JPS61261443A - Method for separating and recovering valuables from waste dry battery - Google Patents

Method for separating and recovering valuables from waste dry battery

Info

Publication number
JPS61261443A
JPS61261443A JP60102680A JP10268085A JPS61261443A JP S61261443 A JPS61261443 A JP S61261443A JP 60102680 A JP60102680 A JP 60102680A JP 10268085 A JP10268085 A JP 10268085A JP S61261443 A JPS61261443 A JP S61261443A
Authority
JP
Japan
Prior art keywords
zinc
iron
dry battery
mercury
waste dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60102680A
Other languages
Japanese (ja)
Other versions
JPH036208B2 (en
Inventor
Hideo Aoki
秀夫 青木
Hiroshi Tazaki
博 田崎
Eiji Nishimura
栄二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP60102680A priority Critical patent/JPS61261443A/en
Publication of JPS61261443A publication Critical patent/JPS61261443A/en
Publication of JPH036208B2 publication Critical patent/JPH036208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/52Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To separate and recover iron, zinc, Mn, copper, etc., from waste dry battery advantageously from economic standpoint, by leaching out with sulfuric acid powdery substance composed mainly of oxides of zinc and Mn in which iron and chlorine are removed by magnetic separation and water washing respectively after roasting of waste dry battery and electrolyzing the leached liquid. CONSTITUTION:Waste dry battery is crushed finely by crusher, to expose zinc or MnO2, etc., contg. mercury in dry battery. The crushed powder is roasted by roasting furnace, and mercury is vaporized, cooled and recovered. Calcined slag in which metals excluding mercury are remaining is charged in magnetic separator to separate and recover iron pieces, then sieved to separate and recover brass pieces. The obtd. powdery substance is washed with water to remove chlorine ion, and the powdery substance composed mainly of zinc and MnO2 is obtained. This is leached with sulfuric acid, MnO2 is added to leached liquid to oxidize it and remove iron, and copper is removed by zinc powder substitution method. Electrolysis is carried out using the obtd. leached clean liquid contg. ZnSO4 and MnSO4 as electrolyte, and anode lead plate, cathode Al plate, zinc and MnO2 obtd. at cathode and anode respectively are scraped off and recovered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 廃乾電池から効率的・経済的有利に、かつ環境を害する
ことなく、鉄、亜鉛、マンガン、銅等の有価物を分離回
収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for separating and recovering valuable materials such as iron, zinc, manganese, copper, etc. from waste dry batteries efficiently and economically and without harming the environment.

〔従来技術〕[Prior art]

廃乾電池からそれを構成する金属を分離回収する技術と
しては従来2次のものがあった。
Conventionally, there have been two types of techniques for separating and recovering the metals that make up waste dry batteries.

■廃乾電池を焙焼して、それに含まれる水銀を揮発させ
、その後水銀を含んだ気相を冷却させることにより水銀
を凝縮させる。水銀のみを回収する方法。
■The waste dry battery is roasted to volatilize the mercury contained therein, and then the mercury-containing gas phase is cooled to condense the mercury. A method to recover only mercury.

■廃乾電池を乾式亜鉛製錬工程と同様に還元焙焼してZ
nのみを金属として回収する方法。
■ Waste dry batteries are reduced and roasted in the same way as the dry zinc smelting process.
A method to recover only n as metal.

■廃乾電池を焙焼して揮発水銀を冷却凝縮して回収する
とともに溶融して凝縮した亜鉛を分離回収する。さらに
残液を再度焙焼して磁選で鉄を分離、残った粉体を湿式
処理して水酸化亜鉛、硫酸マンガン溶液として回収する
方法。
■By roasting waste dry batteries, the volatile mercury is collected by cooling and condensing, and the melted and condensed zinc is separated and collected. The remaining liquid is then roasted again, the iron is separated using magnetic separation, and the remaining powder is wet-processed to recover it as a zinc hydroxide and manganese sulfate solution.

■廃乾電池を焙焼して水銀を分離回収し、ふるい分によ
り鉄、亜鉛を分離後、残渣を塩化焙焼法で処理して亜鉛
を分離してフェロマンガン原料を得る方法等があった。
■There was a method to obtain a ferromanganese raw material by roasting waste dry batteries to separate and recover mercury, separating iron and zinc by sieving, and then treating the residue with a chloride roasting method to separate zinc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術の項で述べた■あるいは■の方法は。 Methods ■ or ■ mentioned in the prior art section are as follows.

分離回収できる金属は水銀あるいは亜鉛のみであり、そ
の他多くの金属は回収されず、廃棄されることになり、
資源の有効利用の面から問題がある。
The only metals that can be separated and recovered are mercury and zinc; many other metals are not recovered and are discarded.
There are problems in terms of effective use of resources.

一方、■あるいは■の方法は、一応、乾電池の主要構成
金属の多くを回収するものではあるが。
On the other hand, methods ① and ① recover most of the main constituent metals of dry batteries.

二度にわたる高温焙焼を必要とし、さらに工程が複雑と
なっており、経済面から不利であるとともに1回収され
る金属も、該金属回収のための二次原料に過ぎない。
It requires high-temperature roasting twice, and the process is complicated, which is economically disadvantageous, and the metal recovered once is only a secondary raw material for the metal recovery.

以上の通り、従来技術は、資源の有効利用、処理の経済
性9回収物の形態等に問題がある。
As mentioned above, the conventional technology has problems in terms of effective use of resources, economical processing, and the form of recovered materials.

〔発明の構成〕[Structure of the invention]

本発明は、廃乾電池から、それを構成する金属すなわち
鉄、亜鉛、マンガン、銅を分離回収することを目的とし
てなされたものであり、この目的に従って本発明者等は
2種々の研究を重ねた結果。
The present invention was made for the purpose of separating and recovering the constituent metals, namely iron, zinc, manganese, and copper, from waste dry batteries, and in accordance with this purpose, the present inventors conducted two different types of research. result.

資源の有利利用、処理の経済性、さらに回収物の付加価
値等の問題を解決した次の発明をなした。
He has made the following inventions that solve problems such as advantageous use of resources, economic efficiency of processing, and added value to recovered materials.

即ち廃乾電池を破砕後、焙焼して水銀を揮発分離させた
焼滓を得る焙焼工程と、焼滓がら磁選により鉄片を除去
し、さらに水洗浄により含有塩素を除去し、亜鉛および
マンガンの酸化物を主体とする粉体を得る分離工程と、
亜鉛およびマンガンの酸化物を主体とする粉体を硫酸で
浸出し、浸出した液から微量含まれる鉄および銅を除去
して硫酸亜鉛および硫酸マンガンを含む液を得る浸出浄
液工程と、硫酸亜鉛および硫酸マンガンを含む液から電
解により陰極に亜鉛、陽極に二酸化マンガンを電着させ
回収する電解工程とから成る廃乾電池からの有価物の分
離回収方法を確立することができた。
In other words, the waste dry batteries are crushed and then roasted to obtain slag from which mercury has been volatilized and separated. Iron pieces are removed from the sintered slag by magnetic separation, chlorine is removed by washing with water, and zinc and manganese are removed. a separation step to obtain a powder mainly composed of oxides;
A leaching liquid purification process in which powder mainly consisting of zinc and manganese oxides is leached with sulfuric acid, trace amounts of iron and copper are removed from the leached liquid to obtain a liquid containing zinc sulfate and manganese sulfate, and zinc sulfate. We were able to establish a method for separating and recovering valuables from waste dry batteries, which consists of an electrolytic process in which zinc is electrolytically deposited on the cathode and manganese dioxide is electrolytically deposited on the anode from a solution containing manganese sulfate.

以下本発明について、詳細に述べる。The present invention will be described in detail below.

1廉」 廃乾電池に含有されている水銀を回収するために先ず、
破砕機にて微粉砕し、乾電池の内部にあろ水銀を含んだ
亜鉛あるいは二酸化マンガン等を露出させる。この破砕
粉を焙焼炉にて500℃から800℃の間の温度、好ま
しくは約600℃で数時間。
In order to recover the mercury contained in waste dry batteries, first,
The material is pulverized using a crusher to expose zinc or manganese dioxide containing mercury inside the battery. This crushed powder is roasted in a roasting furnace at a temperature between 500°C and 800°C, preferably about 600°C for several hours.

好ましくは約3時間焙焼する。この際、乾電池に含まれ
る水銀の99.9%以上は揮発して気相に移行するが、
この気相を冷却することにより水銀を凝縮させ回収する
ことができる。焙焼に際しては。
Preferably roast for about 3 hours. At this time, more than 99.9% of the mercury contained in the dry cell volatilizes and transfers to the gas phase.
By cooling this gas phase, mercury can be condensed and recovered. When roasting.

水銀以外の金属はそのまま残留する。Metals other than mercury remain intact.

公星工血 焙焼により得られた残留物は、金属鉄片および真ちゅう
片を含む。そこで先ず、磁選機を用いて鉄片を磁性物と
して分離回収する。次に2〜0.5m+のふるいを用い
た選別により真ちゅう片を分離回収する。こうして得ら
れた非磁性粉体を水で洗浄して、それに含まれる塩素イ
オンを除去する。塩素イオンを効率良く除くことにより
二酸化マンガンを効率良く回収できる。また、鉛電極の
消耗を防止できる。その後、濾過により固液分離して。
The residue obtained from Gongxingang blood roasting includes metal iron pieces and brass pieces. First, a magnetic separator is used to separate and collect the iron pieces as magnetic substances. Next, the brass pieces are separated and collected by sorting using a 2 to 0.5 m+ sieve. The nonmagnetic powder thus obtained is washed with water to remove the chlorine ions contained therein. By efficiently removing chlorine ions, manganese dioxide can be efficiently recovered. Further, consumption of the lead electrode can be prevented. After that, solid-liquid separation is performed by filtration.

亜鉛およびマンガンの酸化物を主成分とする粉体を得る
ことができる。
A powder containing zinc and manganese oxides as main components can be obtained.

鷹1色基〕;閏 分離工程で得られた粉体を硫酸で浸出する。ここで得ら
れる浸出液は、 ZnSO4,MnSO4を主成分とし
たものであるが、なお鉄および銅を不純物として含んで
いる。後工程において、この鉄および銅は悪影響を及ぼ
すため、 MnO2を添加しPH=4.5〜5.5に調
整し、3価とし酸化脱鉄する方法、亜鉛粉置換法による
脱銅処理を行い、液から分離除去する。
Hawk 1 color group]: The powder obtained in the step separation process is leached with sulfuric acid. The leachate obtained here mainly contains ZnSO4 and MnSO4, but also contains iron and copper as impurities. In the post-process, this iron and copper have a negative effect, so MnO2 is added to adjust the pH to 4.5 to 5.5, and the iron is removed by oxidation to make it trivalent, and the copper is removed by a zinc powder replacement method. , separated and removed from the liquid.

電解工程 浸出浄液工程で得られたZn5O*およびMn5O,を
含む液を電解液として電解を行う。その際の電解条件と
しては、液温80〜100℃、陽極鉛板、陰極アルミ板
、陽極電流密度0.5〜3A/drrr、陰極電流密度
1〜IOA/drrrが適当である。電解により陰極上
に亜鉛が析出するとともに陽極上に二酸化マンガンが同
時に析出する。これらを定期的にはぎ落とすことによっ
て高純度の亜鉛および二酸化マンガンを回収することが
できる。またこの場合2発生スラツジ量を減らすために
処理する亜鉛とマンガン量は2等量とすることが好まし
い。電気亜鉛は再溶解し、微量のMnを除きインゴット
を得る。
Electrolysis process Electrolysis is performed using the solution containing Zn5O* and Mn5O obtained in the leaching and purification process as an electrolyte. Appropriate electrolysis conditions at this time include a liquid temperature of 80 to 100°C, an anode lead plate, a cathode aluminum plate, an anode current density of 0.5 to 3 A/drrr, and a cathode current density of 1 to IOA/drrr. By electrolysis, zinc is deposited on the cathode and manganese dioxide is simultaneously deposited on the anode. High purity zinc and manganese dioxide can be recovered by periodically stripping these off. Further, in this case, in order to reduce the amount of sludge generated, it is preferable that the amounts of zinc and manganese to be treated are 2 equivalents. The electrolytic zinc is remelted and a trace amount of Mn is removed to obtain an ingot.

〔効  果〕〔effect〕

(1)廃乾電池の処理が、湿式法を多く工程に用いるこ
とにより、環境上好ましく行える。
(1) Waste dry batteries can be disposed of in an environmentally friendly manner by using wet methods in many of the processes.

(2)電気亜鉛と二酸化マンガンが、同一電解槽におい
て効率良く得られる。
(2) Electrolytic zinc and manganese dioxide can be efficiently obtained in the same electrolytic cell.

(3)廃乾電池の処理において、最終工程である電解工
程での処理液中の亜鉛、マンガンが、当量となるように
、乾電池装入処理することにより。
(3) In the treatment of waste dry batteries, the batteries are charged so that the zinc and manganese in the treatment solution in the final electrolysis step are equal in amount.

スラッジ量を減少させ、効率良く電気亜鉛と二酸化マン
ガンを得ることができる。
It is possible to reduce the amount of sludge and efficiently obtain electrolytic zinc and manganese dioxide.

〔実施例〕〔Example〕

市販の単3型のマンガン乾電池およびアルカリマンガン
乾電池を混合したもの(比率8:2) 250gを回転
せん新型破砕機にて最大粒径10■になるよう破砕を行
った。この破砕粉(組成 Zn 20%、 Mn13%
、 Fe 21%、 Cu 1%、 (1,16%、 
Hg 0.17%)をロータリーキルンにて600℃で
3時間焙焼した。この際キルンには空気を0.5 Q 
/分の流速で流し、出口空気を室温まで冷却することに
より水銀約0.3gを金属状で凝固回収できた。さらに
、微量の水銀を含む出口空気は塩素を添加した水で洗浄
することにより外気に逃げる水銀を極めて低く(5μg
/rn’)おさえることができる。
250 g of a mixture of commercially available AA-size manganese dry batteries and alkaline manganese dry batteries (ratio 8:2) was crushed to a maximum particle size of 10 square meters using a rotary shear type crusher. This crushed powder (composition Zn 20%, Mn 13%
, Fe 21%, Cu 1%, (1,16%,
Hg 0.17%) was roasted at 600°C for 3 hours in a rotary kiln. At this time, air was added to the kiln by 0.5 Q.
About 0.3 g of mercury could be solidified and recovered in the form of metal by flowing at a flow rate of /min and cooling the outlet air to room temperature. Furthermore, the outlet air containing trace amounts of mercury can be washed with chlorinated water to extremely reduce the amount of mercury escaping into the outside air (5 μg
/rn') can be controlled.

ここで得た焼滓を磁選機を用いて磁選したところ47g
鉄片を得た。さらにIg目のふるいで選分したところ、
ふるい上に4gの真ちゅう片を得た。
When the slag obtained here was magnetically separated using a magnetic separator, it weighed 47g.
Got a piece of iron. When further sorted with an Ig sieve,
4 g of brass pieces were obtained on the sieve.

ふるい下の粉体を3Qの水で洗浄したところ残渣中の塩
素濃度は6%から0.6%まで低下した。
When the powder under the sieve was washed with 3Q of water, the chlorine concentration in the residue decreased from 6% to 0.6%.

ここで得た粉体を165 g/Ωの硫酸150mQで浸
出することによってZn 60g/ Q 、 Mn 4
0g/ Q 、 Fe70mg/ Q 、 Cu 70
mg/ Q 、 pH2の液を得た。この液にMnO,
Igを加え、さらにCa(OH)aによりpH5まで中
和することにより液中のFeを沈殿除去した。さらにこ
の液に亜鉛粉1gを加わえ、液中に溶存している銅イオ
ンを還元して沈殿除去した。その結果、液中のFe、 
Cu濃度とも5■/Q以下となった。
By leaching the powder obtained here with 150 mQ of 165 g/Ω sulfuric acid, Zn 60 g/Q, Mn 4
0g/Q, Fe70mg/Q, Cu70
A solution of mg/Q and pH 2 was obtained. This solution contains MnO,
Ig was added and further neutralized to pH 5 with Ca(OH)a to precipitate and remove Fe in the solution. Furthermore, 1 g of zinc powder was added to this solution to reduce and precipitate copper ions dissolved in the solution. As a result, Fe in the liquid,
Both Cu concentrations were below 5■/Q.

この液を電解液として、液温90℃、陽極鉛板。Using this solution as an electrolyte, the solution temperature was 90°C and the anode lead plate was used.

陰極アルミ板をもちいて、陽極電流密度IA/d rr
r 。
Using a cathode aluminum plate, the anode current density IA/d rr
r.

陰極電流密度3A/dn?で電解したところ、陽極に二
酸化マンガンが、陰極に亜鉛がそれぞれ電流効率95%
および92%で析出した。
Cathode current density 3A/dn? When electrolyzed, manganese dioxide was used as the anode and zinc was used as the cathode, and the current efficiency was 95%.
and 92% precipitated.

得られた電気亜鉛は、 99.95%と品位が高いもの
が得られた。
The electrolytic zinc obtained had a high quality of 99.95%.

また、二酸化マンガンも高品位のものが得られた。得ら
れた二酸化マンガンの不純物の合計は、0.1%以下で
あった。
Furthermore, high-grade manganese dioxide was also obtained. The total amount of impurities in the obtained manganese dioxide was 0.1% or less.

スラッジ量も、極めて少なく効率の良い電解ができた。The amount of sludge was also extremely small, resulting in highly efficient electrolysis.

Claims (1)

【特許請求の範囲】 廃乾電池を破砕後、焙焼して水銀を揮発分 離させた焼滓を得る焙焼工程と、焼滓から磁選により鉄
片を除去し、さらに水洗浄により含有塩素を除去し、亜
鉛およびマンガンの酸化物を主体とする粉体を得る分離
工程と、亜鉛およびマンガンの酸化物を主体とする粉体
を硫酸で浸出し、浸出した液から微量含まれる鉄および
銅を除去して硫酸亜鉛および硫酸マンガンを含む液を得
る浸出浄液工程と、硫酸亜鉛および硫酸マンガンを含む
液から電解により陰極に亜鉛、陽極に二酸化マンガンを
電着させ回収する電解工程とから成ることを特徴とする
廃乾電池からの有価物の分離回収方法。
[Scope of Claims] A roasting step of crushing a waste dry battery and roasting it to obtain slag from which mercury has been volatilized and separated, removing iron pieces from the slag by magnetic separation, and further removing contained chlorine by washing with water. , a separation process to obtain powder mainly composed of oxides of zinc and manganese, leaching the powder mainly composed of oxides of zinc and manganese with sulfuric acid, and removing trace amounts of iron and copper from the leached solution. A leaching liquid purification process to obtain a solution containing zinc sulfate and manganese sulfate, and an electrolysis process in which zinc sulfate and manganese dioxide are electrodeposited on the cathode and manganese dioxide on the anode by electrolysis from the solution containing zinc sulfate and manganese sulfate. A method for separating and recovering valuable materials from waste dry batteries.
JP60102680A 1985-05-16 1985-05-16 Method for separating and recovering valuables from waste dry battery Granted JPS61261443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60102680A JPS61261443A (en) 1985-05-16 1985-05-16 Method for separating and recovering valuables from waste dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60102680A JPS61261443A (en) 1985-05-16 1985-05-16 Method for separating and recovering valuables from waste dry battery

Publications (2)

Publication Number Publication Date
JPS61261443A true JPS61261443A (en) 1986-11-19
JPH036208B2 JPH036208B2 (en) 1991-01-29

Family

ID=14333947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60102680A Granted JPS61261443A (en) 1985-05-16 1985-05-16 Method for separating and recovering valuables from waste dry battery

Country Status (1)

Country Link
JP (1) JPS61261443A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197592A (en) * 1986-12-12 1988-08-16 レシテック ソシエテ アノニム Method of reutilizing battery, integrated circuit substrate and electronic part
EP0284135A2 (en) * 1987-03-26 1988-09-28 Metallgesellschaft Ag Process for recovering small batteries
EP0650209A1 (en) * 1993-10-22 1995-04-26 Keramchemie GmbH Method for hydrometallurgical treatment of used batteries
EP0656669A1 (en) * 1993-12-04 1995-06-07 Keramchemie GmbH Method for the hydrometallurgical treatment of used domestic and appliance batteries
EP1148571A1 (en) * 2000-04-17 2001-10-24 Revatech S.A. Method for recycling and treating of salt and alkaline batteries
EP1684369A1 (en) * 2004-11-25 2006-07-26 Universita'Degli Studi di Roma "La Sapienza" Process and plant for the treatment of run-down batteries
JP2007012527A (en) * 2005-07-01 2007-01-18 Jfe Kankyo Corp Collecting method of metallurgic raw material from waste dry battery
JP2008050637A (en) * 2006-08-23 2008-03-06 Hidenori Takahashi Material for collecting aluminum, method for manufacturing the same, and method for collecting aluminum
EP2114646A1 (en) * 2007-03-05 2009-11-11 Hyong Hag Im Method for making ceramic-coloring clay bricks using waste batteries powder
JP2011105581A (en) * 2009-11-20 2011-06-02 Korea Inst Of Geoscience & Mineral Resources Method for producing manganese sulfate and zinc sulfate from waste battery containing manganese and zinc
CN102694163A (en) * 2011-03-23 2012-09-26 韩国地质资源研究院 Method for preparing CMD by using trivalent anode active material, CMD prepared by the method and secondary battery including the CMD
CN102780014A (en) * 2012-08-09 2012-11-14 遵义师范学院 Method for regenerating manganese sulfate from waste alkaline zinc-manganese battery
RU2486262C2 (en) * 2011-09-09 2013-06-27 Закрытое акционерное общество "Экология" Method of recycling spent chemical cells
WO2015162902A1 (en) * 2014-04-21 2015-10-29 Jfeスチール株式会社 Method and equipment for recovering valuable components from waste dry batteries
WO2018168471A1 (en) * 2017-03-15 2018-09-20 Jfeスチール株式会社 Production method for metallic manganese
WO2018168472A1 (en) * 2017-03-15 2018-09-20 Jfeスチール株式会社 Production method for metallic manganese
WO2019017055A1 (en) * 2017-07-19 2019-01-24 パナソニックIpマネジメント株式会社 Production method for positive electrode material and manganese dry cell using same
WO2019150005A1 (en) * 2018-02-05 2019-08-08 Tracegrow Oy Processes for production of micronutrients from spent alkaline batteries
RU2723168C1 (en) * 2020-01-29 2020-06-09 Александр Александрович Климов Method of utilizing spent current sources containing zinc and manganese
CN111945002A (en) * 2020-07-06 2020-11-17 广东邦普循环科技有限公司 Method for removing copper from waste lithium batteries by recovery wet process
WO2021075136A1 (en) * 2019-10-18 2021-04-22 Jfeスチール株式会社 Method for recovering manganese from waste dry-cell batteries and recovery equipment
WO2021075135A1 (en) * 2019-10-18 2021-04-22 Jfeスチール株式会社 Method and facility for recovering manganese from waste dry batteries
CN112828011A (en) * 2021-01-05 2021-05-25 湖南邦普循环科技有限公司 Method for treating waste lithium battery copper-aluminum material and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527813A (en) * 1975-07-09 1977-01-21 Nippon Steel Corp Process for charging blast furnace with raw material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527813A (en) * 1975-07-09 1977-01-21 Nippon Steel Corp Process for charging blast furnace with raw material

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197592A (en) * 1986-12-12 1988-08-16 レシテック ソシエテ アノニム Method of reutilizing battery, integrated circuit substrate and electronic part
EP0284135A2 (en) * 1987-03-26 1988-09-28 Metallgesellschaft Ag Process for recovering small batteries
EP0284135A3 (en) * 1987-03-26 1990-01-31 Metallgesellschaft Ag Process for recovering small batteries
EP0650209A1 (en) * 1993-10-22 1995-04-26 Keramchemie GmbH Method for hydrometallurgical treatment of used batteries
EP0656669A1 (en) * 1993-12-04 1995-06-07 Keramchemie GmbH Method for the hydrometallurgical treatment of used domestic and appliance batteries
EP1148571A1 (en) * 2000-04-17 2001-10-24 Revatech S.A. Method for recycling and treating of salt and alkaline batteries
EP1684369A1 (en) * 2004-11-25 2006-07-26 Universita'Degli Studi di Roma "La Sapienza" Process and plant for the treatment of run-down batteries
JP2007012527A (en) * 2005-07-01 2007-01-18 Jfe Kankyo Corp Collecting method of metallurgic raw material from waste dry battery
JP2008050637A (en) * 2006-08-23 2008-03-06 Hidenori Takahashi Material for collecting aluminum, method for manufacturing the same, and method for collecting aluminum
EP2114646A1 (en) * 2007-03-05 2009-11-11 Hyong Hag Im Method for making ceramic-coloring clay bricks using waste batteries powder
EP2114646A4 (en) * 2007-03-05 2012-01-04 Hyong Hag Im Method for making ceramic-coloring clay bricks using waste batteries powder
JP2011105581A (en) * 2009-11-20 2011-06-02 Korea Inst Of Geoscience & Mineral Resources Method for producing manganese sulfate and zinc sulfate from waste battery containing manganese and zinc
CN102694163A (en) * 2011-03-23 2012-09-26 韩国地质资源研究院 Method for preparing CMD by using trivalent anode active material, CMD prepared by the method and secondary battery including the CMD
CN102694163B (en) * 2011-03-23 2015-08-12 韩国地质资源研究院 The method of CMD, the CMD prepared by the method and the secondary cell comprising this CMD is prepared by trivalent active material of positive electrode
RU2486262C2 (en) * 2011-09-09 2013-06-27 Закрытое акционерное общество "Экология" Method of recycling spent chemical cells
CN102780014A (en) * 2012-08-09 2012-11-14 遵义师范学院 Method for regenerating manganese sulfate from waste alkaline zinc-manganese battery
WO2015162902A1 (en) * 2014-04-21 2015-10-29 Jfeスチール株式会社 Method and equipment for recovering valuable components from waste dry batteries
JP6070898B2 (en) * 2014-04-21 2017-02-01 Jfeスチール株式会社 Method and facility for recovering valuable components from waste dry batteries
WO2018168471A1 (en) * 2017-03-15 2018-09-20 Jfeスチール株式会社 Production method for metallic manganese
WO2018168472A1 (en) * 2017-03-15 2018-09-20 Jfeスチール株式会社 Production method for metallic manganese
JP6411001B1 (en) * 2017-03-15 2018-10-24 Jfeスチール株式会社 Method for producing metal manganese
JPWO2018168471A1 (en) * 2017-03-15 2019-03-28 Jfeスチール株式会社 Method for producing metal manganese
WO2019017055A1 (en) * 2017-07-19 2019-01-24 パナソニックIpマネジメント株式会社 Production method for positive electrode material and manganese dry cell using same
WO2019150005A1 (en) * 2018-02-05 2019-08-08 Tracegrow Oy Processes for production of micronutrients from spent alkaline batteries
JPWO2021075135A1 (en) * 2019-10-18 2021-11-04 Jfeスチール株式会社 Manganese recovery method and recovery equipment from waste batteries
WO2021075136A1 (en) * 2019-10-18 2021-04-22 Jfeスチール株式会社 Method for recovering manganese from waste dry-cell batteries and recovery equipment
WO2021075135A1 (en) * 2019-10-18 2021-04-22 Jfeスチール株式会社 Method and facility for recovering manganese from waste dry batteries
JPWO2021075136A1 (en) * 2019-10-18 2021-11-04 Jfeスチール株式会社 Manganese recovery method and recovery equipment from waste batteries
CN114466941A (en) * 2019-10-18 2022-05-10 杰富意钢铁株式会社 Method and apparatus for recovering manganese from waste dry battery
CN114555839A (en) * 2019-10-18 2022-05-27 杰富意钢铁株式会社 Method and apparatus for recovering manganese from waste dry battery
RU2723168C1 (en) * 2020-01-29 2020-06-09 Александр Александрович Климов Method of utilizing spent current sources containing zinc and manganese
CN111945002A (en) * 2020-07-06 2020-11-17 广东邦普循环科技有限公司 Method for removing copper from waste lithium batteries by recovery wet process
CN111945002B (en) * 2020-07-06 2022-06-14 广东邦普循环科技有限公司 Method for removing copper from waste lithium batteries by recovery wet process
CN112828011A (en) * 2021-01-05 2021-05-25 湖南邦普循环科技有限公司 Method for treating waste lithium battery copper-aluminum material and application

Also Published As

Publication number Publication date
JPH036208B2 (en) 1991-01-29

Similar Documents

Publication Publication Date Title
JPS61261443A (en) Method for separating and recovering valuables from waste dry battery
JP4144820B2 (en) Method for regenerating positive electrode active material from lithium ion secondary battery
TW201737548A (en) Process for recovering metal values from spent lithium ion batteries with high manganese content
KR20200065503A (en) Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery
JP2005060813A (en) Method for refining copper raw material containing copper sulfide mineral
JP7076149B2 (en) Electrolytic regeneration method of Nd-Fe-B scrap solution
CN111647754A (en) Comprehensive utilization method of zinc-containing dust and sludge in steel plant
IE45306B1 (en) Electrolytic process for the recovery of zinc and manganese dioxide
JPWO2021075135A1 (en) Manganese recovery method and recovery equipment from waste batteries
CN105274565A (en) Method for electrolyzing metals through wet method
JPWO2021075136A1 (en) Manganese recovery method and recovery equipment from waste batteries
CA1074727A (en) Process for recovering electrolytic copper of high purity by means of reduction electrolysis
US4159232A (en) Electro-hydrometallurgical process for the extraction of base metals and iron
US6264903B1 (en) Method for recycling industrial waste streams containing zinc compounds
CN105887118B (en) A kind of method that Selective Separation from materials containing tellurium reclaims tellurium
CN107299228A (en) A kind of method that zinc hydrometallurgy purification copper ashes extracts metallic copper
JPH1046266A (en) Method for recovering cobalt from spent secondary battery
JP4215547B2 (en) Cobalt recovery method
CN107287443A (en) A kind of method of leachate after high-efficient purification lead copper matte pressurized acid leaching
CN101314184A (en) Method for recycling and preparing ultra-fine zinc dust from zinc dust containing material
CN109055764B (en) Comprehensive recovery method of high-chlorine low-zinc material
JP3113307B2 (en) Method for separating and recovering zinc and manganese from waste dry batteries
CN115367776B (en) Recovery method of lithium iron phosphate battery
US20070041883A1 (en) Process for hydrometallurgical treatment of electric arc furnace dust
JP5482461B2 (en) Method for recovering copper from copper electrolysis waste liquid