらの混合物が、金属群AとしてCo、Ni及びMnを含有する請求項1〜7の何れか一項に記載の方法。   The method according to any one of claims 1 to 7, wherein the waste battery, the waste cathode material, or a mixture thereof contains Co, Ni and Mn as the metal group A. 廃電池、廃正極材又はこれらの混合物が、不純物としてC、P、F、Fe、Cr、Al及びCuを含有する請求項1〜8のいずれか一項に記載の方法。   The method according to any one of claims 1 to 8, wherein the waste battery, the waste cathode material or a mixture thereof contains C, P, F, Fe, Cr, Al and Cu as impurities. 工程(2)〜(5)は、工程(2)→工程(3)→工程(4)→工程(5)の順番に全て実施される請求項5に記載の方法。   6. The method according to claim 5, wherein the steps (2) to (5) are all performed in the order of the step (2) → the step (3) → the step (4) → the step (5). 硫酸浸出は還元剤を添加して実施する請求項3〜10の何れか一項に記載の方法。   The method according to any one of claims 3 to 10, wherein the sulfuric acid leaching is carried out by adding a reducing agent. 工程(7)において金属群Aの混合水酸化物を沈澱させた後、当該混合水酸化物に対してリパルプ洗浄を少なくとも一回実施することを含む請求項7に記載の方法。   The method according to claim 7, comprising precipitating the mixed hydroxide of metal group A in the step (7) and then performing repulp washing on the mixed hydroxide at least once. 請求項1〜12の何れか一項に記載の方法によって得られた金属塩の混合物を正極活物質の原料として使用することを含む正極活物質の製造方法。   The manufacturing method of a positive electrode active material including using the mixture of the metal salt obtained by the method as described in any one of Claims 1-12 as a raw material of a positive electrode active material. 正極活物質がリチウムイオン電池用である請求項13に記載の製造方法。   The manufacturing method according to claim 13, wherein the positive electrode active material is for a lithium ion battery.
JP2013029399A 2013-02-18 2013-02-18 Waste cathode material and method for recovering metal from waste battery Active JP5847741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013029399A JP5847741B2 (en) 2013-02-18 2013-02-18 Waste cathode material and method for recovering metal from waste battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013029399A JP5847741B2 (en) 2013-02-18 2013-02-18 Waste cathode material and method for recovering metal from waste battery

Publications (2)

Publication Number Publication Date
JP2014156648A true JP2014156648A (en) 2014-08-28
JP5847741B2 JP5847741B2 (en) 2016-01-27

Family

ID=51577705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013029399A Active JP5847741B2 (en) 2013-02-18 2013-02-18 Waste cathode material and method for recovering metal from waste battery

Country Status (1)

Country Link
JP (1) JP5847741B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156649A (en) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp Metal recovery method from waste positive electrode material and waste battery
CN104241724A (en) * 2014-09-02 2014-12-24 湖南邦普循环科技有限公司 Method for preparing battery-grade lithium carbonate from recycled lithium ion battery material
CN104577247A (en) * 2015-01-06 2015-04-29 陈静 Process for recovering cobalt chloride from waste lithium ion battery
WO2016159001A1 (en) * 2015-03-31 2016-10-06 Jx金属株式会社 Method for removing iron from iron-containing solution, and method for recovering valuable metals
JP2016186118A (en) * 2015-03-27 2016-10-27 Jx金属株式会社 Recovery method of metals from recycled raw material of lithium-ion battery
JP2016186113A (en) * 2015-03-27 2016-10-27 Jx金属株式会社 Recovery method of metals from recycled raw material of lithium-ion battery
JP2016191119A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 Method for removing copper and collecting valuable metals from copper ion-containing solution
JP2016191143A (en) * 2015-03-30 2016-11-10 太平洋セメント株式会社 Lithium extraction method
JP2017008407A (en) * 2015-06-22 2017-01-12 住友金属鉱山株式会社 Method for separating calcium
CN106785174A (en) * 2017-02-24 2017-05-31 中南大学 A kind of method for being leached from lithium ion cell anode waste based on electrochemical process and reclaiming metal
WO2019044042A1 (en) * 2017-08-28 2019-03-07 杉山 修 Battery having electrolytic solution containing alkaline mineral ionized water, electrolyte active material, and method for producing battery electrolytic solution
CN110453069A (en) * 2019-09-24 2019-11-15 四川英创力电子科技股份有限公司 A kind of method of ball milling and electric field synergistic reinforcing pyrolusite leaching manganese sulfate
KR102378751B1 (en) * 2021-07-06 2022-03-25 한국지질자원연구원 Method for recovering high value resources from lithium waste solution and fluoride waste solution
WO2022237102A1 (en) * 2021-05-11 2022-11-17 蜂巢能源科技股份有限公司 Recycling method for nickel-cobalt-manganese positive electrode material and waste nickel-cobalt-manganese positive electrode material
CN116018710A (en) * 2020-08-24 2023-04-25 绿色锂离子私人有限公司 Method for removing impurities in lithium ion battery recovery
WO2023163658A3 (en) * 2022-02-23 2023-09-28 Green Li-Ion Pte. Ltd Processes and systems for purifying and recycling lithium-ion battery waste streams
WO2023191414A1 (en) * 2022-03-31 2023-10-05 고려아연 주식회사 Method for preparing secondary battery material from black mass
WO2024014521A1 (en) * 2022-07-14 2024-01-18 Jx Metals Corporation Method for removing aluminum and method for recovering metals
WO2024033165A1 (en) * 2022-08-09 2024-02-15 Basf Se Oxidative and reductive leaching methods
CN116018710B (en) * 2020-08-24 2024-05-03 绿色锂离子私人有限公司 Method for removing impurities in lithium ion battery recovery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290087A (en) * 2015-11-24 2016-02-03 四川长虹格润再生资源有限责任公司 Separation method and equipment of lithium cobalt oxides, metals and plastics in lithium ion batteries

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231522A (en) * 2007-03-22 2008-10-02 Nikko Kinzoku Kk Method for recovering precious metal from battery slag containing cobalt, nickel and manganese
WO2011065682A2 (en) * 2009-11-30 2011-06-03 한국지질자원연구원 Method for producing cmb catalyst recycled with lithium ion battery and ternary cathode materials
JP2012072488A (en) * 2010-08-30 2012-04-12 Jx Nippon Mining & Metals Corp Method for leaching positive electrode active material
JP2013194315A (en) * 2012-03-22 2013-09-30 Dowa Eco-System Co Ltd Method for recovering valuable material from lithium ion secondary battery
JP2014019909A (en) * 2012-07-18 2014-02-03 Sumitomo Metal Mining Co Ltd Method for leaching metal and method for recovering metal from battery
JP2014114470A (en) * 2012-12-07 2014-06-26 Sumitomo Metal Mining Co Ltd Method for separating and removing aluminum and method for recovering valuable metals from a lithium ion battery
JP2014156649A (en) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp Metal recovery method from waste positive electrode material and waste battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231522A (en) * 2007-03-22 2008-10-02 Nikko Kinzoku Kk Method for recovering precious metal from battery slag containing cobalt, nickel and manganese
WO2011065682A2 (en) * 2009-11-30 2011-06-03 한국지질자원연구원 Method for producing cmb catalyst recycled with lithium ion battery and ternary cathode materials
JP2012072488A (en) * 2010-08-30 2012-04-12 Jx Nippon Mining & Metals Corp Method for leaching positive electrode active material
JP2013194315A (en) * 2012-03-22 2013-09-30 Dowa Eco-System Co Ltd Method for recovering valuable material from lithium ion secondary battery
JP2014019909A (en) * 2012-07-18 2014-02-03 Sumitomo Metal Mining Co Ltd Method for leaching metal and method for recovering metal from battery
JP2014114470A (en) * 2012-12-07 2014-06-26 Sumitomo Metal Mining Co Ltd Method for separating and removing aluminum and method for recovering valuable metals from a lithium ion battery
JP2014156649A (en) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp Metal recovery method from waste positive electrode material and waste battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156649A (en) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp Metal recovery method from waste positive electrode material and waste battery
CN104241724A (en) * 2014-09-02 2014-12-24 湖南邦普循环科技有限公司 Method for preparing battery-grade lithium carbonate from recycled lithium ion battery material
CN104577247A (en) * 2015-01-06 2015-04-29 陈静 Process for recovering cobalt chloride from waste lithium ion battery
JP2016186118A (en) * 2015-03-27 2016-10-27 Jx金属株式会社 Recovery method of metals from recycled raw material of lithium-ion battery
JP2016186113A (en) * 2015-03-27 2016-10-27 Jx金属株式会社 Recovery method of metals from recycled raw material of lithium-ion battery
JP2016191143A (en) * 2015-03-30 2016-11-10 太平洋セメント株式会社 Lithium extraction method
JP2016191119A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 Method for removing copper and collecting valuable metals from copper ion-containing solution
US10443111B2 (en) 2015-03-31 2019-10-15 Jx Nippon Mining & Metals Corporation Method for removing iron from iron-containing solution and method for recovering valuable metals
JP2016191129A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 Method for removing iron and collecting valuable metals from iron-containing solution
CN107429312A (en) * 2015-03-31 2017-12-01 捷客斯金属株式会社 From iron-containing liquor except the method for de-iron and the recovery method of useful metal
WO2016159001A1 (en) * 2015-03-31 2016-10-06 Jx金属株式会社 Method for removing iron from iron-containing solution, and method for recovering valuable metals
JP2017008407A (en) * 2015-06-22 2017-01-12 住友金属鉱山株式会社 Method for separating calcium
CN106785174A (en) * 2017-02-24 2017-05-31 中南大学 A kind of method for being leached from lithium ion cell anode waste based on electrochemical process and reclaiming metal
WO2019044042A1 (en) * 2017-08-28 2019-03-07 杉山 修 Battery having electrolytic solution containing alkaline mineral ionized water, electrolyte active material, and method for producing battery electrolytic solution
CN110453069A (en) * 2019-09-24 2019-11-15 四川英创力电子科技股份有限公司 A kind of method of ball milling and electric field synergistic reinforcing pyrolusite leaching manganese sulfate
CN116018710A (en) * 2020-08-24 2023-04-25 绿色锂离子私人有限公司 Method for removing impurities in lithium ion battery recovery
US11876196B2 (en) 2020-08-24 2024-01-16 Green Li-Ion Pte. Ltd. Process for removing impurities in the recycling of lithium-ion batteries
CN116018710B (en) * 2020-08-24 2024-05-03 绿色锂离子私人有限公司 Method for removing impurities in lithium ion battery recovery
WO2022237102A1 (en) * 2021-05-11 2022-11-17 蜂巢能源科技股份有限公司 Recycling method for nickel-cobalt-manganese positive electrode material and waste nickel-cobalt-manganese positive electrode material
KR102378751B1 (en) * 2021-07-06 2022-03-25 한국지질자원연구원 Method for recovering high value resources from lithium waste solution and fluoride waste solution
WO2023282564A1 (en) * 2021-07-06 2023-01-12 한국지질자원연구원 High value-added method for resource recovery from lithium sludge and fluoride sludge
WO2023163658A3 (en) * 2022-02-23 2023-09-28 Green Li-Ion Pte. Ltd Processes and systems for purifying and recycling lithium-ion battery waste streams
WO2023191414A1 (en) * 2022-03-31 2023-10-05 고려아연 주식회사 Method for preparing secondary battery material from black mass
WO2024014521A1 (en) * 2022-07-14 2024-01-18 Jx Metals Corporation Method for removing aluminum and method for recovering metals
WO2024033165A1 (en) * 2022-08-09 2024-02-15 Basf Se Oxidative and reductive leaching methods

Also Published As

Publication number Publication date
JP5847741B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP5847741B2 (en) Waste cathode material and method for recovering metal from waste battery
JP5847742B2 (en) Waste cathode material and method for recovering metal from waste battery
JP6334450B2 (en) Method for recovering metals from recycled lithium-ion battery materials
JP6897466B2 (en) How to separate copper from nickel and cobalt
JP6070898B2 (en) Method and facility for recovering valuable components from waste dry batteries
JP6125458B2 (en) Resource recovery method and separation / recovery equipment from waste dry batteries
JP6352669B2 (en) Lithium-ion battery waste treatment method
JP2017115179A (en) Recovery method of valuable substance
JP7008904B2 (en) How to separate cobalt from copper and aluminum
JP2015183292A (en) Recovery method of cobalt and nickel
CN115433826A (en) Method for dissolving lithium compound, method for producing lithium carbonate, and method for recovering lithium from lithium ion secondary battery scrap
JP2008231522A (en) Method for recovering precious metal from battery slag containing cobalt, nickel and manganese
WO2021075135A1 (en) Method and facility for recovering manganese from waste dry batteries
JP7004091B2 (en) Manganese recovery method and recovery equipment from waste batteries
JP7348130B2 (en) Method for removing magnesium ions from metal-containing solution and method for recovering metals
JP7246570B2 (en) Method for producing mixed metal salt
KR20200028033A (en) Separation method of copper, nickel and cobalt
WO2013124399A1 (en) Metal ion recovery from battery waste using ammonia
KR20230093490A (en) Disposal method of lithium ion battery waste
JP6298002B2 (en) Lithium-ion battery scrap leaching method and valuable metal recovery method
JP6960070B1 (en) How to recover valuable metals
JP7164763B2 (en) Method for producing mixed metal solution and method for producing mixed metal salt
JP2022182229A (en) Metal recovery method from lithium ion battery
JP6314730B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
JP6397111B2 (en) Lithium-ion battery scrap leaching method and valuable metal recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151125

R150 Certificate of patent or registration of utility model

Ref document number: 5847741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250