JPS6081765A - Manufacturing method for paste type cadmium negative electrode plate - Google Patents

Manufacturing method for paste type cadmium negative electrode plate

Info

Publication number
JPS6081765A
JPS6081765A JP58190444A JP19044483A JPS6081765A JP S6081765 A JPS6081765 A JP S6081765A JP 58190444 A JP58190444 A JP 58190444A JP 19044483 A JP19044483 A JP 19044483A JP S6081765 A JPS6081765 A JP S6081765A
Authority
JP
Japan
Prior art keywords
electrode plate
cadmium
electrode
active material
carbon powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58190444A
Other languages
Japanese (ja)
Other versions
JPH0234434B2 (en
Inventor
Koji Nishikawa
幸治 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58190444A priority Critical patent/JPS6081765A/en
Publication of JPS6081765A publication Critical patent/JPS6081765A/en
Publication of JPH0234434B2 publication Critical patent/JPH0234434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase absorption capability of the captioned electrode plate and strength thereof by providing a conductive layer make of carbon powder on the surface of a pasty active material layer mainly composed of a cadmium active material with which an electrode core body is coated, and thereafter charging said layer with quantity of electricity less than specific % of electrode plate capacity. CONSTITUTION:An electrode core body 2 is coated with paste 1 yielded by mixing cadmium oxide and a binder, etc., and dried, and thereby a paste type cadmium electrode plate is formed. The electrode plate is dipped in a conductive coating material, dried, and thereby an electrode plate including a thin carbon powder layer 3 on its surface is made, pressed and formed. The resultant elec- trode plate is forced to pass through a forming device, charged with quantity of electricity less than 60% of electrode plate capacity, washed and dried to obtain a finished electrode plate. A negative electrode plate constructed in such a way can allow metallic cadmium to exist on its surface even if the amount of charging for formation is small, improving its capability of absorbing oxigen gas for economical use thereof.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアルカリ蓄゛亀池、特に密閉型アルカリ蓄電池
に用いられるペースト式カドミウム陰極板の製造方法エ
ニ関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a paste-type cadmium cathode plate used in alkaline storage batteries, particularly sealed alkaline storage batteries.

(ロ)従来技術 密閉型アルカリ蓄電池に用いられるペースト式カドミウ
ム陰極板は一般に過充電により陽極より発生する酸素ガ
スの吸収能力を向上させるため及び所定の放電特性を確
保するために化成により金属カドミウムを生成させるこ
とが行なわれている。
(b) Conventional technology Paste-type cadmium cathode plates used in sealed alkaline storage batteries are generally made of metal cadmium by chemical conversion in order to improve the ability to absorb oxygen gas generated from the anode due to overcharging and to ensure predetermined discharge characteristics. It is being generated.

従来から行なわれている化成の方法には活物質の保持体
である6芯体より直接給電する方法あるいは回転ロール
を介して連続的に極板表面より給電する方法があるが、
導電性の低い酸化カドミウム及び水酸化カドミウムをア
ルカリ溶液中で充電を行なう場合には、前記化成方法で
はいづれも充電生成物である金属カドミウムが電極芯体
の周辺から生成し、また一般に密閉型ニッケルーカドミ
ウム蓄電池に用いた場合には陰極容量を陽極容量より大
にして陽極が満充電となっても陰極には未充眠部分が残
るようにしているため陰極表面には金属カドミウムが存
在し離くなっている。したがって、過充電により陽極か
ら発生する酸素ガスは通気性の悪い極板表面を通過して
初めて吸収されることになり酸素ガス吸収能力が低くな
るという問題点があった。
Conventional chemical conversion methods include a method in which power is supplied directly from a six-core body that holds the active material, or a method in which power is continuously supplied from the surface of the electrode plate via a rotating roll.
When cadmium oxide and cadmium hydroxide, which have low conductivity, are charged in an alkaline solution, metal cadmium, which is a charging product, is generated from around the electrode core in each of the above chemical conversion methods. When used in a lucadmium storage battery, the cathode capacity is made larger than the anode capacity so that even when the anode is fully charged, an unsleeping portion remains on the cathode, so metal cadmium is present on the cathode surface, causing separation. It has become. Therefore, the oxygen gas generated from the anode due to overcharging is absorbed only after passing through the surface of the electrode plate, which has poor air permeability, resulting in a problem that the oxygen gas absorption ability is reduced.

し1 発明の目的 本発明はかかる点に鑑み極板表面に金属カドミウムを生
成させておくことで、極板表面の強度が増し、且つ酸素
ガス吸収能力が向上したベースト式カドミウム陰極板を
提供せんとするものである。
1. Purpose of the Invention In view of the above, the present invention provides a base type cadmium cathode plate in which the strength of the electrode plate surface is increased and the oxygen gas absorption ability is improved by forming metal cadmium on the electrode plate surface. That is.

(ハ)発明の構成 本発明のペースト式カドミウム陰極板は電極芯体に塗着
したカドミウム活物質を主体とするペースト状活物質層
の表面に炭素粉末よりなる導電層を設けた後、極板容量
の60%以下の電気量を充電することで極板表面に金属
カドミウムを生成させるものである。
(C) Structure of the Invention The paste-type cadmium cathode plate of the present invention is produced by providing a conductive layer made of carbon powder on the surface of a paste-like active material layer mainly composed of cadmium active material applied to an electrode core, and then applying a conductive layer to the electrode core. Metallic cadmium is generated on the surface of the electrode plate by charging the battery with an amount of electricity that is 60% or less of the capacity.

画実施例 酸化カドミウムと結着剤等と′8−混合してベーヌト状
となし電極芯体に塗着、乾燥し、従来通りの方法で作成
したペースト式カドミウム極板を、日本黒鉛工業(掬製
導電性塗料バニーへイトBP−333に浸漬した後乾燥
して、極板表面に薄い炭素粉末@を持つ極板を作映し、
この極板を0.62 [73に抑圧整形した。こうして
作成された本発明極板は約20〜ろ0μmの炭素粉末@
を有するものであった。この極板を極板にとする。また
、比較として前述の実施例に於ける従来通りの方法で作
製したペースト式カドミウム極板を用い、この極板をり
、 62 yxsに押圧整形して極板Bとする。第1図
及び第2図はこれら極板へ及びBの断面図であり。
Example 3 Paste-type cadmium electrode plates prepared in the conventional manner by mixing cadmium oxide and a binder, etc., and applying the mixture to a bare electrode core and drying were prepared by Nippon Graphite Industries (Kiku). After dipping in the conductive paint Bunny Hate BP-333 and drying it, a plate with thin carbon powder on the plate surface is created.
This electrode plate was suppressed to 0.62 [73]. The electrode plate of the present invention thus created is carbon powder of about 20 to 0 μm @
It had a This electrode plate will be used as an electrode plate. Further, as a comparison, a paste-type cadmium electrode plate produced by the conventional method in the above-mentioned embodiment was used, and this electrode plate was pressed and shaped into a shape of 62 yxs to obtain an electrode plate B. 1 and 2 are cross-sectional views of these electrode plates and B.

図中(1)は活物質1、(2)は電極芯体、(3)は炭
素粉末層を示している。
In the figure, (1) shows the active material 1, (2) shows the electrode core, and (3) shows the carbon powder layer.

第5図は化成装置の概略図であり、給電ローラ(6)及
び(7)、回転ローラ(8)、電槽(9)、一対の対極
(10)及び電解液allとから構成されており、極板
(12は給電ローラ(6)及び(7)から給電を受けm
一対の対極曲間を通過する間に充電される。
FIG. 5 is a schematic diagram of the chemical conversion equipment, which is composed of power supply rollers (6) and (7), a rotating roller (8), a battery case (9), a pair of counter electrodes (10), and an electrolyte all. , the electrode plate (12 receives power from the power supply rollers (6) and (7) m
It is charged while passing between a pair of opposite poles.

前記極板N及びBYこの化成装置を通過させ、極板容量
の約35%を夫々充電し、その後水洗。
The electrode plates N and BY were passed through this chemical conversion device, charged to about 35% of the capacity of the electrode plates, and then washed with water.

乾燥することにより完成極板K及びB′を得た。第3図
及び第4図は極板へ及びBの断面図であり。
By drying, completed electrode plates K and B' were obtained. FIGS. 3 and 4 are cross-sectional views of the electrode plate and B. FIG.

図中(4)は未充電状態のカドミウム活物質、(5)は
充電状態のカドミウム活物質を示し、また第1図及び第
2図と共通の構成物は同一符号を符した。第3図及び第
4図から明らかな様に比較極板B′は電極芯体(2)の
周辺に充電状態の金属カドミウムが生成しているのに対
し1本発明極板には極板表面に於いて金属カドミウムが
生成してイル。
In the figure, (4) shows the cadmium active material in an uncharged state, and (5) shows the cadmium active material in a charged state, and components common to those in FIGS. 1 and 2 are given the same reference numerals. As is clear from FIGS. 3 and 4, the comparative electrode plate B' has metallic cadmium in a charged state around the electrode core (2), whereas the electrode plate of the present invention has Metallic cadmium is produced in the irradiation process.

次いでこの極@K及びB′を公知の焼結式ニダゲ”QA
QOm八充邂、へび0°C2AOmA充t′?行ない邂
池内ガス圧を測定した。この結果を第6内及び第7図に
ボす。図中K及びIは極板K及びB′を用いた電池を表
わしている。第6図及び第7図だことがわかる。
Next, these poles @K and B' are processed using a known sintering method "QA".
QOm eight charge, snake 0°C2AOmA charge'? The gas pressure inside the pond was measured. The results are shown in Figures 6 and 7. In the figure, K and I represent batteries using electrode plates K and B'. It can be seen that FIGS. 6 and 7.

この理由を考察するに2本発明極板には化成の際に、炭
素粉末1(d +31を通じて電流が流れ、炭素粉末層
(3)に接触する部分から内部に充電が進行するため金
属カドミウムが極柩表層に形成されており。
Considering the reason for this, 2. During chemical formation, current flows through the carbon powder 1 (d + 31) in the electrode plate of the present invention, and charging progresses inside from the part that contacts the carbon powder layer (3), so that the metal cadmium It is formed on the surface layer of the polar coffin.

この極板を用いた密閉型ニーdゲルーカドミウム蓄電池
を充電し、過充電により陽極より酸素が発生すると一酸
素と接触し易い陰極板表面2に存在する金属カドミウム
と接触吸収されるため、電池内部ガス圧の上昇が抑制さ
れたためと考えられる。また、金属カドミウムが極板表
1近傍に形成され金属カドミウムのマトリ呼りヌを構成
するため、極板強度が従来の部分充電によるものに比し
増加し。
When a sealed needle-type gel-cadmium storage battery using this electrode plate is charged, when oxygen is generated from the anode due to overcharging, it comes into contact with the metal cadmium present on the cathode plate surface 2, which easily comes into contact with oxygen, and is absorbed inside the battery. This is thought to be because the increase in gas pressure was suppressed. In addition, since metal cadmium is formed near the electrode plate surface 1 and forms a matrix of metal cadmium, the electrode plate strength is increased compared to the conventional partial charging.

渦巻状に極板を巻回して用いる際の極板のはがれ。Peeling of the electrode plate when used by winding the electrode plate in a spiral shape.

脱落が防止でき、更に、炭素粉末からなる導電被膜を持
つため極板表面からの給電にfdいて抵抗が減り+ を
源電圧の低ドがはかれ、電池作製時において、炭素粉末
層の表面が滑らかであるため澱寵素体の外装缶への挿入
が容易となる。
In addition, since it has a conductive coating made of carbon powder, the resistance to power supply from the electrode plate surface is reduced, and a low source voltage can be achieved. Since it is smooth, it is easy to insert the stagnant body into the outer can.

以上の様に本発明の製造方法(二より作製された陰極板
は、少量の化成充電量を与えることによっても極板表面
に金属カドミウムを存在させることができ、酸素ガス吸
収能力を向ヒさせるが、従来の製造方法によっても極板
容量の60%!越える化成充電を行なうと、fi板表面
に充電により生成した金属カドミウムが表われる様にな
り一木発明の目的とするところの金属カドミウムを極板
表面に有する陰極板が得られることとなる。しかしなが
ら1本発明の製造方法に於いては特に化成充電電気量を
60の以下とした時に従来方法による陰極板と極板性能
に於いて大きな差異が生じ、化成充電量も少なくてすみ
経済的である。
As described above, the cathode plate produced by the manufacturing method of the present invention (2) can have metal cadmium present on the electrode plate surface even by applying a small amount of chemical charge, which improves the oxygen gas absorption ability. However, even with the conventional manufacturing method, if chemical charging is performed that exceeds 60% of the plate capacity, metallic cadmium generated by charging will appear on the surface of the FI plate, which is the purpose of Ichiki's invention. However, in the manufacturing method of the present invention, especially when the amount of charge electricity is 60 or less, the performance of the cathode plate is greatly improved compared to that of the conventional method. There is a difference, and the amount of chemical charging is also small, making it economical.

次いで本発明方法を、陰極板表面に金属板を接触させ充
電することにより陰極板表面に金属カドミウムな生成さ
せる従来方法と比較すると、この従来方法による極板は
充放電を繰り返すことにより極板表面の金属カドミウム
が放電状態の水酸化カドミウムに変換され酸素ガス圧の
吸収能力が劣化するのに対し1本発明極板は、充電の際
に複極芯体な中心として生成する金属カドミウムが陰極
表面の一部に到達すると、到達した部分から炭素粉末1
に沿って徐々に金属カドミウムが生成されて行くため充
放電の繰り返しにより極板表面の金属カドミウムが消失
することがなく、長期にわたり優れた酸素ガス吸収能・
pを維持する。
Next, when comparing the method of the present invention with a conventional method in which metallic cadmium is generated on the surface of the cathode plate by bringing a metal plate into contact with the surface of the cathode plate and charging Metal cadmium is converted to cadmium hydroxide in a discharged state, deteriorating its ability to absorb oxygen gas pressure.1 In contrast, in the electrode plate of the present invention, metal cadmium generated as the center of the bipolar core during charging is converted to cadmium hydroxide on the cathode surface. When reaching a part of the carbon powder 1
Since metal cadmium is gradually generated along the electrode plate surface, the metal cadmium on the surface of the electrode plate does not disappear due to repeated charging and discharging, and has excellent oxygen gas absorption ability over a long period of time.
Maintain p.

また、極板表面に形成する導電層に金属粉末を用いた場
合の結果と比較しても。
Also, compared to the results when metal powder was used for the conductive layer formed on the surface of the electrode plate.

い ■ 前記金属粉末としてカドミウムをもちた場た 台には、前述のとおり導’IC11としての金属カドミ
ウムが直接充放電反応に関与するため、その効果を持続
することができない。
(2) In the case of a base having cadmium as the metal powder, the effect cannot be maintained because the metal cadmium as the conductive IC 11 directly participates in the charge/discharge reaction as described above.

■ アルミニウム、能鉛−錫、鉛、銅等を用いた場合に
は、アルカリ電解液中に溶出するため導電層が消失し、
その効果を失う。加えて9曲鉛は充放電反応により陰極
表面に針状結晶を形成し電池内部短絡を引き起こし電池
寿命の低下をもたらし、鉛は極板容量の劣化を促進式せ
、また銅は−Cu2+(→Cu の反応により電池の自
己放電を促進させる。
■ When using aluminum, lead-tin, lead, copper, etc., the conductive layer disappears as it dissolves into the alkaline electrolyte.
loses its effect. In addition, 9-curved lead forms needle-like crystals on the cathode surface through charging and discharging reactions, causing short circuits within the battery and shortening the battery life. Lead accelerates deterioration of the electrode plate capacity, and copper -Cu2+ (→ The reaction of Cu promotes self-discharge of the battery.

■ 鉄−ニッケル、コバルト、白金等を用いた場合には
、水素過電圧が小さいため過充電時に陰極より著しい水
素ガス発生を引き起こし、密閉化された電池内部の系を
破壊するに金る。
■ When iron-nickel, cobalt, platinum, etc. are used, the hydrogen overvoltage is small, causing significant hydrogen gas to be generated from the cathode during overcharging, which can destroy the sealed internal system of the battery.

■ 金、銀、その他産出量の少ない金属は、炭素粉末に
比べると非常に高価であり、実用に供することが困難で
ある。
■ Gold, silver, and other metals that are produced in small amounts are much more expensive than carbon powder, making it difficult to put them to practical use.

■ その他罪金属元素に近い金属や導電性金属酸化物と
呼ばれる物質も、亀導度が小さく効果が少ない事、また
は高価である事などにより有効ではない。
■ Other sin Metals close to metal elements and substances called conductive metal oxides are also not effective because they have low electrical conductivity and are less effective, or are expensive.

これに対して炭素粉末は、(1)アルカリ電解液中で安
定、(2)充放電反応に関与せず、電池特性に何ら悪影
響をもたらさない、(3)水素過電圧の低下による著し
い水素ガス発生を引き起こさない、(4)廉価であると
いう特徴を兼ね備えている。この様に炭素粉末は金属粉
末に比し優れたものであり最も効果的な材料といえる。
On the other hand, carbon powder is (1) stable in alkaline electrolyte, (2) does not participate in charge/discharge reactions and does not have any adverse effect on battery characteristics, and (3) produces significant hydrogen gas due to reduction in hydrogen overvoltage. (4) It is inexpensive. In this way, carbon powder is superior to metal powder and can be said to be the most effective material.

また炭素粉末もしくはその@濁液?塗希し′C用いるの
に替え、繊維状炭素を用いた場合には、極板表面−Lの
均一性l二劣るため、酸素ガス吸収能方向−ヒへの効果
が小さいと共に、導電層の厚みが大となるためエネルギ
ー密度の観点から不利であり。
Also carbon powder or its @turbidity? When fibrous carbon is used instead of coating, the uniformity of the electrode plate surface L is poor, so the effect on the oxygen gas absorption capacity is small, and the conductive layer is Since the thickness is large, it is disadvantageous from the viewpoint of energy density.

炭素繊維のけば立ちは電池内短絡の原因となり。Fuzzing of carbon fiber can cause a short circuit inside the battery.

不適当である。It's inappropriate.

悶 発明の効果 以上の様に本発明は電極芯体にカドミウム活物以下の電
気駄ヲ充屯するものであるから、酸素ガス吸収能力、極
板強度の増加及び化成電源電圧の低トなど優れた性能の
ペースト式カドミウム陰極板を提供することができる。
Effects of the Invention As described above, since the electrode core of the present invention is filled with an electric charge of less than cadmium active material, it has advantages such as increased oxygen gas absorption ability, increased electrode plate strength, and lowered chemical power supply voltage. It is possible to provide a paste-type cadmium cathode plate with excellent performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による極板及び比較極板の未
化成時の断面図、第3図及び第4図は本発明による極板
及び比較極板の化成充電後の断面図、第5図は化成装置
の概略図、第6図及び第7図は充電時間と電池内部ガス
圧との関係を示す図面。 (1)・・・活物質重、 (2)・・・悩芯体、(3)
・・・大索粉末+1.(,11・・・未充電状態の活物
質、(5)・・・充准状態の活物質。 第6図 虹電 時pJ(hcyrrs) 第7.図 先、電、閏 ゛1°パ)
1 and 2 are cross-sectional views of the electrode plate according to the present invention and a comparative electrode plate before chemical charging; FIGS. 3 and 4 are cross-sectional views of the electrode plate according to the present invention and a comparative electrode plate after chemical charging; FIG. 5 is a schematic diagram of the chemical conversion apparatus, and FIGS. 6 and 7 are drawings showing the relationship between charging time and battery internal gas pressure. (1)...active material weight, (2)...nuclear body, (3)
... Dasaku powder +1. (,11...Active material in uncharged state, (5)...Active material in charged state. Fig. 6 Rainbow electric time pJ (hcyrrs) Fig. 7. Figure tip, electric, leap ゛1° pa)

Claims (1)

【特許請求の範囲】[Claims] (1) 電極芯体に塗着したカドミウム活物質を主体と
するペースト状活物質層の表面に炭素粉末よりなる導電
層?設けた後、極板容量の60%以下の戒気嵐を充電す
ることン特徴とするペースト式カドミウム陰極板の製造
方法。
(1) A conductive layer made of carbon powder on the surface of a paste-like active material layer mainly made of cadmium active material applied to the electrode core? A method for producing a paste-type cadmium cathode plate, which is characterized in that, after being provided, a qi storm of 60% or less of the capacity of the plate is charged.
JP58190444A 1983-10-12 1983-10-12 Manufacturing method for paste type cadmium negative electrode plate Granted JPS6081765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190444A JPS6081765A (en) 1983-10-12 1983-10-12 Manufacturing method for paste type cadmium negative electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190444A JPS6081765A (en) 1983-10-12 1983-10-12 Manufacturing method for paste type cadmium negative electrode plate

Publications (2)

Publication Number Publication Date
JPS6081765A true JPS6081765A (en) 1985-05-09
JPH0234434B2 JPH0234434B2 (en) 1990-08-03

Family

ID=16258232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190444A Granted JPS6081765A (en) 1983-10-12 1983-10-12 Manufacturing method for paste type cadmium negative electrode plate

Country Status (1)

Country Link
JP (1) JPS6081765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136764A (en) * 1985-12-09 1987-06-19 Matsushita Electric Ind Co Ltd Manufacture of paste type cadmium negative electrode
JPS63138651A (en) * 1986-11-28 1988-06-10 Matsushita Electric Ind Co Ltd Paste type cadmium negative electrode
JPS63158747A (en) * 1986-12-22 1988-07-01 Matsushita Electric Ind Co Ltd Plate type cadmium negative electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150641A (en) * 1975-06-20 1976-12-24 Japan Storage Battery Co Ltd Zinc plate for sealed alkaline battery
JPS5636782A (en) * 1979-09-04 1981-04-10 Seiko Instr & Electronics Ltd Print control system of dot printer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150641A (en) * 1975-06-20 1976-12-24 Japan Storage Battery Co Ltd Zinc plate for sealed alkaline battery
JPS5636782A (en) * 1979-09-04 1981-04-10 Seiko Instr & Electronics Ltd Print control system of dot printer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136764A (en) * 1985-12-09 1987-06-19 Matsushita Electric Ind Co Ltd Manufacture of paste type cadmium negative electrode
JPS63138651A (en) * 1986-11-28 1988-06-10 Matsushita Electric Ind Co Ltd Paste type cadmium negative electrode
JPH0546662B2 (en) * 1986-11-28 1993-07-14 Matsushita Electric Ind Co Ltd
JPS63158747A (en) * 1986-12-22 1988-07-01 Matsushita Electric Ind Co Ltd Plate type cadmium negative electrode
JPH0555980B2 (en) * 1986-12-22 1993-08-18 Matsushita Electric Ind Co Ltd

Also Published As

Publication number Publication date
JPH0234434B2 (en) 1990-08-03

Similar Documents

Publication Publication Date Title
JP2003249223A (en) Lithium ion secondary battery and its manufacturing method
JPS6081765A (en) Manufacturing method for paste type cadmium negative electrode plate
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JPS6063875A (en) Paste type cadmium anode plate for sealed alkaline storage battery
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2773253B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH0837001A (en) Positive electrode plate for lead-acid battery and manufacture of the electrode plate
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH0775163B2 (en) Manufacturing method of cadmium electrode for battery
JPH0582027B2 (en)
FI70490C (en) ELEKTRODER FOER BLYACKUMULATOR SAMT FOERFARANDE FOER FRAMSTAELLNING AV EN ELEKTROD
JP3018879B2 (en) Chemical formation method of paste-type cadmium anode
JPH07320726A (en) Manufacture of negative electrode material for polymer solid electrolyte battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
CN111435730A (en) Method for forming an interfacial layer of a lead-carbon compound on a lead-based substrate
JPH0234433B2 (en)
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JPS62136764A (en) Manufacture of paste type cadmium negative electrode
JPS6210860A (en) Silver oxide battery
JPS63128557A (en) Nickel-cadmium cell
JPS6211455B2 (en)
JPS62136763A (en) Manufacture of paste type cadmium negative electrode
JPS60140656A (en) Production of cadmium negative electrode plate for alkaline storage battery
JPS60258855A (en) Method of manufacturing paste type cadmium negative pole