JP2015183292A - Recovery method of cobalt and nickel - Google Patents

Recovery method of cobalt and nickel Download PDF

Info

Publication number
JP2015183292A
JP2015183292A JP2014064242A JP2014064242A JP2015183292A JP 2015183292 A JP2015183292 A JP 2015183292A JP 2014064242 A JP2014064242 A JP 2014064242A JP 2014064242 A JP2014064242 A JP 2014064242A JP 2015183292 A JP2015183292 A JP 2015183292A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
precipitate
solution
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014064242A
Other languages
Japanese (ja)
Inventor
始 川崎
Hajime Kawasaki
始 川崎
亮介 佐藤
Ryosuke Sato
亮介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014064242A priority Critical patent/JP2015183292A/en
Publication of JP2015183292A publication Critical patent/JP2015183292A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently recovering cobalt and nickel from a solution containing copper, aluminum, and manganese together with cobalt and nickel.SOLUTION: A recovery method of cobalt and nickel comprises: a copper removal process of adding a sulfide to a solution containing copper, aluminum, and manganese together with cobalt and nickel to precipitate copper sulfide and separating the precipitate; an aluminum removal process of adding an alkali to the solution after the copper removal to precipitate aluminum hydroxide and separating the precipitate; a manganese removal process of adding an oxidant to the aluminum-removed solution to precipitate manganese oxide and separating the precipitate; and a process of recovering cobalt and nickel from the manganese-removed solution.

Description

本発明は、コバルトおよびニッケルと共に銅、アルミニウム、マンガンを含む溶液からコバルトおよびニッケルを効率よく回収する方法に関する。本発明の回収方法は、リチウムイオン二次電池から分別した正極材活物質を鉱酸等で処理をした有価金属浸出液から、コバルトおよびニッケルを回収する方法として最適である。 The present invention relates to a method for efficiently recovering cobalt and nickel from a solution containing copper, aluminum and manganese together with cobalt and nickel. The recovery method of the present invention is optimal as a method for recovering cobalt and nickel from a valuable metal leachate obtained by treating a positive electrode active material separated from a lithium ion secondary battery with a mineral acid or the like.

リチウムイオン二次電池は、負極材と正極材とを、多孔質のポリプロピレン等のセパレータで分画し層状に重ね、六フッ化リン酸リチウム(LiPF6)等の電解質および電解液と共にアルミニウムやステンレス等のケースに封入して形成されている。 Lithium ion secondary batteries are made by separating the negative electrode material and the positive electrode material with a separator such as porous polypropylene, and stacking them in layers. Aluminum and stainless steel together with an electrolyte such as lithium hexafluorophosphate (LiPF 6 ) and an electrolytic solution are used. It is formed by enclosing in a case such as.

上記リチウムイオン二次電池の負極材は銅等の負極集電体に黒鉛等の負極材活物質を塗布して形成されており、正極材はアルミニウム等の正極集電体にマンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウム等の正極活物質を塗布して形成されている。 The negative electrode material of the lithium ion secondary battery is formed by applying a negative electrode material active material such as graphite to a negative electrode current collector such as copper, and the positive electrode material is formed of lithium manganate or cobalt on a positive electrode current collector such as aluminum. It is formed by applying a positive electrode active material such as lithium oxide or lithium nickelate.

このようにリチウムイオン二次電池の電極材にはリチウム、コバルト、ニッケル等の有価金属が多く含まれているので、有価金属の再利用を図るために、廃リチウムイオン二次電池からコバルト等の有価金属を回収する方法が知られている。例えば、正極活物質を硫酸に溶解してスラリーにし、該スラリーに過酸化水素水を添加して、濾液にリチウム、コバルト、ニッケルを含有させ、残渣にマンガンを含有させて分離する回収方法が知られている(特許文献1:特開2013−194315号公報)。また、正極材活物質を物理的に選別した後に硫酸等の鉱酸で浸出し、溶媒抽出によってコバルト等を回収する方法が知られている。 As described above, since the electrode material of the lithium ion secondary battery contains a lot of valuable metals such as lithium, cobalt, nickel, etc., in order to recycle the valuable metals, A method for recovering valuable metals is known. For example, a recovery method is known in which a positive electrode active material is dissolved in sulfuric acid to form a slurry, hydrogen peroxide water is added to the slurry, lithium, cobalt, nickel is added to the filtrate, and manganese is separated into the residue. (Patent Document 1: JP 2013-194315 A). Further, a method is known in which a positive electrode material active material is physically selected and then leached with a mineral acid such as sulfuric acid, and cobalt or the like is recovered by solvent extraction.

しかし、正極材活物質の酸浸出液には、活物質の主成分であるマンガン、コバルト、ニッケル、およびリチウムのほか、集電体である銅やアルミニウム、電解質である六フッ化リン酸リチウムやこれが加水分解して生成したフッ酸やリン酸が含まれており、特許文献1の方法では濾液や残渣に不純物が多く含まれることになり、コバルトやニッケルの回収手段として溶媒抽出を利用する場合に抽出効果が低い。 However, the acid leaching solution of the positive electrode active material includes manganese, cobalt, nickel, and lithium as main components of the active material, copper and aluminum as the current collector, lithium hexafluorophosphate as the electrolyte, and this. Hydrofluoric acid and phosphoric acid produced by hydrolysis are contained, and in the method of Patent Document 1, a large amount of impurities are contained in the filtrate and residue. When solvent extraction is used as a means for recovering cobalt and nickel, Extraction effect is low.

例えば、抽出剤としてリン酸系酸性抽出剤(PC-88A等)を用いると、浸出液中のアルミニウム、銅、マンガンがコバルトよりも先に抽出され、コバルトが十分に抽出されない。そこで、コバルトの抽出効果を高める方法として、コバルト水溶液に硫化剤を添加して銅を硫化銅沈澱にして分離し、この脱銅後、酸化剤を添加してマンガンを酸化物にして沈澱分離する脱マンガンを行う精製方法が知られている(特許文献2:特開2004−285368号公報)。しかし、リチウムイオン二次電池の電極材にはアルミニウムやフッ化物が含まれており、この精製方法では十分に不純物を除去することができない。 For example, when a phosphoric acid-based acidic extractant (such as PC-88A) is used as the extractant, aluminum, copper, and manganese in the leachate are extracted before cobalt, and cobalt is not sufficiently extracted. Therefore, as a method for enhancing the extraction effect of cobalt, a sulfurizing agent is added to an aqueous cobalt solution to separate copper into copper sulfide, and after this copper removal, an oxidizing agent is added to convert manganese into an oxide to separate. A purification method for performing demanganese is known (Patent Document 2: Japanese Patent Application Laid-Open No. 2004-285368). However, the electrode material of the lithium ion secondary battery contains aluminum and fluoride, and this purification method cannot sufficiently remove impurities.

一方、コバルト、ニッケルと共にアルミニウム、マンガンを含む硫酸酸性溶液から溶媒抽出によってコバルトおよびニッケルと、アルミニウムおよびマンガンとを分離する方法が知られている(特許文献3:特開2013−76108号公報)。しかし、この方法は溶媒抽出によって脱アルミニウムおよび脱マンガンを行う方法であるため、コストが嵩む問題がある。さらに、抽出後に溶媒からアルミニウムおよびマンガンを溶離する処理が必要になる。 On the other hand, a method is known in which cobalt and nickel are separated from aluminum and manganese by a solvent extraction from a sulfuric acid acidic solution containing aluminum and manganese together with cobalt and nickel (Patent Document 3: JP 2013-76108 A). However, since this method is a method in which dealumination and demanganese are performed by solvent extraction, there is a problem that costs increase. Furthermore, a process of eluting aluminum and manganese from the solvent after extraction is required.

また、リチウムイオン二次電池は自動車等への利用が進むにつれて大型化しており、大型の電池は電解質の量も多いのでこれを完全に除去することは難しく、選別された電極材に電解質が付着して回収される。これを浸出して湿式処理を行う際に付着している電解質の加水分解反応が進み、有害なフッ化水素や、リン酸リチウム、フッ化リチウムなどが生成し、これが共存金属と沈殿を生成して溶媒抽出の妨げになる。また、フッ素については排水基準が定められているため、排水中のフッ素濃度を低減する処理が必要になる。 In addition, lithium ion secondary batteries are becoming larger as they are used in automobiles, etc., and since large batteries have a large amount of electrolyte, it is difficult to completely remove them, and the electrolyte adheres to the selected electrode material. And recovered. When the wet process is carried out by leaching this, the hydrolysis reaction of the attached electrolyte proceeds, generating harmful hydrogen fluoride, lithium phosphate, lithium fluoride, etc., which generate coexisting metals and precipitates. This hinders solvent extraction. Moreover, since the drainage standard is defined for fluorine, a treatment for reducing the fluorine concentration in the wastewater is required.

電解質に含まれるリンやフッ素を除去する方法として、リチウムイオン二次電池の正極活物質の酸性浸出液にカルシウム化合物、マグネシウム化合物、またはアルミニウム化合物などを添加して、これらのフッ化物ないしリン酸塩を生成させて分離する方法が知られている(特許文献4:特開2012−36419号公報)。
しかし、溶液中のフッ素やリンを除去するためにカルシウムやマグネシウムまたはアルミニウムの化合物を添加するとこれらの処理量が多くなり、負担が増す問題がある。
As a method of removing phosphorus and fluorine contained in the electrolyte, a calcium compound, a magnesium compound, or an aluminum compound is added to the acidic leachate of the positive electrode active material of the lithium ion secondary battery, and these fluorides or phosphates are added. A method of generating and separating is known (Patent Document 4: JP 2012-36419 A).
However, when a compound of calcium, magnesium, or aluminum is added to remove fluorine or phosphorus in the solution, there is a problem that the amount of these treatments increases and the burden increases.

特開2013−194315号公報JP 2013-194315 A 特開2004−285368号公報JP 2004-285368 A 特開2013−76108号公報JP 2013-76108 A 特開2012−36419号公報JP 2012-36419 A

本発明は、従来のコバルトおよびニッケルの回収方法における上記問題を解決したものであり、コバルトおよびニッケルと共に銅、アルミニウム、マンガンを含む溶液から銅、アルミニウムおよびマンガンを沈澱処理によって効果的に分離し、コバルトおよびニッケルを効率よく回収する方法を提供する。 The present invention solves the above-mentioned problems in conventional methods for recovering cobalt and nickel, and effectively separates copper, aluminum and manganese from a solution containing copper, aluminum and manganese together with cobalt and nickel by precipitation treatment, A method for efficiently recovering cobalt and nickel is provided.

本発明によれば、以下の構成からなるコバルトおよびニッケルの回収方法が提供される。
〔1〕コバルトおよびニッケルと共に銅、アルミニウム、マンガンを含む酸性溶液に硫化物を加えて硫化銅を沈殿させ、該沈殿を分離する脱銅工程、脱銅後の溶液にアルカリを添加して水酸化アルミニウムを沈殿させ、該沈殿を分離する脱アルミニウム工程、脱アルミニウム溶液に酸化剤を添加してマンガン酸化物を沈殿させ、該沈殿を分離する脱マンガン工程、脱マンガン後の溶液からコバルトおよびニッケルを回収する工程を有することを特徴とするコバルトおよびニッケルの回収方法。
〔2〕コバルトおよびニッケルと共に銅、アルミニウム、マンガンを含む酸性溶液がリチウムイオン二次電池の正極活物質を鉱酸で浸出した液である上記[1]に記載するコバルトおよびニッケルの回収方法。
〔3〕脱銅工程において、上記酸性溶液の酸化還元電位(Ag/AgCl電極基準)が−15〜135mVになるように硫化物を添加し、pH0〜1の液性下で硫化銅を沈澱させる上記[1]または上記[2]に記載するコバルトおよびニッケルの回収方法。
〔4〕脱アルミニウム工程において、脱銅後の溶液にアルカリを添加してpH4〜6の液性下で水酸化アルミニウムを沈殿させる共に溶液中のリンおよびフッ素を共沈させる上記[1]〜上記[3]の何れかに記載するコバルトおよびニッケルの回収方法。
〔5〕脱マンガン工程において、脱アルミニウム後の溶液に酸化剤を添加し、酸化還元電位(Ag/AgCl電極基準)950〜1050mV、およびpH2.5以下の液性下でマンガン酸化物を沈殿させる上記[1]〜上記[4]の何れかに記載するコバルトおよびニッケルの回収方法。
〔6〕コバルトおよびニッケルを回収する工程において、脱マンガン後の溶液からリン酸系酸性抽出溶媒を用いてコバルトおよびニッケルを溶媒抽出して回収する上記[1]〜上記[5]の何れかに記載するコバルトおよびニッケルの回収方法。
According to the present invention, a method for recovering cobalt and nickel having the following constitution is provided.
[1] A copper removal step in which sulfide is added to an acidic solution containing copper, aluminum, and manganese together with cobalt and nickel to precipitate copper sulfide, and the precipitate is separated. A dealumination step for precipitating aluminum and separating the precipitate; an oxidizing agent is added to the dealumination solution to precipitate manganese oxide; a demanganese step for separating the precipitate; and cobalt and nickel from the solution after demanganese A method for recovering cobalt and nickel, comprising a step of recovering.
[2] The method for recovering cobalt and nickel according to the above [1], wherein the acidic solution containing copper, aluminum, and manganese together with cobalt and nickel is a liquid obtained by leaching the positive electrode active material of a lithium ion secondary battery with mineral acid.
[3] In the copper removal step, sulfide is added so that the oxidation-reduction potential (Ag / AgCl electrode standard) of the acidic solution is −15 to 135 mV, and copper sulfide is precipitated under the liquidity of pH 0-1. The method for recovering cobalt and nickel described in [1] or [2] above.
[4] In the dealumination step, alkali is added to the solution after copper removal to precipitate aluminum hydroxide under pH 4 to 6 and co-precipitate phosphorus and fluorine in the solution. [3] The method for recovering cobalt and nickel according to any one of [3].
[5] In the demanganese step, an oxidizing agent is added to the solution after dealumination, and manganese oxide is precipitated under liquidity of redox potential (Ag / AgCl electrode standard) 950 to 1050 mV and pH 2.5 or lower. The method for recovering cobalt and nickel according to any one of [1] to [4] above.
[6] In any of the above [1] to [5], in the step of recovering cobalt and nickel, cobalt and nickel are extracted from the solution after demanganese using a phosphoric acid acidic extraction solvent and recovered. Cobalt and nickel recovery methods described.

〔具体的な説明〕
本発明の方法は、コバルトおよびニッケルと共に銅、アルミニウム、マンガンを含む酸性溶液に硫化物を加えて硫化銅を沈殿させ、該沈殿を分離する脱銅工程、脱銅後の溶液にアルカリを添加して水酸化アルミニウムを沈殿させ、該沈殿を分離する脱アルミニウム工程、脱アルミニウム溶液に酸化剤を添加してマンガン酸化物を沈殿させ、該沈殿を分離する脱マンガン工程、脱マンガン後の溶液からコバルトおよびニッケルを回収する工程を有することを特徴とするコバルトおよびニッケルの回収方法である。
本発明の回収方法を図1に示す。
[Specific description]
In the method of the present invention, a sulfide is added to an acidic solution containing copper, aluminum, and manganese together with cobalt and nickel to precipitate copper sulfide, and a copper removal step for separating the precipitate is performed. An alkali is added to the solution after copper removal. A dealumination step for precipitating aluminum hydroxide and separating the precipitate; adding an oxidizing agent to the dealumination solution to precipitate manganese oxide; demanganese step for separating the precipitate; And a method for recovering cobalt and nickel, comprising the step of recovering nickel.
The recovery method of the present invention is shown in FIG.

コバルトおよびニッケルと共に銅、アルミニウム、マンガンを含む酸性溶液としては、例えば、リチウムイオン二次電池の電極材の活物質を物理的に選別し、硫酸等の鉱酸で浸出した液である。40℃〜90℃の4〜6規定鉱酸に電極材活物質を溶液のpHが0〜1になるように加えて溶解させる。溶液のpHが0未満になると脱アルミニウムで使用するアルカリの量が増え、pHが1を超えると不溶解分が増加するので好ましくない。
なお、後の脱アルミニウム工程においてフッ素およびリンを共沈させるために、浸出液中のアルミニウム濃度は1〜2g/Lが好ましい。
As an acidic solution containing copper, aluminum, and manganese together with cobalt and nickel, for example, an active material of an electrode material of a lithium ion secondary battery is physically selected and leached with a mineral acid such as sulfuric acid. An electrode material active material is added to 4 to 6 N mineral acid at 40 to 90 ° C. so that the pH of the solution is 0 to 1 and dissolved. When the pH of the solution is less than 0, the amount of alkali used for dealumination increases, and when the pH exceeds 1, the insoluble matter increases, which is not preferable.
In addition, in order to coprecipitate fluorine and phosphorus in the subsequent dealumination step, the aluminum concentration in the leachate is preferably 1 to 2 g / L.

〔脱銅工程〕
上記浸出液に硫化物を加えて硫化銅を沈澱させ、該沈殿を固液分離する。好ましくは、pH0〜1の上記酸浸出液に、酸化還元電位(ORP:Ag/AgCl電極基準)が−15〜135mVになるように、好ましくはORPが0〜50mVになるように、硫化物を添加して硫化銅を沈澱させる。ORPが−15mV未満ではコバルトの硫化物が生成し、135mVを上回ると硫化銅の生成が不十分になる。硫化物としては硫化水素、水硫化物などを用いることができる。
[Copper removal process]
Sulfide is added to the leachate to precipitate copper sulfide, and the precipitate is separated into solid and liquid. Preferably, sulfide is added to the acid leaching solution having a pH of 0 to 1 so that the oxidation-reduction potential (ORP: Ag / AgCl electrode standard) is -15 to 135 mV, and preferably ORP is 0 to 50 mV. To precipitate copper sulfide. If the ORP is less than −15 mV, cobalt sulfide is generated, and if it exceeds 135 mV, copper sulfide is not sufficiently generated. As the sulfide, hydrogen sulfide, hydrosulfide and the like can be used.

銅、コバルトおよびニッケルを含む水溶液中(各金属濃度0.2モル/L、液温25℃)の硫化物の電位−pHグラフを図2に示す。図示する各金属の線より下側が各金属の硫化物が生成する領域であり、各金属の線より上側が金属イオンで存在する領域である。図示ように、ニッケルおよびコバルトがイオン状態のまま選択的に銅の硫化物を沈澱させるpHの範囲は、pH2以上になると狭くなるので、pH0〜1の範囲で硫化銅を沈澱させるのが好ましい。 FIG. 2 shows a potential-pH graph of sulfide in an aqueous solution containing copper, cobalt, and nickel (each metal concentration 0.2 mol / L, liquid temperature 25 ° C.). The region below each metal line shown in the figure is a region where sulfides of each metal are generated, and the region above each metal line is a region where metal ions are present. As shown in the figure, the pH range in which copper sulfide is selectively precipitated while nickel and cobalt are in an ionic state becomes narrow when the pH is 2 or more. Therefore, it is preferable to precipitate copper sulfide in the pH range of 0-1.

このpH0〜1の範囲において、銅はH2S共存下で酸化還元電位(水素電極基準)0.39〜0.34V以下で硫化物が生成し、一方、コバルトおよびニッケルはそれぞれ酸化還元電位(水素電極基準)が0.15V、0.9Vで硫化物が生成するため、銅のみを選択的に硫化物として沈殿させるには、酸化還元電位(水素電極基準)を0.34〜0.19Vにすれば良い。なお、この酸化還元電位はAg/AgCl比較電極では−15〜135mVである。 In this pH range of 0 to 1, sulfides are produced at a redox potential (hydrogen electrode reference) of 0.39 to 0.34 V or less in the presence of H 2 S, while cobalt and nickel are each oxidized at a redox potential ( Since sulfides are generated at 0.15V and 0.9V on the hydrogen electrode standard), in order to precipitate only copper as sulfides, the oxidation-reduction potential (hydrogen electrode standard) is 0.34 to 0.19V. You can do it. This redox potential is −15 to 135 mV for the Ag / AgCl reference electrode.

〔脱アルミニウム工程〕
脱銅溶液にアルカリを添加して水酸化アルミニウムを沈殿させ、該沈殿を固液分離する。上記溶液にアルカリを添加してpH4〜6に調整し、好ましくはpH4.3〜5.0に調整して、水酸化アルミニウムを沈殿させる。溶液のpHが4未満では水酸化アルミニウムの生成が不十分になり、pH6を上回るとコバルトが沈殿し始めるので好ましくない。アルカリとして水酸化ナトリウムやアンモニア水を用いることができる。水酸化アルミニウムの沈殿と共に溶液中のリンおよびフッ素が該水酸化アルミニウム沈殿に取り込まれて共沈する。
[Dealuminization process]
An alkali is added to the copper removal solution to precipitate aluminum hydroxide, and the precipitate is separated into solid and liquid. An alkali is added to the above solution to adjust to pH 4 to 6, preferably pH 4.3 to 5.0, to precipitate aluminum hydroxide. If the pH of the solution is less than 4, the production of aluminum hydroxide becomes insufficient, and if it exceeds pH 6, cobalt begins to precipitate, which is not preferable. Sodium hydroxide or aqueous ammonia can be used as the alkali. Along with precipitation of aluminum hydroxide, phosphorus and fluorine in the solution are taken into the aluminum hydroxide precipitate and coprecipitated.

アルミニウム、コバルト、ニッケルおよびマンガンを含む水溶液において、pHに対する各金属の溶解度の関係を図3に示す。図示するように、アルミニウムはpH3を超えると溶解度が低下して水酸化物の沈殿を生成するようになる。具体的には、アルミニウムの溶解度は、pH4で10-2.3モル/L、pH6では10-8.3モル/Lである。一方、ニッケル、コバルト、マンガンの溶解度はpH6においても1モル/L程度であり、pH4〜6においてアルミニウムを選択的に沈殿させることができる。 FIG. 3 shows the relationship of the solubility of each metal with respect to pH in an aqueous solution containing aluminum, cobalt, nickel and manganese. As shown in the figure, when the pH of aluminum exceeds pH 3, the solubility decreases and a precipitate of hydroxide is generated. Specifically, the solubility of aluminum is 10 −2.3 mol / L at pH 4 and 10 −8.3 mol / L at pH 6. On the other hand, the solubility of nickel, cobalt, and manganese is about 1 mol / L even at pH 6, and aluminum can be selectively precipitated at pH 4-6.

〔脱マンガン工程〕
脱アルミニウム溶液に酸化剤を添加してマンガン酸化物を沈殿させ、該沈殿を固液分離する。好ましくは、脱アルミニウム後の溶液を40℃〜95℃に加熱し、酸化剤を添加して、酸化還元電位(Ag/AgCl電極基準)950〜1050mV、およびpH2.5以下に調整してマンガン酸化物を沈殿させる。酸化剤として次亜塩素酸を用いる場合、ClO-/Mnモル比が2.5〜3.5になる量の次亜塩素酸を添加すると良い。
[Demanganese process]
An oxidizing agent is added to the dealumination solution to precipitate manganese oxide, and the precipitate is separated into solid and liquid. Preferably, the dealuminated solution is heated to 40 ° C. to 95 ° C. and an oxidizing agent is added to adjust the oxidation-reduction potential (Ag / AgCl electrode standard) to 950 to 1050 mV and pH 2.5 or less to oxidize manganese. Precipitates. When hypochlorous acid is used as the oxidizing agent, it is preferable to add hypochlorous acid in such an amount that the ClO / Mn molar ratio is 2.5 to 3.5.

マンガン、コバルトおよびニッケルを含む水溶液中での電位−pHグラフを図4に示す。水溶液のマンガン濃度1モル/L、コバルトとニッケルの各濃度0.2モル/L、液温25℃であり、図中、実線はマンガン、一点破線はコバルト、二点破線はコバルトである。図示するように、pH2.5においてマンガンは酸化還元電位(水素電極基準)0.95V以上で二酸化マンガンに酸化され沈殿する。一方、pH2.5においてコバルトおよびニッケルの沈殿が生成する酸化還元電位(水素電極基準)は各々1.33V以上、1.32V以上である。 FIG. 4 shows a potential-pH graph in an aqueous solution containing manganese, cobalt and nickel. The concentration of manganese in the aqueous solution is 1 mol / L, each concentration of cobalt and nickel is 0.2 mol / L, and the liquid temperature is 25 ° C. In the figure, the solid line is manganese, the dashed line is cobalt, and the dashed line is cobalt. As shown in the figure, at pH 2.5, manganese is oxidized and precipitated into manganese dioxide at an oxidation-reduction potential (hydrogen electrode standard) of 0.95 V or higher. On the other hand, the oxidation-reduction potential (hydrogen electrode reference) at which precipitation of cobalt and nickel is generated at pH 2.5 is 1.33 V or more and 1.32 V or more, respectively.

図4に示すように、マンガン、コバルトおよびニッケルを含む水溶液のpHを2.5以下にし、酸化還元電位(水素電極基準)を0.95〜1.33Vの範囲に調整すれば、マンガンを選択的に沈殿させることができる。なお、この酸化還元電位はAg/AgCl比較電極では744〜1114mVであるが、低電位側ではマンガンの沈殿率が低く、また、高電位側ではコバルトの沈殿率が大きくなるので、950〜1050mVに調整するのが好ましい。 As shown in FIG. 4, if the pH of the aqueous solution containing manganese, cobalt and nickel is adjusted to 2.5 or lower and the redox potential (hydrogen electrode standard) is adjusted to the range of 0.95 to 1.33 V, manganese is selected. Can be precipitated. The oxidation-reduction potential is 744 to 1114 mV for the Ag / AgCl reference electrode, but the manganese precipitation rate is low on the low potential side and the cobalt precipitation rate is high on the high potential side. It is preferable to adjust.

以上のように溶液のpHが2.5を上回るとマンガンと共にコバルトが沈殿するので好ましくない。また、溶液の酸化還元電位(Ag/AgCl電極基準)が1050mVを超えると、あるいは酸化剤として次亜塩素酸を用いたときにClO-/Mnモル比が3.5を超えると、コバルトの沈殿量が増加するので好ましくない。また、上記溶液の酸化還元電位(Ag/AgCl電極基準)が950mV未満では、あるいはClO-/Mnモル比が2.5未満ではマンガンの沈殿生成が不十分になるので好ましくない。 As described above, if the pH of the solution exceeds 2.5, cobalt is precipitated together with manganese, which is not preferable. Further, when the oxidation-reduction potential (Ag / AgCl electrode standard) of the solution exceeds 1050 mV, or when the ClO / Mn molar ratio exceeds 3.5 when hypochlorous acid is used as the oxidizing agent, cobalt precipitation occurs. Since the amount increases, it is not preferable. Further, if the oxidation-reduction potential (Ag / AgCl electrode standard) of the above solution is less than 950 mV, or if the ClO / Mn molar ratio is less than 2.5, manganese precipitates are insufficient, which is not preferable.

〔コバルト、ニッケル回収工程〕
脱マンガン後の溶液からリン酸系酸性抽出溶媒を用いてコバルトおよびニッケルを溶媒抽出して回収することができる。例えば、リン酸系酸性抽出溶媒として、2−エチルヘキシルホスホン酸モノ2−エチルヘキシルエステル(商品名:PC−88A)を用い、ミキサーセトラ等の連続式抽出装置によって脱マンガン後の溶液を上記溶媒と接触させてコバルトおよびニッケルをpH4.5〜8の範囲で抽出する。
[Cobalt and nickel recovery process]
Cobalt and nickel can be recovered by solvent extraction from the solution after demanganese using a phosphoric acid-based acidic extraction solvent. For example, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (trade name: PC-88A) is used as a phosphoric acid-based acidic extraction solvent, and the solution after demanganese is brought into contact with the above solvent by a continuous extraction device such as a mixer setra. To extract cobalt and nickel in the pH range of 4.5-8.

抽出に際しては抽出溶媒(PC−88A)から水素イオンが放出されるので、中和のために水酸化ナトリウム水溶液、あるいは、アンモニア水等のアルカリを添加しpHを調整する。コバルトおよびニッケルを含有した抽出溶媒は、コバルトを含む水溶液(例えば、本ミキサセトラの逆抽出回収液等)と接触させてコバルトとニッケルとを置換(ニッケル洗浄)させニッケルを回収し、コバルトのみを含有する抽出溶媒にした後に、pH2以下の鉱酸溶液と接触させてコバルトを逆抽出して精製されたコバルト回収液を得ることができる。 Since hydrogen ions are released from the extraction solvent (PC-88A) during extraction, the pH is adjusted by adding an aqueous solution of sodium hydroxide or alkali such as aqueous ammonia for neutralization. The extraction solvent containing cobalt and nickel is brought into contact with an aqueous solution containing cobalt (for example, the back-extracted recovery liquid of this mixer setra) to replace cobalt and nickel (nickel cleaning), recover nickel, and contain only cobalt. After the extraction solvent is used, a cobalt recovery solution purified by back-extracting cobalt by contacting with a mineral acid solution having a pH of 2 or less can be obtained.

本発明の回収方法は、コバルトおよびニッケルと共に銅、アルミニウム、マンガンを含む酸性溶液、例えば、リチウムイオン二次電池の正極活物質を鉱酸で浸出した液から銅、アルミニウム、マンガンが分離されるので、脱マンガン後の溶液から溶媒抽出によってコバルトおよびニッケルを回収する際に、溶媒抽出の負担が少なく、効率よく不純物の少ないコバルトおよびニッケルを回収することができる。 The recovery method of the present invention separates copper, aluminum, and manganese from an acidic solution containing copper, aluminum, and manganese together with cobalt and nickel, for example, a solution obtained by leaching a positive electrode active material of a lithium ion secondary battery with a mineral acid. When cobalt and nickel are recovered from the solution after demanganese by solvent extraction, the burden of solvent extraction is small, and cobalt and nickel with few impurities can be efficiently recovered.

脱銅工程において、溶液の酸化還元電位(Ag/AgCl電極基準)を−15〜135mV、pHを0〜1に調整することによってコバルトおよびニッケル硫化物の沈殿生成を抑止し、銅を選択的に効率よく沈殿させることができる。また、脱アルミニウム工程において、溶液のpHを4〜6に調整することによってコバルトおよびニッケルの沈殿生成を抑制し、アルミニウムを選択的に効率よく沈殿させることができる。さらに、脱マンガン工程において、溶液の酸化還元電位(Ag/AgCl電極基準)を950〜1050mV、pHを2.5以下に調整することによってコバルトの沈殿生成を抑制し、マンガンを選択的に効率よく沈殿させることができる。 In the copper removal process, by adjusting the oxidation-reduction potential (Ag / AgCl electrode standard) of the solution to -15 to 135 mV and the pH to 0 to 1, precipitation of cobalt and nickel sulfide is suppressed, and copper is selectively used. It can be precipitated efficiently. Moreover, in the dealumination step, the precipitation of cobalt and nickel can be suppressed by adjusting the pH of the solution to 4 to 6, and aluminum can be selectively and efficiently precipitated. Furthermore, in the demanganese process, by adjusting the oxidation-reduction potential (Ag / AgCl electrode standard) of the solution to 950 to 1050 mV and the pH to 2.5 or less, the precipitation of cobalt is suppressed and manganese is selectively and efficiently produced. Can be precipitated.

本発明の回収方法は、脱銅処理を最初に行うので浸出液のpHを大幅に調整せずに硫化物を加えればよく、また脱マンガン処理の後にコバルトおよびニッケルの溶媒抽出を行うので溶液のpHを大幅に調整せずに溶媒抽出を行うことができるので、各段階でのpH調整が容易である。 In the recovery method of the present invention, since the copper removal treatment is performed first, it is sufficient to add sulfide without greatly adjusting the pH of the leachate, and since the solvent extraction of cobalt and nickel is performed after the demanganese treatment, the pH of the solution Since the solvent extraction can be carried out without significantly adjusting the pH, pH adjustment at each stage is easy.

本発明の回収方法は、脱アルミニウム工程において、リンとフッ素が水酸化アルミニウムに取り込まれて沈殿するので、脱リンおよび脱フッ素を脱アルミニウムと同時に行うことができる。このため、排水処理の負担が大幅に軽減され、さらにリンやフッ素による汚染が少ないコバルトおよびニッケルを効率よく回収することができる。 In the recovery method of the present invention, phosphorus and fluorine are taken into aluminum hydroxide and precipitated in the dealumination step, so that the phosphorus removal and defluorination can be performed simultaneously with the dealumination. For this reason, the burden of wastewater treatment is greatly reduced, and cobalt and nickel that are less contaminated with phosphorus and fluorine can be efficiently recovered.

本発明の回収方法の概略工程図。The schematic process drawing of the collection method of the present invention. 金属硫化物の電位−pHグラフ。The potential-pH graph of metal sulfide. 金属水酸化物の溶解度グラフ。The solubility graph of a metal hydroxide. Mn−H2Oの電位−pHグラフ。Potential -pH graph of Mn-H 2 O.

以下、本発明の実施例および比較例を示す。
〔実施例1〕
浸出液の調製
使用済みリチウムイオン二次電池を放電後に解体して正極および負極の活物質を選別し、これを60℃に加熱した197g/Lの硫酸100mlに添加し、1時間撹拌して浸出した。浸出後のpHは0であった。浸出後、固液分離して濾液(浸出液)を回収した。表1に浸出液の成分組成を示す。
脱銅処理
表1に示す浸出液を60℃に加熱し撹拌しながら、NaHSをORP(Ag/AgCl電極基準)で47mVになるまで添加し、1時間反応させて沈殿を生成させた。生成した硫化銅を固液分離し、濾液120mlを回収した。脱銅濾液に含まれる成分濃度および除去率を表2に示す。
脱アルミニウム処理
表2の脱銅後の溶液を撹拌し、NaOHをpH4.36になるまで添加し、1時間反応させて沈殿を生成させた。生成したアルミニウム沈殿を固液分離し、濾液133mlを回収した。脱アルミニウム濾液に含まれる成分濃度および除去率を表3に示す。
脱マンガン処理
表3の脱アルミニウム後の溶液を60℃に加熱し撹拌しながら、次亜塩素酸ナトリウム溶液をClO-/Mnモル比3.0になるように添加し、pH2に調整し、1時間反応させて沈殿を生成させた。このときのORP(Ag/AgCl電極基準)は1030mVであった。生成したマンガン酸化物沈殿を固液分離し、濾液265mlを回収した。脱マンガン濾液に含まれる成分濃度および除去率を表4に示す。
コバルト、ニッケル回収処理
脱マンガン濾液を、有機溶媒(20容量%のPC−88A/ケロシン)を用い、ミキサセトラに入れて、コバルトとニッケルを抽出し回収した。抽出操作は有機相/水相比が1/2になるように有機相と水相(脱マンガン濾液)を供給した。抽出溶媒のPC−88Aは抽出時に水素イオンを放出するので、この水素イオンを中和するために抽出残液のpHが7になるように供給される有機相にアンモニア水を添加した。
コバルトおよびニッケルを抽出した有機相は、後工程の逆抽出液の一部を洗浄液として供給し、有機相中に含まれるニッケルと水相中のコバルトとを置換し、ニッケルのみを硫酸ニッケル水溶液として回収した。ニッケルが除かれた有機相は、1モル/Lの希硫酸と接触させて逆抽出を行い、硫酸コバルト水溶液として回収した。
回収結果を表5に示す。
Examples of the present invention and comparative examples are shown below.
[Example 1]
Preparation of leachate Disassembled used lithium ion secondary battery after discharge to select positive and negative electrode active materials, added to 100 ml of 197 g / L sulfuric acid heated to 60 ° C., and stirred for 1 hour And leached. The pH after leaching was zero. After leaching, the filtrate (leachate) was recovered by solid-liquid separation. Table 1 shows the component composition of the leachate.
Copper removal treatment While heating the leachate shown in Table 1 to 60C and stirring, NaHS was added to 47 mV by ORP (Ag / AgCl electrode standard) and reacted for 1 hour to form a precipitate. . The produced copper sulfide was subjected to solid-liquid separation, and 120 ml of the filtrate was recovered. Table 2 shows the component concentrations and removal rates contained in the copper removal filtrate.
Dealumination treatment The solution after removing copper in Table 2 was stirred, NaOH was added until the pH reached 4.36, and the mixture was reacted for 1 hour to form a precipitate. The produced aluminum precipitate was subjected to solid-liquid separation, and 133 ml of the filtrate was recovered. Table 3 shows the concentration and removal rate of the components contained in the dealuminated filtrate.
Demanganese treatment While the dealuminated solution in Table 3 was heated to 60 ° C. and stirred, a sodium hypochlorite solution was added to a ClO / Mn molar ratio of 3.0 to adjust to pH 2. Adjusted and reacted for 1 hour to form a precipitate. The ORP (Ag / AgCl electrode reference) at this time was 1030 mV. The produced manganese oxide precipitate was subjected to solid-liquid separation, and 265 ml of the filtrate was recovered. Table 4 shows the component concentrations and removal rates contained in the demanganese filtrate.
Cobalt and nickel recovery treatment The demanganese filtrate was placed in a mixer setra using an organic solvent (20% by volume of PC-88A / kerosene), and cobalt and nickel were extracted and recovered. In the extraction operation, the organic phase and the aqueous phase (demanganese filtrate) were supplied so that the organic phase / aqueous phase ratio was 1/2. Since the extraction solvent PC-88A releases hydrogen ions during extraction, ammonia water was added to the organic phase supplied so that the pH of the extraction residue was 7 in order to neutralize the hydrogen ions.
In the organic phase from which cobalt and nickel have been extracted, a part of the back-extracted liquid in the subsequent process is supplied as a cleaning liquid, replacing nickel contained in the organic phase with cobalt in the aqueous phase, and only nickel is used as a nickel sulfate aqueous solution. It was collected. The organic phase from which nickel was removed was contacted with 1 mol / L dilute sulfuric acid, back-extracted, and recovered as an aqueous cobalt sulfate solution.
The collection results are shown in Table 5.

Figure 2015183292
Figure 2015183292

Figure 2015183292
Figure 2015183292

Figure 2015183292
Figure 2015183292

Figure 2015183292
Figure 2015183292

Figure 2015183292
Figure 2015183292

〔実施例2、比較例1〕
表1に示す浸出液を60℃に加熱し撹拌しながら、NaHSをORP(Ag/AgCl電極基準)が0mVになるまで添加し(実施例2)、またはORP(Ag/AgCl電極基準)が200mVになるまで添加し、1時間反応させて沈殿を生成させた(比較例1)。生成した沈殿を固液分離して濾液を回収した。該濾液に含まれる成分濃度および除去率を表6に示す。
実施例2では銅が選択的に沈殿するが、比較例1では銅と共にコバルトが沈殿する。
[Example 2, Comparative Example 1]
While heating the leachate shown in Table 1 to 60 ° C. and stirring, add NaHS until ORP (Ag / AgCl electrode standard) reaches 0 mV (Example 2) or ORP (Ag / AgCl electrode standard) to 200 mV Was added and reacted for 1 hour to produce a precipitate (Comparative Example 1). The produced precipitate was separated into solid and liquid, and the filtrate was recovered. Table 6 shows the concentration and removal rate of the components contained in the filtrate.
In Example 2, copper is selectively precipitated, but in Comparative Example 1, cobalt is precipitated together with copper.

Figure 2015183292
Figure 2015183292

〔実施例3:比較例2〕
表1に示す浸出液にNaOHを添加しpH0.9(実施例3)またはpH1.7(比較例2)に調整した後、60℃に加熱し撹拌しながら、NaHSをORP(Ag/AgCl電極基準)が100mVになるまで添加し、1時間反応させて沈殿を生成させた。生成した沈殿を固液分離して濾液を回収した。該濾液に含まれる成分濃度および除去率を表7に示す。
実施例2では銅が収率良く沈殿するが、比較例2では原料液中に銅がわずかに残る。
[Example 3: Comparative Example 2]
After adding NaOH to the leachate shown in Table 1 and adjusting to pH 0.9 (Example 3) or pH 1.7 (Comparative Example 2), NaHS was added to ORP (Ag / AgCl electrode standard while heating to 60 ° C. and stirring). ) Was added to 100 mV and reacted for 1 hour to form a precipitate. The produced precipitate was separated into solid and liquid, and the filtrate was recovered. Table 7 shows the concentration and removal rate of the components contained in the filtrate.
In Example 2, copper precipitates with good yield, but in Comparative Example 2, a slight amount of copper remains in the raw material liquid.

Figure 2015183292
Figure 2015183292

〔実施例4、比較例3、4〕
表2の脱銅後の溶液を撹拌し、NaOHをpH5.0になるまで添加し(実施例4)、またはpH1またはpH7になるまで添加し(比較例3、4)、1時間反応させて沈殿を生成させた。生成した沈殿を固液分離して濾液を回収した。該濾液に含まれる成分濃度を表8に示す。実施例4ではアルミニウムが選択的に沈殿するが、比較例3ではアルミニウムが沈殿せず、比較例4ではアルミニウムと共にコバルトが沈殿する。
[Example 4, Comparative Examples 3 and 4]
Stir the solution after copper removal in Table 2 and add NaOH until pH 5.0 (Example 4), or add until pH 1 or pH 7 (Comparative Examples 3 and 4), react for 1 hour. A precipitate was formed. The produced precipitate was separated into solid and liquid, and the filtrate was recovered. Table 8 shows the component concentrations contained in the filtrate. In Example 4, aluminum is selectively precipitated, but in Comparative Example 3, aluminum is not precipitated, and in Comparative Example 4, cobalt is precipitated together with aluminum.

Figure 2015183292
Figure 2015183292

〔実施例5、比較例5、6〕
表3の脱アルミニウム後の溶液を60℃に加熱し撹拌しながら、次亜塩素酸ナトリウム溶液をORP(Ag/AgCl電極基準)1020mVになるまで添加し(実施例5)、またはORP(Ag/AgCl電極基準)920mVになるまで添加し(比較例5)、pH2またはpH4に調整して生成した沈殿を固液分離して濾液を回収した。該濾液に含まれる成分濃度を表9に示す。実施例5ではマンガンが選択的に沈殿するが、比較例5、6ではマンガンと共にコバルトが沈殿する。
[Example 5, Comparative Examples 5 and 6]
While the dealuminated solution in Table 3 is heated to 60 ° C. and stirred, a sodium hypochlorite solution is added until ORP (Ag / AgCl electrode standard) reaches 1020 mV (Example 5), or ORP (Ag / AgCl electrode reference) was added until 920 mV (Comparative Example 5), and the precipitate formed after adjusting to pH 2 or pH 4 was separated into solid and liquid, and the filtrate was recovered. Table 9 shows the component concentrations contained in the filtrate. In Example 5, manganese is selectively precipitated, but in Comparative Examples 5 and 6, cobalt is precipitated together with manganese.

Figure 2015183292
Figure 2015183292

Claims (6)

コバルトおよびニッケルと共に銅、アルミニウム、マンガンを含む酸性溶液に硫化物を加えて硫化銅を沈殿させ、該沈殿を分離する脱銅工程、脱銅後の溶液にアルカリを添加して水酸化アルミニウムを沈殿させ、該沈殿を分離する脱アルミニウム工程、脱アルミニウム溶液に酸化剤を添加してマンガン酸化物を沈殿させ、該沈殿を分離する脱マンガン工程、脱マンガン後の溶液からコバルトおよびニッケルを回収する工程を有することを特徴とするコバルトおよびニッケルの回収方法。
Adds sulfide to an acidic solution containing copper, aluminum and manganese together with cobalt and nickel to precipitate copper sulfide, separates the precipitate, and adds alkali to the solution after removing copper to precipitate aluminum hydroxide. And removing the precipitate, adding an oxidizing agent to the dealuminated solution to precipitate manganese oxide, separating the precipitate, removing the manganese, and recovering cobalt and nickel from the solution after the manganese removal A method for recovering cobalt and nickel, comprising:
コバルトおよびニッケルと共に銅、アルミニウム、マンガンを含む酸性溶液がリチウムイオン二次電池の正極活物質を鉱酸で浸出した液である請求項1に記載するコバルトおよびニッケルの回収方法。
The method for recovering cobalt and nickel according to claim 1, wherein the acidic solution containing copper, aluminum, and manganese together with cobalt and nickel is a liquid obtained by leaching a positive electrode active material of a lithium ion secondary battery with a mineral acid.
脱銅工程において、上記酸性溶液の酸化還元電位(Ag/AgCl電極基準)が−15〜135mVになるように硫化物を添加し、pH0〜1の液性下で硫化銅を沈澱させる請求項1または請求項2に記載するコバルトおよびニッケルの回収方法。
In the copper removal step, sulfide is added so that the oxidation-reduction potential (Ag / AgCl electrode standard) of the acidic solution is -15 to 135 mV, and copper sulfide is precipitated under a liquidity of pH 0-1. Alternatively, the method for recovering cobalt and nickel according to claim 2.
脱アルミニウム工程において、脱銅後の溶液にアルカリを添加してpH4〜6の液性下で水酸化アルミニウムを沈殿させる共に溶液中のリンおよびフッ素を共沈させる請求項1〜請求項3の何れかに記載するコバルトおよびニッケルの回収方法。
4. The method according to claim 1, wherein, in the dealumination step, an alkali is added to the solution after copper removal to precipitate aluminum hydroxide under a pH of 4 to 6 and coprecipitate phosphorus and fluorine in the solution. A method for recovering cobalt and nickel as described above.
脱マンガン工程において、脱アルミニウム後の溶液に酸化剤を添加し、酸化還元電位(Ag/AgCl電極基準)950〜1050mV、およびpH2.5以下の液性下でマンガン酸化物を沈殿させる請求項1〜請求項4の何れかに記載するコバルトおよびニッケルの回収方法。
In the demanganese step, an oxidizing agent is added to the solution after dealumination to precipitate manganese oxide under liquidity at a redox potential (Ag / AgCl electrode standard) of 950 to 1050 mV and a pH of 2.5 or less. The method for recovering cobalt and nickel according to claim 4.
コバルトおよびニッケルを回収する工程において、脱マンガン後の溶液からリン酸系酸性抽出溶媒を用いてコバルトおよびニッケルを溶媒抽出して回収する請求項1〜請求項5の何れかに記載するコバルトおよびニッケルの回収方法。 The cobalt and nickel according to any one of claims 1 to 5, wherein in the step of recovering cobalt and nickel, cobalt and nickel are extracted from the solution after demanganese using a phosphoric acid-based acidic extraction solvent. Recovery method.
JP2014064242A 2014-03-26 2014-03-26 Recovery method of cobalt and nickel Pending JP2015183292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014064242A JP2015183292A (en) 2014-03-26 2014-03-26 Recovery method of cobalt and nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014064242A JP2015183292A (en) 2014-03-26 2014-03-26 Recovery method of cobalt and nickel

Publications (1)

Publication Number Publication Date
JP2015183292A true JP2015183292A (en) 2015-10-22

Family

ID=54350180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014064242A Pending JP2015183292A (en) 2014-03-26 2014-03-26 Recovery method of cobalt and nickel

Country Status (1)

Country Link
JP (1) JP2015183292A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105591171A (en) * 2015-12-18 2016-05-18 浙江天能能源科技有限公司 Recycling method for valuable metals in waste nickel-cobalt-manganese ternary lithium ion batteries
JP2016113672A (en) * 2014-12-16 2016-06-23 住友金属鉱山株式会社 Method for recovering valuable metal from waste lithium-ion battery
JP2017166028A (en) * 2016-03-16 2017-09-21 Jx金属株式会社 Method for removing aluminum from cobalt-aluminum-containing acid solution
WO2019064996A1 (en) * 2017-09-29 2019-04-04 住友金属鉱山株式会社 Method for separating copper from nickel and cobalt
WO2019082533A1 (en) * 2017-10-23 2019-05-02 住友金属鉱山株式会社 Method for separating copper, nickel, and cobalt
WO2019082532A1 (en) * 2017-10-23 2019-05-02 住友金属鉱山株式会社 Method for separating copper from nickel and cobalt
CN109837394A (en) * 2019-03-20 2019-06-04 金川集团股份有限公司 A kind of method of the molten separation copper of ambrose alloy oxide acid
CN111118311A (en) * 2019-12-28 2020-05-08 湖南金源新材料股份有限公司 Manganese-lithium separation method in comprehensive recovery of ternary battery waste
WO2020137997A1 (en) * 2018-12-27 2020-07-02 Jx金属株式会社 Valuable metal recovery method
KR102137174B1 (en) * 2020-02-07 2020-07-27 전북대학교산학협력단 Critical metal recovering method from exhausted lithium ion batteries
WO2020203585A1 (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Method for processing lithium ion battery scrap
CN112176194A (en) * 2020-10-09 2021-01-05 湖南金凯循环科技有限公司 Method for recovering waste containing nickel, cobalt, manganese and lithium
WO2021049668A1 (en) * 2019-09-12 2021-03-18 Apb株式会社 Method for manufacturing lithium-ion battery recyclable electrode active material, method for manufacturing solution containing metal ion, and lithium-ion battery
JP2021044180A (en) * 2019-09-12 2021-03-18 三洋化成工業株式会社 Method for manufacturing regenerated electrode active material for lithium ion battery, method for manufacturing solution containing metal ions, and lithium ion battery
JP2021044182A (en) * 2019-09-12 2021-03-18 三洋化成工業株式会社 Selective extraction method for cathode active material
JP2021048128A (en) * 2019-09-12 2021-03-25 三洋化成工業株式会社 Manufacturing method for regeneration electrode active material for lithium ion batteries, manufacturing method for solution containing metal ions, lithium ion battery, manufacturing method for regeneration sheet-like electrode member for lithium ion batteries, and manufacturing method for regeneration electrode sheet for lithium ion batteries
CN113195121A (en) * 2018-12-27 2021-07-30 捷客斯金属株式会社 Method for recovering valuable metals
JPWO2021166755A1 (en) * 2020-02-21 2021-08-26
WO2021193095A1 (en) * 2020-03-23 2021-09-30 住友金属鉱山株式会社 Method for treating alloy
WO2021193096A1 (en) * 2020-03-23 2021-09-30 住友金属鉱山株式会社 Alloy treatment method
CN113802002A (en) * 2021-08-17 2021-12-17 广东邦普循环科技有限公司 Method for recovering valuable metals in lithium battery by wet process
WO2022050248A1 (en) * 2020-09-03 2022-03-10 三菱マテリアル株式会社 Method for separating cobalt and nickel
JP2022042982A (en) * 2020-09-03 2022-03-15 三菱マテリアル株式会社 Method for separating cobalt and nickel
WO2022176709A1 (en) * 2021-02-17 2022-08-25 三菱マテリアル株式会社 Valuable metal recovery method and recovery apparatus
CN115196609A (en) * 2022-09-15 2022-10-18 中国科学院过程工程研究所 Method for recovering iron phosphate from lithium iron phosphate lithium extraction slag and application thereof
WO2023002912A1 (en) * 2021-07-20 2023-01-26 住友金属鉱山株式会社 Method for processing alloy

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113672A (en) * 2014-12-16 2016-06-23 住友金属鉱山株式会社 Method for recovering valuable metal from waste lithium-ion battery
CN105591171A (en) * 2015-12-18 2016-05-18 浙江天能能源科技有限公司 Recycling method for valuable metals in waste nickel-cobalt-manganese ternary lithium ion batteries
CN105591171B (en) * 2015-12-18 2017-12-08 浙江天能能源科技股份有限公司 The recovery method of valuable metal in a kind of waste and old nickel-cobalt-manganese ternary lithium ion battery
JP2017166028A (en) * 2016-03-16 2017-09-21 Jx金属株式会社 Method for removing aluminum from cobalt-aluminum-containing acid solution
WO2019064996A1 (en) * 2017-09-29 2019-04-04 住友金属鉱山株式会社 Method for separating copper from nickel and cobalt
JP2019065346A (en) * 2017-09-29 2019-04-25 住友金属鉱山株式会社 Separation method of copper, nickel and cobalt
JP2019077912A (en) * 2017-10-23 2019-05-23 住友金属鉱山株式会社 Separation method for copper, nickel and cobalt
WO2019082532A1 (en) * 2017-10-23 2019-05-02 住友金属鉱山株式会社 Method for separating copper from nickel and cobalt
WO2019082533A1 (en) * 2017-10-23 2019-05-02 住友金属鉱山株式会社 Method for separating copper, nickel, and cobalt
JP2019077913A (en) * 2017-10-23 2019-05-23 住友金属鉱山株式会社 Separation method for copper, nickel and cobalt
JP7175756B2 (en) 2018-12-27 2022-11-21 Jx金属株式会社 Valuable metal recovery method
WO2020137997A1 (en) * 2018-12-27 2020-07-02 Jx金属株式会社 Valuable metal recovery method
JP2020105598A (en) * 2018-12-27 2020-07-09 Jx金属株式会社 Valuable metal recovery method
CN113195121B (en) * 2018-12-27 2022-08-02 捷客斯金属株式会社 Method for recovering valuable metals
CN113195121A (en) * 2018-12-27 2021-07-30 捷客斯金属株式会社 Method for recovering valuable metals
CN109837394A (en) * 2019-03-20 2019-06-04 金川集团股份有限公司 A kind of method of the molten separation copper of ambrose alloy oxide acid
WO2020203585A1 (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Method for processing lithium ion battery scrap
JP2020164971A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Method for processing lithium ion battery scrap
JP2021044182A (en) * 2019-09-12 2021-03-18 三洋化成工業株式会社 Selective extraction method for cathode active material
JP7101153B2 (en) 2019-09-12 2022-07-14 三洋化成工業株式会社 Selective extraction method of positive electrode active material
WO2021049668A1 (en) * 2019-09-12 2021-03-18 Apb株式会社 Method for manufacturing lithium-ion battery recyclable electrode active material, method for manufacturing solution containing metal ion, and lithium-ion battery
JP2021048128A (en) * 2019-09-12 2021-03-25 三洋化成工業株式会社 Manufacturing method for regeneration electrode active material for lithium ion batteries, manufacturing method for solution containing metal ions, lithium ion battery, manufacturing method for regeneration sheet-like electrode member for lithium ion batteries, and manufacturing method for regeneration electrode sheet for lithium ion batteries
JP2021044180A (en) * 2019-09-12 2021-03-18 三洋化成工業株式会社 Method for manufacturing regenerated electrode active material for lithium ion battery, method for manufacturing solution containing metal ions, and lithium ion battery
JP7101650B2 (en) 2019-09-12 2022-07-15 三洋化成工業株式会社 Method for manufacturing recycled electrode active material for lithium-ion batteries, method for manufacturing solutions containing metal ions, and lithium-ion batteries
JP7101733B2 (en) 2019-09-12 2022-07-15 三洋化成工業株式会社 A method for manufacturing a recycled electrode active material for a lithium ion battery, a method for manufacturing a solution containing metal ions, a method for manufacturing a lithium ion battery, a recycled sheet-shaped electrode member for a lithium ion battery, and a method for manufacturing a recycled electrode sheet for a lithium ion battery.
CN111118311A (en) * 2019-12-28 2020-05-08 湖南金源新材料股份有限公司 Manganese-lithium separation method in comprehensive recovery of ternary battery waste
CN111118311B (en) * 2019-12-28 2021-10-22 湖南金源新材料股份有限公司 Manganese-lithium separation method in comprehensive recovery of ternary battery waste
KR102137174B1 (en) * 2020-02-07 2020-07-27 전북대학교산학협력단 Critical metal recovering method from exhausted lithium ion batteries
JPWO2021166755A1 (en) * 2020-02-21 2021-08-26
WO2021166755A1 (en) * 2020-02-21 2021-08-26 住友金属鉱山株式会社 Method for treating alloy
JP7136360B2 (en) 2020-02-21 2022-09-13 住友金属鉱山株式会社 Alloy treatment method
WO2021193095A1 (en) * 2020-03-23 2021-09-30 住友金属鉱山株式会社 Method for treating alloy
WO2021193096A1 (en) * 2020-03-23 2021-09-30 住友金属鉱山株式会社 Alloy treatment method
JP2022042982A (en) * 2020-09-03 2022-03-15 三菱マテリアル株式会社 Method for separating cobalt and nickel
WO2022050248A1 (en) * 2020-09-03 2022-03-10 三菱マテリアル株式会社 Method for separating cobalt and nickel
JP7121885B2 (en) 2020-09-03 2022-08-19 三菱マテリアル株式会社 Cobalt and nickel separation method
CN112176194A (en) * 2020-10-09 2021-01-05 湖南金凯循环科技有限公司 Method for recovering waste containing nickel, cobalt, manganese and lithium
WO2022176709A1 (en) * 2021-02-17 2022-08-25 三菱マテリアル株式会社 Valuable metal recovery method and recovery apparatus
JP2022125620A (en) * 2021-02-17 2022-08-29 三菱マテリアル株式会社 Recovery method and recovery device of valuable metal
WO2023002912A1 (en) * 2021-07-20 2023-01-26 住友金属鉱山株式会社 Method for processing alloy
CN113802002A (en) * 2021-08-17 2021-12-17 广东邦普循环科技有限公司 Method for recovering valuable metals in lithium battery by wet process
CN113802002B (en) * 2021-08-17 2022-11-15 广东邦普循环科技有限公司 Method for recovering valuable metals in lithium battery by wet process
CN115196609A (en) * 2022-09-15 2022-10-18 中国科学院过程工程研究所 Method for recovering iron phosphate from lithium iron phosphate lithium extraction slag and application thereof

Similar Documents

Publication Publication Date Title
JP2015183292A (en) Recovery method of cobalt and nickel
WO2017159743A1 (en) Processing method for lithium ion battery scrap
WO2017159745A1 (en) Processing method for lithium ion battery scrap
JP5847741B2 (en) Waste cathode material and method for recovering metal from waste battery
JP5847742B2 (en) Waste cathode material and method for recovering metal from waste battery
EP2832700B1 (en) Method for producing high-purity nickel sulfate
JP2020535323A (en) Lithium-ion battery recycling method
JP6314814B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
AU2012359454B2 (en) Method for producing cobalt sulfate
JP5370777B2 (en) Method for recovering copper from copper sulfide
CN110835683B (en) Method for selectively extracting lithium from waste lithium ion battery material
JP2013095951A (en) Method for recovering lithium
JP2013112859A (en) Method for manufacturing manganese sulfate
JP6471912B2 (en) Method for producing high purity cobalt sulfate aqueous solution
JP6330949B2 (en) Method for removing phosphorus and / or fluorine, and method for recovering valuable metals
JP2018040035A (en) Process for treating lithium-ion battery scrap
JP6146377B2 (en) Method for removing phosphorus and / or fluorine, and method for recovering valuable metals
JP6314730B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
JP6298002B2 (en) Lithium-ion battery scrap leaching method and valuable metal recovery method
JP2004285368A (en) Method for refining cobalt aqueous solution
JP7052635B2 (en) Separation method of copper, nickel and cobalt
JP4215547B2 (en) Cobalt recovery method
TW202221145A (en) Method for separating cobalt and nickel
JP2013209267A (en) Method of manufacturing manganese sulfate
JP6397111B2 (en) Lithium-ion battery scrap leaching method and valuable metal recovery method