JP2007012527A - Collecting method of metallurgic raw material from waste dry battery - Google Patents

Collecting method of metallurgic raw material from waste dry battery Download PDF

Info

Publication number
JP2007012527A
JP2007012527A JP2005194156A JP2005194156A JP2007012527A JP 2007012527 A JP2007012527 A JP 2007012527A JP 2005194156 A JP2005194156 A JP 2005194156A JP 2005194156 A JP2005194156 A JP 2005194156A JP 2007012527 A JP2007012527 A JP 2007012527A
Authority
JP
Japan
Prior art keywords
batteries
manganese
carbon
manganese dioxide
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005194156A
Other languages
Japanese (ja)
Inventor
Takamasa Takahashi
隆昌 高橋
Masahiro Muroya
正廣 室屋
Keizo Yamamoto
景三 山本
Yoshiki Tanaka
義樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Kankyo Corp
Original Assignee
JFE Kankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Kankyo Corp filed Critical JFE Kankyo Corp
Priority to JP2005194156A priority Critical patent/JP2007012527A/en
Publication of JP2007012527A publication Critical patent/JP2007012527A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Primary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical material which can be used as manganese and carbon source in a useful form as metallurgic raw materials such as a raw material for manufacturing ferromanganese in particular, by separating and collecting a manganese dioxide and carbon which are main component materials of a waste battery from the component materials of other batteries. <P>SOLUTION: This collecting method of the manganese dioxide and a carbon-containing mixture separates and collects a powdery grain-like mixture containing the manganese dioxide and carbon, and has (1) a sorting process to sort manganese batteries and alkaline manganese batteries from wasted dry batteries, (2) a crushing/sieving process to obtain powdery grains by sieving after crushing the sorted batteries, and (3) an acid treatment process to dissolve the powdery grains obtained by in a dilute hydrochloric acid or a dilute sulfuric acid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放電終了後に廃棄されたマンガン電池およびアルカリマンガン電池中の主要構成物である炭素と二酸化マンガンとを簡便な方法で分離回収し、その資源リサイクルを可能とする二酸化マンガンおよび炭素含有混合物の回収方法に関し、更に詳しくは、廃乾電池中の炭素と二酸化マンガンとを、物理的および化学的処理によりその他の材料と分離・回収し、これを冶金原料として利用する資源リサイクル方法に関する。   The present invention relates to manganese dioxide and a carbon-containing mixture that can separate and recover carbon and manganese dioxide, which are main components in a manganese battery and an alkaline manganese battery, which are discarded after the end of discharge, by a simple method, and enable resource recycling thereof. More particularly, the present invention relates to a resource recycling method in which carbon and manganese dioxide in a waste dry battery are separated and recovered from other materials by physical and chemical treatment and used as a metallurgical raw material.

1次電池として代表的なマンガン電池およびアルカリマンガン電池は、正極材料である炭素及び二酸化マンガン、包装材である、鉄、プラスチック及び紙、負極材料である亜鉛、更に、電解液として用いられる塩化アンモニウム(塩化アンモン)、塩化亜鉛および水酸化カリウム(苛性カリ)等、から構成されている。これらの電池の年間生産量は、例えば、2003年度の実績で、合計約5万トン/年と言われている。そして、放電終了後に廃棄されたマンガン電池およびアルカリマンガン電池(以下、廃乾電池)の資源リサイクルの現状は、亜鉛を回収するために亜鉛精錬メーカーが、また、鉄や炭素の回収のために一部電炉メーカーが、それぞれその一部を回収しているに過ぎない。従って、いまだ多くの資源がリサイクルされることなく未利用のまま、廃材として埋め立て処理等されている。   Manganese batteries and alkaline manganese batteries, which are typical primary batteries, include carbon and manganese dioxide as positive electrode materials, iron, plastic and paper as packaging materials, zinc as negative electrode materials, and ammonium chloride used as an electrolyte. (Ammonium chloride), zinc chloride and potassium hydroxide (caustic potash). The annual production volume of these batteries is said to be about 50,000 tons / year in total in, for example, the results in FY2003. And, the current state of resource recycling of manganese batteries and alkaline manganese batteries (hereinafter referred to as waste dry batteries) discarded after the end of the discharge is partly due to zinc refining manufacturers to collect zinc and partly to recover iron and carbon. Electric furnace manufacturers are only collecting a part of each. Accordingly, a lot of resources are not recycled and are not used yet and are disposed of as landfill.

これに対し、廃乾電池の構成材料をリサイクルすることを目的とする提案は、種々なされているが(例えば、特許文献1〜4)、その処理の複雑さのため、提案がされても実施に至るものは少ない。例えば、特許文献1では、廃乾電池から、二酸化マンガンと塩化亜鉛とを分離回収する方法を提案している。この方法では、廃乾電池に物理的処理を施し、マンガンと亜鉛とを多く含む材料を取り出した後、この材料を水洗し、その後、塩酸溶解して不溶解物(炭素粉等)とを分離する。更に、溶液中の塩化マンガンと塩化亜鉛との混合水溶液に過塩素酸を加えて塩化マンガンを二酸化マンガンに酸化して不溶化した後、ろ過分離する。その一方で、溶液の塩化亜鉛は、有機溶剤を使用して抽出精製する。そして、上記操作により、二酸化マンガンと塩化亜鉛とを分離回収して得られる回収品は、再び乾電池製造にリサイクル可能な純度に仕上がるとされている。しかしながら、上記した方法は、非常に煩雑であり、回収のために投じられる資材や労力は、回収品の評価額以上であることが容易に想像され、経済的に資源リサイクルが成立し得ない。   On the other hand, various proposals aimed at recycling the constituent materials of the waste dry battery have been made (for example, Patent Documents 1 to 4). There are few. For example, Patent Document 1 proposes a method for separating and recovering manganese dioxide and zinc chloride from a waste dry battery. In this method, a waste dry battery is subjected to physical treatment, a material containing a large amount of manganese and zinc is taken out, the material is washed with water, and then dissolved in hydrochloric acid to separate insoluble materials (carbon powder, etc.). . Further, perchloric acid is added to a mixed aqueous solution of manganese chloride and zinc chloride in the solution to oxidize the manganese chloride to manganese dioxide to insolubilize it, followed by filtration and separation. On the other hand, the zinc chloride in the solution is extracted and purified using an organic solvent. And by the said operation, the collect | recovered goods obtained by isolate | separating and collect | recovering manganese dioxide and zinc chloride are said to be finished again in the purity which can be recycled to dry battery manufacture. However, the above-described method is very complicated, and it is easily imagined that the material and labor invested for collection are equal to or more than the evaluation value of the collected product, and resource recycling cannot be realized economically.

特開平11−191439号公報Japanese Patent Laid-Open No. 11-191439 特開平7−85897号公報Japanese Patent Laid-Open No. 7-85897 特開平9−82339号公報Japanese Patent Laid-Open No. 9-82339 特開2004−871公報JP 2004-871 A

上記したように、従来より廃乾電池の構成材料を資源リサイクルする方法は、種々提案されているものの、経済的に利用可能な簡便な方法は未だ知られていない。廃乾電池の構成材料の中でも、下記に述べるように、特にマンガン或いは炭素は、鉄鋼業等において有用な成分であり、本発明者らの検討によれば、廃乾電池から分離回収して再利用する比較的簡便な方法が開発できれば、資源リサイクルが経済的にも十分に成り立ち得る。即ち、マンガン鉱石は、フェロマンガン製造の出発原料であると同時に、フェロマンガンに代わり精錬炉にて直接使用もされている。また炭素は、一般的には鉱石から金属への還元反応への必須原料であり、フェロマンガン製造時においてもマンガン鉱石の還元用に使用されている。   As described above, various methods for resource recycling of constituent materials of waste dry batteries have been proposed, but no simple method that can be economically used has been known yet. Among the constituent materials of the waste dry battery, as described below, manganese or carbon is a particularly useful component in the steel industry, etc., and according to the study by the present inventors, it is separated and recovered from the waste dry battery and reused. If a relatively simple method can be developed, resource recycling can be sufficiently economical. That is, manganese ore is a starting material for producing ferromanganese, and is also used directly in a refining furnace instead of ferromanganese. Carbon is generally an essential raw material for the reduction reaction from ore to metal, and is also used for the reduction of manganese ore during ferromanganese production.

従って、本発明の目的は、廃乾電池の主要構成材である二酸化マンガンと炭素とを簡便な操作によって、他の電池の構成材料から分離し、回収することを可能とすることで、安価な化学資材、特に、フェロマンガン製造原料等の冶金原料として有用な形態のマンガンおよび炭素源とできる化学資材を提供することにある。   Accordingly, an object of the present invention is to provide an inexpensive chemical by separating and recovering manganese dioxide and carbon, which are main constituent materials of waste dry batteries, from constituent materials of other batteries by a simple operation. An object of the present invention is to provide a chemical material that can be used as a source of manganese and carbon in a form useful as a metallurgical raw material such as a raw material for producing ferromanganese.

上記の目的は、下記の本発明によって達成される。即ち、本発明は、廃乾電池から、二酸化マンガンと炭素とを含む粉粒体状の混合物を分離回収する方法であって、少なくとも下記の(1)〜(3)の工程を有することを特徴とする二酸化マンガンおよび炭素含有混合物の回収方法である。
(1)廃棄された乾電池から、マンガン電池およびアルカリマンガン電池を選別する選別工程
(2)選別した電池を破砕後、篩い分けによって粉粒体を得る破砕・篩い分け工程
(3)得られた粉粒体を、希塩酸または希硫酸で溶解処理する酸処理工程
The above object is achieved by the present invention described below. That is, the present invention is a method for separating and recovering a powdery mixture containing manganese dioxide and carbon from a waste dry battery, comprising at least the following steps (1) to (3): This is a method for recovering a mixture containing manganese dioxide and carbon.
(1) Sorting process for sorting manganese batteries and alkaline manganese batteries from discarded dry batteries (2) Crushing / sieving process for obtaining powder particles by sieving after crushing the selected batteries (3) Powder obtained Acid treatment process for dissolving particles with dilute hydrochloric acid or dilute sulfuric acid

本発明の好ましい形態としては、下記のものが挙げられる。上記(3)の酸処理工程において、常温から60℃付近で5〜60分間攪拌しながら処理する二酸化マンガンおよび炭素含有混合物の回収方法。上記(2)の破砕・篩い分け工程における篩い分けを、目開き1〜20mmの範囲の篩によって行う二酸化マンガンおよび炭素含有混合物の回収方法。上記(3)の酸処理工程における希酸による溶解処理を、塩酸濃度1〜14質量%(より好ましくは2〜8質量%)の希塩酸または硫酸濃度2〜45質量%(より好ましくは4〜20質量%)の希硫酸によって行う上記いずれかの二酸化マンガンおよび炭素含有混合物の回収方法。   The following are mentioned as a preferable form of this invention. In the acid treatment step (3) above, a method for recovering a manganese dioxide and carbon-containing mixture that is treated with stirring at a temperature from room temperature to around 60 ° C. for 5 to 60 minutes. A method for recovering a manganese dioxide and carbon-containing mixture, wherein the sieving in the crushing and sieving step (2) is performed with a sieve having a mesh size of 1 to 20 mm. The dissolution treatment with dilute acid in the acid treatment step (3) above is carried out by dilute hydrochloric acid having a hydrochloric acid concentration of 1 to 14% by mass (more preferably 2 to 8% by mass) or sulfuric acid concentration of 2 to 45% by mass (more preferably 4 to 20%). A method for recovering any one of the above manganese dioxide and carbon-containing mixture using dilute sulfuric acid (mass%).

本発明の別の実施形態としては、上記いずれかの回収方法で得られた二酸化マンガンと炭素とを含む粉粒体状の混合物を、その組成のまま冶金原料として使用することを特徴とする廃乾電池からの資源のリサイクル方法である。   Another embodiment of the present invention is a waste product characterized in that a powder-like mixture containing manganese dioxide and carbon obtained by any of the above recovery methods is used as a metallurgical raw material in its composition. This is a method for recycling resources from dry batteries.

本発明によれば、廃乾電池を構成する他の材料から、二酸化マンガンと炭素成分とを、簡便に、しかも大きな損失を生じることなく同時に回収することができる二酸化マンガンおよび炭素含有混合物の回収方法が提供される。本発明によって得られる回収品は、二酸化マンガンと炭素を同時に含むので、フェロマンガン製造の出発原料として、或いは、フェロマンガンに代わり精錬炉にて直接使用する材料等として、いずれの用途においても非常に好都合な原料として利用できる。これらの用途において、廃乾電池からの回収原料を使用することは、フレッシュなマンガン鉱石等の使用量の削減となり、資源の有効利用がはかられる。これと同時に、これまで再利用されずに埋立等によって廃棄処分がされていた廃乾電池の量を削減できるため、廃棄処分にかかる費用を低減し、環境汚染の軽減に寄与できる。本発明は、上記したように、資源の有効活用及び環境保護の点で、非常に実用価値の高いものである。   According to the present invention, there is provided a method for recovering a manganese dioxide and carbon-containing mixture capable of easily recovering manganese dioxide and a carbon component simultaneously from other materials constituting a waste dry battery without causing a large loss. Provided. Since the recovered product obtained by the present invention contains manganese dioxide and carbon at the same time, it is very useful in any application as a starting material for producing ferromanganese or as a material directly used in a refining furnace instead of ferromanganese. Available as a convenient raw material. In these applications, the use of the raw material recovered from the waste dry battery reduces the amount of fresh manganese ore and the like, thereby effectively using resources. At the same time, it is possible to reduce the amount of waste dry batteries that have been disposed of by landfill without being reused so far, thereby reducing the cost of disposal and contributing to the reduction of environmental pollution. As described above, the present invention has a very high practical value in terms of effective use of resources and environmental protection.

以下に、好ましい実施の形態を挙げて本発明を詳細に説明する。本発明者らは、従来技術の課題を解決すべく、鋭意検討の結果、下記の知見を得た。一般的に、これらのマンガン電池及びアルカリマンガン電池の放電による化学反応は、下記式で示されるようであると言われている。下記式に示したように、放電後の正極のマンガンの形態はMnO(OH)となるが、この形態のマンガン化合物は、希塩酸にて溶解すると考えられる。一方、リサイクルできる有効成分であるMnO2は、希塩酸には溶解しない。これらのことから、本発明者らは、回収した廃乾電池を粉砕すると共に、紙やプラスチック等を篩分けして取り除き、その後に得られた粉粒体に、例えば、希塩酸等の希酸を用いて溶解処理すれば、希酸によって不要な成分を溶解除去することができ、これによって放電後残留したMnO2を回収できる見込みがあることを見いだした。そして、かかる知見に基づいて更なる検討を重ねた結果、本発明に至ったものである。

Figure 2007012527
Hereinafter, the present invention will be described in detail with reference to preferred embodiments. The present inventors have obtained the following knowledge as a result of intensive studies to solve the problems of the prior art. Generally, it is said that the chemical reaction by discharge of these manganese batteries and alkaline manganese batteries is as shown by the following formula. As shown in the following formula, the form of manganese in the positive electrode after discharge is MnO (OH), and the manganese compound in this form is considered to be dissolved in dilute hydrochloric acid. On the other hand, MnO 2 which is an active ingredient that can be recycled does not dissolve in dilute hydrochloric acid. From these facts, the present inventors pulverize the collected waste dry battery and remove paper or plastic by sieving, and then use, for example, dilute acid such as dilute hydrochloric acid in the obtained granular material. It has been found that unnecessary components can be dissolved and removed by dilute acid, and that MnO 2 remaining after discharge can be recovered. As a result of further studies based on this knowledge, the present invention has been achieved.
Figure 2007012527

前記した従来技術の課題を解決し、廃乾電池の主要構成材である二酸化マンガンと炭素とを簡便な操作によって他の電池の構成材料から分離・回収し、フェロマンガン製造原料等の冶金原料として有用な、二酸化マンガンと炭素とを含む混合物からなる化学資材(回収品)を得る工業技術の開発に際し、以下に挙げる課題が存在することを確認した。   Solving the above-mentioned problems of the prior art, separating and recovering manganese dioxide and carbon, which are the main components of waste dry batteries, from other battery components by a simple operation, useful as a metallurgical raw material such as ferromanganese manufacturing raw materials In the development of industrial technology for obtaining chemical materials (recovered products) comprising a mixture containing manganese dioxide and carbon, it was confirmed that the following problems exist.

1)廃乾電池中には、冶金原料としては有害な、苛性カリ、塩化アンモン、金属亜鉛及び塩化亜鉛等が存在する。このため、冶金原料として有用な化学資材を得るには、これらの成分を高い除去率で除去しつつ、二酸化マンガン及び炭素を高い回収率で回収しなければならない。
2)本発明にかかる回収方法で処理する廃乾電池は、廃棄されたマンガン電池及びアルカリマンガン電池を対象とする。従って、先ず、廃棄物として回収された乾電池の中から、マンガン電池及びアルカリマンガン電池を選別することが必要となる。しかしながら、稀に、選別処理後の廃乾電池の中に、ニッケルカドミウム電池(以下、ニカド電池)や、製造時期の古い水銀電池等が誤選別によって混入する場合があり、回収された電池を破砕処理して粉粒体として処理した場合に、カドミウムや水銀、鉛が高濃度に含有される恐れがある。
1) In waste dry batteries, caustic potash, ammonium chloride, metallic zinc, zinc chloride, and the like which are harmful as metallurgical raw materials exist. For this reason, in order to obtain a chemical material useful as a metallurgical raw material, it is necessary to recover manganese dioxide and carbon at a high recovery rate while removing these components at a high removal rate.
2) The waste dry battery processed by the recovery method according to the present invention targets discarded manganese batteries and alkaline manganese batteries. Therefore, first, it is necessary to select a manganese battery and an alkaline manganese battery from dry batteries recovered as waste. However, in rare cases, nickel cadmium batteries (hereinafter referred to as “Nicad batteries”) or older mercury batteries manufactured at the time of manufacture may be mixed in waste dry batteries after sorting, and the collected batteries are shredded. When treated as a granular material, cadmium, mercury, and lead may be contained in a high concentration.

このため、マンガン電池およびアルカリマンガン電池以外の、ニカド電池や水銀電池等が誤選別によって混入することがあったとしても、水銀等の有害不純物を除去して、回収品をリサイクルに耐え得る材料に仕上げる必要がある。また、マンガン電池およびアルカリマンガン電池が良好な状態で選別できたとしても、その構成材料中に含まれる冶金原料として有害な、例えば、苛性カリ、塩化アンモン、金属亜鉛及び塩化亜鉛等を良好な状態となるように除去し、回収品を、その用途に有用なリサイクルに耐え得る材料に仕上げる必要がある。更に、そのリサイクルにかかるコストが、実用上、無理のない経済的な処理であることが必要となる。   For this reason, even if nickel-cadmium batteries or mercury batteries other than manganese batteries and alkaline manganese batteries may be mixed due to misselection, harmful substances such as mercury will be removed, and the recovered product will be a material that can withstand recycling. It needs to be finished. Further, even if the manganese battery and the alkaline manganese battery can be selected in a good state, they are harmful as a metallurgical raw material contained in the constituent materials, for example, caustic potash, ammonium chloride, metallic zinc, zinc chloride, etc. And the recovered product must be finished into a material that can withstand recycling that is useful for the application. Furthermore, the cost for the recycling needs to be an economical process that is practically reasonable.

本発明にかかる方法は、上記した技術課題を前提として開発されたものであり、少なくとも下記の(1)〜(3)の工程を有することを特徴とする。以下、これらの工程について順に説明する。
(1)廃棄された乾電池から、マンガン電池およびアルカリマンガン電池を選別する選別工程
(2)選別した電池を破砕後、篩い分けによって粉粒体を得る破砕・篩い分け工程
(3)得られた粉粒体を、塩酸または硫酸の希酸にて処理する酸処理工程
The method according to the present invention has been developed on the premise of the above technical problem, and has at least the following steps (1) to (3). Hereinafter, these steps will be described in order.
(1) Sorting process for sorting manganese batteries and alkaline manganese batteries from discarded dry batteries (2) Crushing / sieving process for obtaining powder particles by sieving after crushing the selected batteries (3) Powder obtained Acid treatment process to treat granules with dilute acid of hydrochloric acid or sulfuric acid

(1)廃乾電池の選別工程
現状の回収システムにおいて回収された乾電池には、種々の電池が混在しているのが一般的である。このため、本発明にかかる方法では、先ず、これらの廃棄・回収された乾電池の中から、マンガン電池およびアルカリマンガン電池を、本発明で対象とする廃乾電池として選別する。選別工程には、補助的な手段としては機械選別も有用ではあるが、現状の回収システムでは手選別が避けられない。手選別では、電池の外観(形状)の違いを目視によって判定し、水銀電池及びニカド電池を除外する。この場合に、選別精度を上げる目的で、手選別以外の方法として、その形状や放射線等を利用して分別する機器を利用することも有効である。
(1) Sorting process of waste dry batteries In general, various batteries are mixed in the dry batteries collected in the current collection system. For this reason, in the method according to the present invention, first, a manganese battery and an alkaline manganese battery are selected from the discarded / recovered dry batteries as the target dry batteries in the present invention. Machine sorting is also useful as an auxiliary means for the sorting process, but manual sorting is unavoidable with the current collection system. In the manual selection, the difference in the appearance (shape) of the battery is visually determined, and the mercury battery and the nickel-cadmium battery are excluded. In this case, for the purpose of increasing the sorting accuracy, it is also effective to use a device that performs sorting using its shape, radiation, or the like as a method other than manual sorting.

(2)選別した電池の破砕・篩い分け工程
次に、上記したようにして選別した廃乾電池を破砕するが、この際に使用する破砕機の型式については特に限定されない。例えば、破砕後に、乾電池を構成している包装材と、粉粒体がよく分離される型式のものが好ましい。このようなものとしては、例えば、2軸回転式の破砕機が挙げられる。上記の破砕物の篩い分けに使用する篩の目開きは、例えば、目開き1〜20mmの範囲の篩、より好ましくは、目開き5〜10mmの範囲の篩を使用する。
(2) Crushing / sieving step of selected battery Next, the waste dry battery selected as described above is crushed, but the type of crusher used at this time is not particularly limited. For example, after crushing, a packaging material that constitutes a dry battery and a type in which powder particles are well separated are preferable. As such a thing, the biaxial rotation type crusher is mentioned, for example. The sieve openings used for sieving the crushed material are, for example, sieves having an opening of 1 to 20 mm, more preferably a sieve having an opening of 5 to 10 mm.

図1に、廃棄された乾電池からの廃乾電池の選別、選別後の廃乾電池を酸処理が可能な粉粒体とするまでの前処理工程のフローを示した。先ず、選別された廃乾電池を破砕機によって破砕処理する。これと同時に、破砕物を篩い分けして、篩下の粉粒体(目的物側)と、篩上の固形物(主として包装体等からなる群)とに分離する。篩上の固形物は、更に、磁選等の操作によって、鉄皮状包装材と(プラスチック+紙材+亜鉛缶+真鍮合金棒等)とに分離するとよい。上記で分離された鉄皮状包装材は、その後、鉄スクラップ原料化への資源化が可能である。その他の材料は、亜鉛精錬の原料化が可能である。   FIG. 1 shows a flow of a pretreatment process from sorting out the waste dry batteries from the discarded dry batteries to making the waste batteries after the sorting into powders capable of acid treatment. First, the sorted waste dry battery is crushed by a crusher. At the same time, the crushed material is sieved and separated into a granular material under the sieve (target object side) and a solid material on the sieve (a group consisting mainly of a package or the like). The solid matter on the sieve may be further separated into an iron-shell packaging material (plastic + paper material + zinc can + brass alloy rod etc.) by operations such as magnetic separation. After that, the iron-shell packaging material separated as described above can be used as a raw material for scrap iron. Other materials can be used as raw materials for zinc refining.

上記における篩下の粉粒体には、マンガン電池およびアルカリマンガン電池の主要構成材料である、二酸化マンガン、炭素、苛性カリ、塩化亜鉛および塩化アンモン、更には、放電によって生成したMnO(OH)やZn(OH)2が混合されている。更に、篩下の粉粒体中には、上記した以外に、本来は篩上にゆくべきであった先に説明した包装体等の篩通り抜け小片が混入されている。 The powders under the sieve in the above include manganese dioxide, carbon, caustic potash, zinc chloride and ammonium chloride, which are the main constituent materials of manganese batteries and alkaline manganese batteries, and MnO (OH) and Zn produced by discharge. (OH) 2 is mixed. Further, in addition to the above, the powder particles under the sieve are mixed with small pieces that pass through the sieve such as the above-described package that should have been placed on the sieve.

(3)希酸による酸処理工程
本発明においては、上記のようにして、選別工程、破砕・篩い分け工程を経て得られた上記したような各材料の混合物からなる篩下の粉粒体を、希塩酸または希硫酸によって溶解処理することを特徴とする。図2に、これらの希酸による酸処理工程の一例のフローを示した。
(3) Acid treatment step with dilute acid In the present invention, as described above, an under-sieving granular material composed of a mixture of each material as described above obtained through the selection step and the crushing / sieving step. The solution is treated with dilute hydrochloric acid or dilute sulfuric acid. FIG. 2 shows a flow of an example of the acid treatment step using these dilute acids.

図2に例示した酸処理工程では、希酸による溶解処理を2回繰り返した。勿論、本発明はこれに限定されず、希酸処理の回数は1回でもよく、不純物が多い場合は複数回繰り返してもよい。その際に使用する希酸としては、塩酸であれば、塩酸濃度が1〜14質量%のもの、更に好ましくは、2〜8質量%の濃度の希塩酸を使用する。また、希硫酸を使用する場合は、2〜45質量%のもの、更に好ましくは4〜20質量%の希硫酸を用いる。希酸による溶解処理を繰り返す場合に、常に同じ希酸を使用してもよいし、例えば、1回目を希塩酸で、2回目を希硫酸で行ってもよい。希酸は、濃塩酸または濃硫酸を水で希釈して作成するが、この際に使用する水には、工業用水等を使用することができる。濃塩酸または濃硫酸には市販されている、工業用或いは有害金属成分の少ない廃酸も希釈して使用することができる。   In the acid treatment step illustrated in FIG. 2, the dissolution treatment with dilute acid was repeated twice. Of course, the present invention is not limited to this, and the number of times of the dilute acid treatment may be one, and when there are many impurities, the treatment may be repeated a plurality of times. As the dilute acid used at that time, if hydrochloric acid, hydrochloric acid having a concentration of 1 to 14% by mass, more preferably dilute hydrochloric acid having a concentration of 2 to 8% by mass is used. Moreover, when using a dilute sulfuric acid, a 2-45 mass% thing, More preferably, a 4-20 mass% dilute sulfuric acid is used. When the dissolution treatment with dilute acid is repeated, the same dilute acid may always be used, for example, the first time may be performed with dilute hydrochloric acid and the second may be performed with dilute sulfuric acid. The dilute acid is prepared by diluting concentrated hydrochloric acid or concentrated sulfuric acid with water, and industrial water or the like can be used as the water used at this time. Concentrated hydrochloric acid or concentrated sulfuric acid can also be used after diluting a commercially available waste acid with a small amount of industrial or hazardous metal components.

本発明者らは、先に述べた方法で篩い分けして得られた粉粒体中から、特に有用な資源材料である二酸化マンガンを溶解することなく、且つ、粉粒体中に混在している冶金原料として好ましくない成分や、水銀等の有害物を容易に溶解することができる酸処理条件について種々検討した。その結果、希塩酸或いは希硫酸にて溶解処理すること、特に、前述の濃度範囲の希塩酸或いは希硫酸を使用して溶解処理することが有効であることを見いだして本発明に至った。更には、これらの希酸を使用し、且つ、常温から60℃付近で5〜60分程度攪拌しながら溶解処理を行うことがより好ましいことを確認した。即ち、上記した条件で希酸処理すれば、塩化亜鉛や塩化アンモン等の塩化物や、苛性カリ、更に、金属亜鉛、MnO(OH)やZn(OH)2は、溶解されて粉粒体から除去される。本発明で行う希酸による溶解処理では、特に、常温から60℃付近で、短時間で行うことで、下記に詳述するように、粉粒体中に存在する二酸化マンガンの溶解を抑制することができ、処理後に、二酸化マンガンと炭素とが高濃度で含有されてなる混合物を溶解残渣として回収することができる。 The present inventors can mix manganese dioxide, which is a particularly useful resource material, from the powder obtained by sieving by the method described above, and mixed in the powder. Various studies were made on acid treatment conditions that can easily dissolve components that are not preferable as metallurgical raw materials and harmful substances such as mercury. As a result, the present inventors have found that it is effective to carry out dissolution treatment with dilute hydrochloric acid or dilute sulfuric acid, in particular, to use the dilute hydrochloric acid or dilute sulfuric acid within the above-mentioned concentration range for the effect of the present invention. Furthermore, it was confirmed that it is more preferable to use these dilute acids and perform the dissolution treatment while stirring at a temperature from room temperature to around 60 ° C. for about 5 to 60 minutes. That is, if the dilute acid treatment is performed under the above-described conditions, chlorides such as zinc chloride and ammonium chloride, caustic potash, and metal zinc, MnO (OH) and Zn (OH) 2 are dissolved and removed from the granular material. Is done. In the dissolution treatment with dilute acid performed in the present invention, in particular, it is performed in a short time from room temperature to around 60 ° C., thereby suppressing the dissolution of manganese dioxide present in the powder as detailed below. After the treatment, a mixture containing manganese dioxide and carbon at a high concentration can be recovered as a dissolved residue.

希酸による粉粒体の処理の結果を図3〜5にまとめて示した。図3〜5は、主に塩酸についての検討結果である。図3(a)に示したように、希塩酸(1質量%)で処理した場合(図中に白丸で示した)が最も二酸化マンガンの損失が少ないことがわかる。また、これよりも塩酸濃度を高くした場合は(図中に黒□等で示した)、二酸化マンガンが溶解し、その損失が大きくなる。本発明者らの検討によれば、例えば、希塩酸14質量%、希硫酸45質量%を用いて、常温で60分の溶解処理を行った場合には、二酸化マンガンのほとんどが溶出してしまうことがわかった。従って、少なくとも、塩酸濃度としては14質量%以下、硫酸濃度としては45質量%以下の希酸で処理することが必要であることが確認された。   The result of the process of the granular material by a dilute acid was put together in FIGS. 3 to 5 are mainly the results of studies on hydrochloric acid. As shown in FIG. 3 (a), it is understood that the loss of manganese dioxide is the smallest when treated with dilute hydrochloric acid (1% by mass) (indicated by white circles in the figure). If the hydrochloric acid concentration is higher than this (indicated by black squares in the figure), manganese dioxide dissolves and the loss increases. According to the study by the present inventors, for example, when dissolution treatment is performed for 60 minutes at room temperature using 14% by mass of diluted hydrochloric acid and 45% by mass of diluted sulfuric acid, most of manganese dioxide is eluted. I understood. Therefore, it was confirmed that it was necessary to treat with at least a diluted acid having a hydrochloric acid concentration of 14% by mass or less and a sulfuric acid concentration of 45% by mass or less.

その一方で、非常に塩酸濃度が希薄な希塩酸を用いた場合は、粉粒体中の好ましくない成分である、苛性カリ、塩化亜鉛および塩化アンモン等の溶解速度が低下し、これらの除去処理に長時間を要することになる。本発明者らの検討によれば、上記の結果を総合すると、工業的には、塩酸濃度が2〜8質量%の希塩酸を使用するか、硫酸濃度が4〜20質量%の希硫酸を使用することが好ましい。   On the other hand, when dilute hydrochloric acid with a very dilute hydrochloric acid concentration is used, the dissolution rate of caustic potash, zinc chloride, and ammonium chloride, which are undesirable components in the granular material, decreases, and it is long to remove these. It will take time. According to the study by the present inventors, when the above results are combined, industrially, dilute hydrochloric acid having a hydrochloric acid concentration of 2 to 8% by mass or dilute sulfuric acid having a sulfuric acid concentration of 4 to 20% by mass is used. It is preferable to do.

また、処理温度と溶解処理時間についても検討した。その結果は、常識的なものであり、温度、時間のアップによって有害物の溶解性は増加するが、同時に二酸化マンガンの損失も大きくなることがわかった。そして、常温付近で5〜60分間攪拌処理すれば、十分な結果が得られることが確認された。しかし、粉粒体中の不純物の除去性や、工業的な処理を考慮すると、希酸による1回当たりの処理時間は、30〜60分程度とすることが好適である。   The processing temperature and dissolution processing time were also examined. The results are common sense, and it has been found that the solubility of harmful substances increases with increasing temperature and time, but at the same time the loss of manganese dioxide increases. It was confirmed that sufficient results could be obtained by stirring for 5 to 60 minutes near room temperature. However, in consideration of the removal of impurities in the granular material and industrial treatment, it is preferable that the treatment time per one time with dilute acid is about 30 to 60 minutes.

お湯洗浄の方法については、原料中にZnを許容する冶金原料化の一方法として検討したが、常識的に溶解性の高い塩化物や苛性カリ等の除去ですら十分ではなかった。これはよく知られるように電池構成物が放電に伴い電解反応により変化して、溶解しづらい錯体形成等の成分に変化したものと考えられる。   The hot water washing method was examined as a method for making a metallurgical raw material that allows Zn in the raw material, but even common-sense removal of highly soluble chlorides, caustic potash, etc. was not sufficient. As is well known, it is considered that the battery component changed due to an electrolytic reaction with discharge and changed into a component such as complex formation which is difficult to dissolve.

上記における検討については希塩酸を例にとって説明したが、図示はしていないが、各成分に対する溶解性には、硫酸を使用した場合も同様の傾向がみられた。但し、希硫酸を使用した場合は、塩素の発生はなく、この点においては好ましいが、塩酸を用いた場合よりも全体的に溶解性が低下する傾向がみられた。   Although the examination in the above has been described by taking dilute hydrochloric acid as an example, although not shown in the figure, the same tendency was observed in the solubility in each component even when sulfuric acid was used. However, when dilute sulfuric acid was used, there was no generation of chlorine, and this was preferable in this respect, but there was a tendency for the solubility to be lower as a whole than when hydrochloric acid was used.

従って、上記で説明した各希酸の各成分に対する溶解挙動や経済性等の兼ね合いで、塩酸、硫酸を適宜に選択して使用すればよい。例えば、図2に示したように、希酸による酸処理を2回繰り返す場合には、二酸化マンガンの損失なく、不純物溶解を選択的に行うことができる。これら酸の種類、希酸の濃度、処理温度及び処理時間についての結果は、本発明者らが廃乾電池の構成物の溶解挙動を丹念に調べた試験によって、初めて見出された知見である。   Accordingly, hydrochloric acid and sulfuric acid may be appropriately selected and used in consideration of the dissolution behavior of each dilute acid described above with respect to each component, economy, and the like. For example, as shown in FIG. 2, when the acid treatment with dilute acid is repeated twice, impurity dissolution can be selectively performed without loss of manganese dioxide. The results regarding the types of acids, the concentration of dilute acid, the treatment temperature, and the treatment time are findings that have been found for the first time by a test in which the present inventors have carefully studied the dissolution behavior of the constituents of a waste dry battery.

実施例を挙げて、本発明を更に詳細に説明する。本実施例では、回収された乾電池から選別したマンガン電池およびアルカリマンガン電池を、2軸回転式の破砕機で破砕し、目開きが5mmの篩を使用して篩分けして得られた篩下の粉粒体1,500kgを使用して試験した。   The present invention will be described in more detail with reference to examples. In this example, a manganese battery and an alkaline manganese battery selected from the collected dry batteries were crushed with a biaxial rotary crusher, and sieved using a sieve having a mesh opening of 5 mm. 1,500 kg of granules were tested.

上記で得た粉粒体を溶解槽である30,000リットルの容器内に移した。これとは別に、塩酸(純度35%)を用いて、塩酸濃度4質量%の希塩酸を作成した。粉粒体の入った容器に上記で得た希塩酸を20,000リットル加えて、常温(約25℃)で60分、攪拌しながら溶解処理を行った。本発明者らの検討によれば、この段階で、金属亜鉛、塩化亜鉛及び塩化アンモン等の塩化物や苛性カリ、更に、MnO(OH)やZn(OH)2は、粉粒体から液中へと容易に溶解していき、除去される。また、上記の処理は、希塩酸による常温、短時間の溶解処理であるので、二酸化マンガンの溶解は抑制されて、二酸化マンガン+炭素の混合物を溶解残渣として回収することができる。下記表1には回収物の組成を示したが、マンガン原料鉱石に比べ遜色ない原料となっている。 The granular material obtained above was transferred into a 30,000 liter container serving as a dissolution tank. Separately, dilute hydrochloric acid having a hydrochloric acid concentration of 4% by mass was prepared using hydrochloric acid (purity 35%). 20,000 liters of the dilute hydrochloric acid obtained above was added to the container containing the powder and the dissolution treatment was performed with stirring at room temperature (about 25 ° C.) for 60 minutes. According to the study by the present inventors, at this stage, chlorides such as metallic zinc, zinc chloride, and ammonium chloride, caustic potash, and further MnO (OH) and Zn (OH) 2 are transferred from the granular material to the liquid. Easily dissolves and is removed. Moreover, since said process is a normal temperature and short time melt | dissolution process by dilute hydrochloric acid, melt | dissolution of manganese dioxide is suppressed and the mixture of manganese dioxide + carbon can be collect | recovered as a melt | dissolution residue. Table 1 below shows the composition of the recovered material, which is a raw material comparable to manganese raw material ore.

Figure 2007012527
Figure 2007012527

また、処理するマンガン、アルカリマンガン乾電池中に、他の電池の粉粒体が混入した場合について検討した結果、極微量混入したニカド電池由来のカドミウムや、古い回収電池や水銀電池由来の水銀化合物をも溶解できる条件としては、下記のようにして処理することが必要であることを確認した。この場合には、1回の希酸による溶解処理で上述したマンガン等の回収と不純物除去は困難であるので、複数回、希酸による溶解操作を行う。その場合に、希酸による溶解操作後に、振動篩脱水、遠心分離等の操作によって溶解液から、処理した粉粒体を分離した後に、再度、塩酸或いは硝酸を使用しての希酸による溶解操作を繰り返すことが有効である。   In addition, as a result of examining the case where powders of other batteries were mixed in the manganese and alkaline manganese batteries to be treated, it was found that cadmium derived from NiCad batteries and traced mercury compounds derived from old recovery batteries and mercury batteries were mixed. It was confirmed that it was necessary to carry out the treatment as described below as a condition that can be dissolved. In this case, the above-described recovery of manganese and the like and the removal of impurities are difficult by a single dissolution treatment with dilute acid, and therefore, the dissolution operation with dilute acid is performed a plurality of times. In that case, after the dissolution operation with dilute acid, after separating the treated granular material from the solution by operations such as vibration sieve dehydration and centrifugation, the dissolution operation with dilute acid again using hydrochloric acid or nitric acid It is effective to repeat.

最終的な目的物(回収物)を得るためには、溶解操作が終了した後に水洗して溶解液を除き、再度振動篩ろ過、遠心分離等により脱水操作を行う。上記操作後に得られる最終的な目的物は、二酸化マンガンと炭素を主成分とし、塩化亜鉛、塩化アンモン或いは苛性カリ、MnO(OH)やZn(OH)2等が除去されたものであるので、そのままで、冶金材料として用いることができる。しかし、粉粒状で得られるので、冶金原料として使用するには、更に以下のような工程が必要となる場合もある。 In order to obtain the final target product (recovered product), after the dissolution operation is completed, the solution is washed with water to remove the solution, and again subjected to dehydration by vibration sieve filtration, centrifugation, or the like. The final target product obtained after the above operation is mainly composed of manganese dioxide and carbon, from which zinc chloride, ammonium chloride or caustic potash, MnO (OH), Zn (OH) 2 and the like have been removed. Therefore, it can be used as a metallurgical material. However, since it is obtained in the form of powder, the following steps may be further required for use as a metallurgical raw material.

1)焼結化工程ないしブリケット、ペレット等成型化工程を経て固形化し、その状態で精錬炉に投入しフェロマンガン原料とする。
2)廃プラスチック等と混練して固形化した後、その後に、製鋼用、電気炉用等精錬炉等にフェロマンガン代替として直接利用する。
1) Solidify through a sintering process or a molding process such as briquettes and pellets, and in that state, put into a smelting furnace to obtain a ferromanganese raw material.
2) After being solidified by kneading with waste plastic, etc., it is directly used as a substitute for ferromanganese in refining furnaces for steelmaking, electric furnaces, etc.

廃乾電池から粉粒体を得るまでの前処理工程のフロー図である。It is a flowchart of the pre-processing process until obtaining a granular material from a waste dry battery. 粉粒体から二酸化マンガンと炭素混合物を回収する際の希酸処理工程のフロー図である。It is a flowchart of the dilute acid treatment process at the time of collect | recovering manganese dioxide and a carbon mixture from a granular material. 各希酸による二酸化マンガン回収、および有害物の溶解除去程度と溶解条件の結果を示す図である。It is a figure which shows the result of the manganese dioxide collection | recovery by each dilute acid, the dissolution removal degree of a harmful | toxic substance, and dissolution conditions. 各希酸による有害物の溶解除去程度と溶解条件の結果を示す図である。It is a figure which shows the result of the melt | dissolution removal degree of the harmful | toxic substance by each diluted acid, and melt | dissolution conditions. 各希酸による有害物の溶解除去程度と溶解条件の結果を示す図である。It is a figure which shows the result of the melt | dissolution removal degree of the harmful | toxic substance by each diluted acid, and melt | dissolution conditions.

Claims (4)

廃乾電池から、二酸化マンガンと炭素とを含む粉粒体状の混合物を分離回収する方法であって、少なくとも下記の(1)〜(3)の工程を有することを特徴とする二酸化マンガンおよび炭素含有混合物の回収方法。
(1)廃棄された乾電池から、マンガン電池およびアルカリマンガン電池を選別する選別工程
(2)選別した電池を破砕後、篩い分けによって粉粒体を得る破砕・篩い分け工程
(3)得られた粉粒体を、希塩酸または希硫酸で溶解処理する酸処理工程
A method for separating and recovering a granular mixture containing manganese dioxide and carbon from a waste dry battery, comprising at least the following steps (1) to (3), comprising manganese dioxide and carbon: Method for recovering the mixture.
(1) Sorting process for sorting manganese batteries and alkaline manganese batteries from discarded dry batteries (2) Crushing / sieving process for obtaining powder particles by sieving after crushing the selected batteries (3) Powder obtained Acid treatment process for dissolving particles with dilute hydrochloric acid or dilute sulfuric acid
前記(3)の酸処理工程において、常温から60℃付近で5〜60分間攪拌しながら処理する請求項1に記載の二酸化マンガンおよび炭素含有混合物の回収方法。   The method for recovering a manganese dioxide and carbon-containing mixture according to claim 1, wherein in the acid treatment step (3), the treatment is performed at normal temperature to around 60 ° C. with stirring for 5 to 60 minutes. 前記(2)の破砕・篩い分け工程における篩い分けを、目開き1〜20mmの範囲の篩によって行う請求項1または2に記載の二酸化マンガンおよび炭素含有混合物の回収方法。   The method for recovering a manganese dioxide and carbon-containing mixture according to claim 1 or 2, wherein the sieving in the crushing and sieving step (2) is performed with a sieve having an opening of 1 to 20 mm. 前記(3)の酸処理工程における溶解処理を、塩酸濃度1〜14質量%の希塩酸または硫酸濃度2〜45質量%の希硫酸によって行う請求項1〜3の何れか1項に記載の二酸化マンガンおよび炭素含有混合物の回収方法。   The manganese dioxide according to any one of claims 1 to 3, wherein the dissolution treatment in the acid treatment step (3) is performed with dilute hydrochloric acid having a hydrochloric acid concentration of 1 to 14% by mass or dilute sulfuric acid having a sulfuric acid concentration of 2 to 45% by mass. And a method for recovering the carbon-containing mixture.
JP2005194156A 2005-07-01 2005-07-01 Collecting method of metallurgic raw material from waste dry battery Pending JP2007012527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194156A JP2007012527A (en) 2005-07-01 2005-07-01 Collecting method of metallurgic raw material from waste dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194156A JP2007012527A (en) 2005-07-01 2005-07-01 Collecting method of metallurgic raw material from waste dry battery

Publications (1)

Publication Number Publication Date
JP2007012527A true JP2007012527A (en) 2007-01-18

Family

ID=37750723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194156A Pending JP2007012527A (en) 2005-07-01 2005-07-01 Collecting method of metallurgic raw material from waste dry battery

Country Status (1)

Country Link
JP (1) JP2007012527A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108544A1 (en) * 2007-03-05 2008-09-12 Hyong Hag Im Method for making ceramic-coloring clay bricks using waste batteries powder
KR101011260B1 (en) 2009-10-27 2011-01-26 주식회사 에코닉스 Method for making cmd from waste batteries containing manganese and zinc
CN103427096A (en) * 2012-05-14 2013-12-04 深圳市艾博尔新能源有限公司 Disposal method and apparatus of waste lithium battery
CN103545538A (en) * 2013-11-06 2014-01-29 安徽工业大学 Method for preparing raw material for manganese series ferroalloy by using waste zinc-manganese dry battery
WO2015037174A1 (en) * 2013-09-11 2015-03-19 パナソニックIpマネジメント株式会社 Method for manufacturing positive electrode for manganese dry cell, positive electrode for manganese dry cell, and method for manufacturing manganese dry cell
WO2016181589A1 (en) * 2015-05-14 2016-11-17 パナソニックIpマネジメント株式会社 Cathode material, manufacturing method therefor and manganese dry cell using same
JP2018031060A (en) * 2016-08-25 2018-03-01 Jfeスチール株式会社 Method for producing metal manganese
CN107804876A (en) * 2017-12-05 2018-03-16 王龙 Manganese dioxide and ammonium chloride extraction element in a kind of waste battery
WO2019017055A1 (en) * 2017-07-19 2019-01-24 パナソニックIpマネジメント株式会社 Production method for positive electrode material and manganese dry cell using same
WO2021075136A1 (en) * 2019-10-18 2021-04-22 Jfeスチール株式会社 Method for recovering manganese from waste dry-cell batteries and recovery equipment
WO2021075135A1 (en) * 2019-10-18 2021-04-22 Jfeスチール株式会社 Method and facility for recovering manganese from waste dry batteries
KR20230098861A (en) 2021-03-04 2023-07-04 제이에프이 스틸 가부시키가이샤 Manganese recovery method and recovery equipment from waste batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096734A (en) * 1983-11-01 1985-05-30 Japan Metals & Chem Co Ltd Perfect recovery of valuable from waste manganese dry battery
JPS6174692A (en) * 1984-09-19 1986-04-16 Mitsui Mining & Smelting Co Ltd Treatment of waste dry cell
JPS61261443A (en) * 1985-05-16 1986-11-19 Nippon Mining Co Ltd Method for separating and recovering valuables from waste dry battery
JPS61281467A (en) * 1985-06-06 1986-12-11 Kiresuto Giken:Kk Recovery process for manganese dry battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096734A (en) * 1983-11-01 1985-05-30 Japan Metals & Chem Co Ltd Perfect recovery of valuable from waste manganese dry battery
JPS6174692A (en) * 1984-09-19 1986-04-16 Mitsui Mining & Smelting Co Ltd Treatment of waste dry cell
JPS61261443A (en) * 1985-05-16 1986-11-19 Nippon Mining Co Ltd Method for separating and recovering valuables from waste dry battery
JPS61281467A (en) * 1985-06-06 1986-12-11 Kiresuto Giken:Kk Recovery process for manganese dry battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206641B2 (en) 2007-03-05 2012-06-26 Hyong Hag Im Method for making ceramic-coloring clay bricks using waste batteries powder
WO2008108544A1 (en) * 2007-03-05 2008-09-12 Hyong Hag Im Method for making ceramic-coloring clay bricks using waste batteries powder
KR101011260B1 (en) 2009-10-27 2011-01-26 주식회사 에코닉스 Method for making cmd from waste batteries containing manganese and zinc
CN103427096A (en) * 2012-05-14 2013-12-04 深圳市艾博尔新能源有限公司 Disposal method and apparatus of waste lithium battery
WO2015037174A1 (en) * 2013-09-11 2015-03-19 パナソニックIpマネジメント株式会社 Method for manufacturing positive electrode for manganese dry cell, positive electrode for manganese dry cell, and method for manufacturing manganese dry cell
CN103545538A (en) * 2013-11-06 2014-01-29 安徽工业大学 Method for preparing raw material for manganese series ferroalloy by using waste zinc-manganese dry battery
WO2016181589A1 (en) * 2015-05-14 2016-11-17 パナソニックIpマネジメント株式会社 Cathode material, manufacturing method therefor and manganese dry cell using same
JP2018031060A (en) * 2016-08-25 2018-03-01 Jfeスチール株式会社 Method for producing metal manganese
WO2019017055A1 (en) * 2017-07-19 2019-01-24 パナソニックIpマネジメント株式会社 Production method for positive electrode material and manganese dry cell using same
CN107804876A (en) * 2017-12-05 2018-03-16 王龙 Manganese dioxide and ammonium chloride extraction element in a kind of waste battery
WO2021075136A1 (en) * 2019-10-18 2021-04-22 Jfeスチール株式会社 Method for recovering manganese from waste dry-cell batteries and recovery equipment
WO2021075135A1 (en) * 2019-10-18 2021-04-22 Jfeスチール株式会社 Method and facility for recovering manganese from waste dry batteries
JPWO2021075136A1 (en) * 2019-10-18 2021-11-04 Jfeスチール株式会社 Manganese recovery method and recovery equipment from waste batteries
JPWO2021075135A1 (en) * 2019-10-18 2021-11-04 Jfeスチール株式会社 Manganese recovery method and recovery equipment from waste batteries
JP7004091B2 (en) 2019-10-18 2022-02-04 Jfeスチール株式会社 Manganese recovery method and recovery equipment from waste batteries
JP7036229B2 (en) 2019-10-18 2022-03-15 Jfeスチール株式会社 Manganese recovery method and recovery equipment from waste batteries
KR20220049041A (en) 2019-10-18 2022-04-20 제이에프이 스틸 가부시키가이샤 Manganese recovery method and recovery equipment from waste batteries
KR20220053009A (en) 2019-10-18 2022-04-28 제이에프이 스틸 가부시키가이샤 Manganese recovery method and recovery equipment from waste batteries
KR20230098861A (en) 2021-03-04 2023-07-04 제이에프이 스틸 가부시키가이샤 Manganese recovery method and recovery equipment from waste batteries

Similar Documents

Publication Publication Date Title
JP2007012527A (en) Collecting method of metallurgic raw material from waste dry battery
Shin et al. Development of a metal recovery process from Li-ion battery wastes
TWI726033B (en) Process for recovering metal values from spent lithium ion batteries with high manganese content
Nayl et al. Acid leaching of mixed spent Li-ion batteries
TW201809296A (en) Process for recovery of pure cobalt oxide from spent lithium ion batteries with high manganese content
CN108140909B (en) Method for recovering metal from waste lithium ion battery
JP4865745B2 (en) Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn
JP6070898B2 (en) Method and facility for recovering valuable components from waste dry batteries
Shin et al. Separation of zinc from spent zinc-carbon batteries by selective leaching with sodium hydroxide
US5575907A (en) Process for the recovery of raw materials from presorted collected waste, especially scrap electrochemical batteries and accumulators
CN106450542A (en) Recycling method of waste lithium manganate lithium-ion battery
WO2012090654A1 (en) Method for recovering valuable material from lithium-ion secondary battery, and recovered material containing valuable material
JP2011105581A (en) Method for producing manganese sulfate and zinc sulfate from waste battery containing manganese and zinc
JP6648674B2 (en) Method for producing metallic manganese
US20100143219A1 (en) Process for the production of nano lead oxides
WO2022213678A1 (en) Method for recycling aluminum in waste positive electrode sheet by using selective leaching and application thereof
JP5948637B2 (en) Metal recovery method
JP2018170223A (en) Processing method of lithium ion battery scrap
JP2022182229A (en) Metal recovery method from lithium ion battery
JPH11191439A (en) Method for separately recovering manganese dioxide and zinc chloride from waste battery
JP6591675B2 (en) Method for producing metal manganese
JPWO2018168472A1 (en) Method of producing metallic manganese
HU215759B (en) Method of processing used batteries
Mihailova Hydrometallurgical treatment of spent alkaline and zinc-carbon batteries
Özdemir et al. Investigation of the dissolution behaviors in different solvents of the zinc and manganese powders obtained from the spent alkaline batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403