JPS6210860A - Silver oxide battery - Google Patents

Silver oxide battery

Info

Publication number
JPS6210860A
JPS6210860A JP60148399A JP14839985A JPS6210860A JP S6210860 A JPS6210860 A JP S6210860A JP 60148399 A JP60148399 A JP 60148399A JP 14839985 A JP14839985 A JP 14839985A JP S6210860 A JPS6210860 A JP S6210860A
Authority
JP
Japan
Prior art keywords
particles
silver oxide
battery
ago
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60148399A
Other languages
Japanese (ja)
Inventor
Nobuaki Chiba
千葉 信昭
Kazumasa Yoshida
和正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP60148399A priority Critical patent/JPS6210860A/en
Publication of JPS6210860A publication Critical patent/JPS6210860A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the capacity of a battery by using a positive mix comprising AgO particles covered with Ag2O fine particles and a complex oxide of Ag-Ni. CONSTITUTION:AgO particles 1 covered with Ag2O fine particles 2 are used as a positive active material. In order to completely cover the surfaces of particles 1, the amount of fine particles 2 is desired to limit to 20-70wt% of the total weight of the particles 1 and the fine particles 2. A complex oxide of Ag-Ni indicated in AgNiOX (1.0<X<=2.0) is used as conductive material of the positive mix. By using this positive mix, a battery having low internal resistance and large capacity can be obtained.

Description

【発明の詳細な説明】 [産業−にの利用分野1 本発明は酸化銀電池に関し、さらに詳しくは、大きな電
気容量を有し、しかも、貯蔵安定性に優れた酸化銀電池
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application 1] The present invention relates to a silver oxide battery, and more particularly to a silver oxide battery having a large electric capacity and excellent storage stability.

[従来技術] 酸化銀(AgO1Ag2o)を正極作用物質として使用
する酸化銀電池は、作動電圧が安定で、反応性が良く、
しかも高いエネルギー密度を有するため、例えば腕時計
用電池として重用されている。
[Prior Art] A silver oxide battery using silver oxide (AgO1Ag2o) as a positive electrode active material has a stable operating voltage, good reactivity,
In addition, because they have a high energy density, they are used extensively as batteries for wristwatches, for example.

ところで、腕゛時計用の酸化銀電池としては、作動電圧
的1.5Vのボタン型構造のものが汎用されているが、
近年、電源の小型化への要請が強まるにつれて、正極作
用物質の電気容品を高めるための試みが種々なされてい
る。
By the way, silver oxide batteries for wristwatches are commonly used with a button-shaped structure and an operating voltage of 1.5V.
In recent years, as the demand for miniaturization of power supplies has increased, various attempts have been made to increase the electrical capacity of positive electrode active materials.

このような手段としては、まず、電池への一画酸化銀(
Ag20)の充填密度を高めて電池内への実質的な充填
量を増加せしめる方法がある。しかしながら、Ag2O
の真密度は7.14g/cnlが理論的な限界値である
ため、充填量は制限され、大幅な電気容量の増大は期待
できない。
As such a method, first, one stroke of silver oxide (
There is a method of increasing the packing density of Ag20) to increase the substantial amount filled into the battery. However, Ag2O
Since the true density of 7.14 g/cnl is the theoretical limit, the amount of filling is limited and a significant increase in capacitance cannot be expected.

そこで、作用物質として一価酸化銀(Ag20)の約1
.11倍の理論電気容置を有する二価酸化銀(Age)
を使用し、これに、AgNi0.(1,0< w≦2.
0)を混合したものを正極合剤とする酸化銀電池が提案
されている (特開昭57−78758号公報)。しか
し、この酸化銀電池にあっては、AgeがAgNi0!
により還元され、02ガスが発生し、電池のフクレなど
が生ずるという問題がある。
Therefore, approximately 1% of monovalent silver oxide (Ag20) is used as an active substance.
.. Silver divalent oxide (Age) with 11 times the theoretical capacity
was used, and AgNi0. (1,0<w≦2.
A silver oxide battery using a mixture of 0) as a positive electrode mixture has been proposed (Japanese Unexamined Patent Publication No. 78758/1983). However, in this silver oxide battery, Age is AgNi0!
There is a problem in that 02 gas is generated and blistering of the battery occurs.

そこで、これに代わるものとして、二価酸化銀(Ago
)をAg2Oの作動電位で放電するようにしたものがあ
る。つまり、AgOは前述したように、Ag2゜の約 
1.9倍の理論電気容置を有するため、有力な作用物質
として期待されるからである。1−記のようにAgOを
使用してAg2oの作動電位を保つための手段としては
、例えば、 (イ) AgOを加圧成型して得たベレッ
トの表面を還元性溶液例えばヒドラジン魯メタノール中
で処理することにより、ペレ・ント表面にag2o層を
形成したり、 (ロ) AgO粉末の表面にAg2O層
を形成したものを加圧成型して正極合剤とする方法など
がある。このように、Agoを使用してAg2oの電位
を保つためにはag2o層を均一に形成する必要がある
。その場合、4g2o層の電気抵抗は108Ω・C11
であり、この値はAgoの電気抵抗1.2X10−2〜
15Ωψcmに比べて極めて大きいため、表面の抵抗値
が増大し、電池としての機能が低下するという不都合が
生じる。
Therefore, as an alternative to this, silver divalent oxide (Ago
) is discharged at the operating potential of Ag2O. In other words, as mentioned above, AgO is approximately
This is because it has a theoretical electric capacity of 1.9 times and is expected to be a powerful active substance. As a means to maintain the working potential of Ag2O using AgO as described in 1-1, for example, (a) the surface of a pellet obtained by pressure molding AgO is soaked in a reducing solution such as hydrazine or methanol; There are methods such as forming an Ag2O layer on the surface of the pellet by treatment, and (2) forming an Ag2O layer on the surface of AgO powder and press-molding it to form a positive electrode mixture. As described above, in order to maintain the potential of Ag2o using Ago, it is necessary to uniformly form the ag2o layer. In that case, the electrical resistance of the 4g2o layer is 108Ω・C11
, and this value is Ago's electrical resistance 1.2X10-2 ~
Since it is extremely large compared to 15 Ωψcm, the resistance value of the surface increases and the function as a battery deteriorates.

そこで、これらAg2oを使用したIE極部活物質全体
導電性を上げるために、何らかの処理を行う必要がある
。具体的には、従来、例えばAg2oを分解せしめない
ような導電性物質を添加したり、あるいはそのような導
電性物質よりなる層を形成したりして正極合剤とする方
ツノ:をとることが一般的である。
Therefore, in order to increase the overall conductivity of the IE electrode active material using Ag2o, it is necessary to perform some kind of treatment. Specifically, conventional methods include adding a conductive substance that does not decompose Ag2O, or forming a layer made of such a conductive substance to form a positive electrode mixture. is common.

一例をあげると、4g2o層やAg0層の表面に、電 
 ”気抵抗が1.8XIO−6Ω・cmと非常に小さい
金属銀(Ag)層を均一に形成せしめるということが提
案されている。しかし、Ag層は作用物質ではないため
、電池全体の電気容品の低下を招来する。さらに、この
Ag層は、電池製造後の貯蔵期間中にその層厚が減少し
たり、更には、消滅してしまう場合もある。これは、同
一電解液系内における表面のAg層と内部のAg0層と
のイオン的接触により、Ag層が酸化されてAg2oに
転化されることにより生じる現象である。この様なAg
層の減少または消滅によって、再び電池の内部抵抗が増
大してしまうため、この方法の場合、電気容品を大幅に
増大させかつ維持することは困難であった。
For example, if there is an electric current on the surface of the 4g2o layer or Ag0 layer,
``It has been proposed to uniformly form a layer of metallic silver (Ag) with a very low resistance of 1.8XIO-6Ωcm.However, since the Ag layer is not an active substance, the electrical capacity of the entire battery is In addition, the thickness of this Ag layer may decrease or even disappear during the storage period after battery manufacture. This phenomenon occurs when the Ag layer is oxidized and converted to Ag2o due to ionic contact between the Ag layer on the surface and the Ag0 layer inside.
With this method, it was difficult to significantly increase and maintain the capacitance, since the reduction or disappearance of the layers would again increase the internal resistance of the cell.

[問題を解決するための手段] 本発明は従来のかかる問題を解消し、大きな電気容量を
有し、かつ、内部抵抗が小さく、さらには貯蔵安定性に
優れた酸化銀電池の提供を目的とする。
[Means for Solving the Problems] The present invention aims to solve the conventional problems and provide a silver oxide battery that has a large electric capacity, a low internal resistance, and has excellent storage stability. do.

本発明者は、上記目的を達成すべく、AgOおよびAg
2oの両者を正極作用物質として具備する酸化銀電池に
ついて鋭意研究を重ねた結果、後述するように、AgO
粒子表面を4g2o微粒子で被覆したものと、Ag−N
i複合酸化物とからなる正極合剤を使用したときに、優
れた効果を奏することを確認して、本発明を完成するに
到った。
In order to achieve the above object, the present inventors discovered AgO and AgO.
As a result of extensive research into silver oxide batteries that include both AgO and AgO as cathode active materials, as will be described later, we found that AgO
One whose particle surface was coated with 4g2o fine particles, and one whose particle surface was coated with 4g2o fine particles, and Ag-N
The present invention was completed by confirming that excellent effects can be achieved when a positive electrode mixture consisting of a composite oxide and an i-complex oxide is used.

すなわち、本発明の酸化銀電池は、一価酸化銀よりなる
微粒子によりその表面が被覆された二価酸化銀粒子と、
 AgNi0x(1,0< x≦2.0)で示される銀
・ニッケル複合酸化物とからなる正極合剤を具備するこ
とを特徴とする。
That is, the silver oxide battery of the present invention comprises divalent silver oxide particles whose surfaces are coated with fine particles made of monovalent silver oxide;
It is characterized by comprising a positive electrode mixture consisting of a silver/nickel composite oxide represented by AgNi0x (1,0<x≦2.0).

[具体的説明] 本発明の酸化銀電池は、前述したように新規な正極合剤
を具備することを特徴とするものである。以下、この正
極合剤について詳述する。
[Specific Description] The silver oxide battery of the present invention is characterized by comprising a novel positive electrode mixture as described above. This positive electrode mixture will be described in detail below.

すなわち、本発明において使用する正極合剤は、Ag2
0w1粒子によりその表面が被覆されたAg0粒子を第
1の成分すなわち、ilE極作川物用とするものである
。まず、Ag0粒子としては、粒径が5〜200μm、
さらには、20〜150 μmのもの、4g2o微粒子
としては、粒径が0.05〜8μm、さらには、0.1
〜5μmのものをそれぞれ使用することが好ましい。
That is, the positive electrode mixture used in the present invention is Ag2
Ag0 particles whose surfaces are coated with 0w1 particles are used as the first component, that is, for ilE polar crops. First, Ag0 particles have a particle size of 5 to 200 μm,
Furthermore, those with a particle size of 20 to 150 μm, 4g2o fine particles with a particle size of 0.05 to 8 μm, and even 0.1
It is preferable to use those having a diameter of 5 μm.

この、4g2o微粒子なAgO粒子表面に最適な膜厚で
被覆する、すなわち、AgO粒子表面を完全にAg20
WI粒子で被覆するためには、被覆に使用するAg20
fin粒子の量を、Ag0粒子と4g2o微粒子の合計
重量に対して20〜70重敬%となるように設定するこ
とが好ましい。この4g2o微粒子の被覆量がag2゜
+ AgOの20重量%未満である場合には、該AgO
がAg2oの単極電位を示さず、一方、70重置火を超
える4g2o微粒子を配合しても、電気容量的にみてあ
まり利益は得られない。更に好ましくは、30〜60重
量%程度である。
The surface of these 4g2o fine AgO particles is coated with an optimal film thickness, that is, the surface of the AgO particle is completely coated with Ag20.
For coating with WI particles, Ag20 used for coating
It is preferable to set the amount of fin particles to be 20 to 70% relative to the total weight of Ag0 particles and 4g2o fine particles. If the coating amount of the 4g2o fine particles is less than 20% by weight of ag2゜+AgO, the AgO
does not exhibit the unipolar potential of Ag2o, and on the other hand, even if 4g2o fine particles with more than 70 superpositions are blended, there is not much benefit in terms of capacitance. More preferably, it is about 30 to 60% by weight.

」二記のAgOを製造する方法としては、1つにt」、
オゾン酸化法があげられる。この方法は、KOHまたは
NaOHなどの高濃度アルカリ水溶液中でオゾンを通し
ながらAg2o粒子を酸化する方法である。このとき、
溶液中へオゾンを導入することにより、AgOが析出し
、きらに、粒成長が起こるが、この粒成長時には、Ag
O粒子同士の相芽接触や攪拌効果により結晶粒表面が曲
面を保ちながら高密度の結晶粒となる。
``One of the methods for producing AgO described in ``t'',
An example is the ozone oxidation method. This method is a method in which Ag2o particles are oxidized in a highly concentrated alkaline aqueous solution such as KOH or NaOH while passing ozone through the solution. At this time,
By introducing ozone into the solution, AgO precipitates and grain growth occurs, but during this grain growth, Ag
Due to the phase bud contact between the O particles and the stirring effect, the crystal grain surface becomes a high-density crystal grain while maintaining a curved surface.

かかる方法のほかに、例えばAgNO3などの水溶性の
銀塩溶液に例えばベルオキソニ硫酸ナトリウム(Na2
S20B)のような酸化剤を加えて銀塩を酸化する方法
も適用することができる。
In addition to such methods, e.g. sodium beroxonisulfate (Na2
A method of adding an oxidizing agent such as S20B) to oxidize the silver salt can also be applied.

このようにして得られたAg0粒子の表面にAg2゜微
粒子を被覆する方法としては、とくに制限されるもので
はないが、例えば、まず、Ag0粒子をポリアクリル酸
ナトリウムなどの水溶液に浸漬することにより表面処理
を行ない、ついで、該水溶液が乾燥しないうちに、前述
した所定星のAg2゜微粒子を配合して混合し、該Ag
2O微粒子をAg0粒子の全表面に吸着させたのち乾燥
せしめる方法は好ましいものである。
The method of coating the Ag2° fine particles on the surface of the Ag0 particles thus obtained is not particularly limited, but for example, first, by immersing the Ag0 particles in an aqueous solution such as sodium polyacrylate. Surface treatment is performed, and then, before the aqueous solution dries, the above-mentioned Ag2° fine particles of the specified star are blended and mixed.
A preferred method is to adsorb 2O fine particles onto the entire surface of Ag0 particles and then dry them.

ついで、本発明の正極合剤の第2の成分であるAg−N
i複合酸化物は前述した如き式: AgNi0.(1,
0くx≦2.0)で示されるものであり、正極合剤全体
の導電性の向上に資する成分である。このAgi+o、
     1は、Ag、旧の硝酸塩などの金属mの混合
物あるいはアルカリ共沈法によって得られたAg、 N
iの水酸化物の混合物を高温下で焼成する方法;同じく
両者の塩あるいは水酸化物を、次亜Jfi素酸塩酸塩硫
酸塩または過酸化水素などの酸化剤溶液によって酸化す
る湿式酸化法、 Ag塩および1塩の混合溶液をアルカ
リ化して得た共沈殿物を乾燥後オゾン等によって酸化す
る乾式酸化法等を適用して製造することができる。
Next, Ag-N which is the second component of the positive electrode mixture of the present invention
The i-composite oxide has the formula as described above: AgNi0. (1,
0x≦2.0), and is a component that contributes to improving the conductivity of the entire positive electrode mixture. This Agi+o,
1 is Ag, a mixture of metals such as old nitrates, or Ag, N obtained by an alkali coprecipitation method.
A method in which a mixture of the hydroxides of i is calcined at high temperatures; a wet oxidation method in which both salts or hydroxides are similarly oxidized with an oxidizing agent solution such as hypochlorite chloride sulfate or hydrogen peroxide; It can be produced by applying a dry oxidation method or the like in which a coprecipitate obtained by alkalizing a mixed solution of Ag salt and monosalt is dried and then oxidized with ozone or the like.

本発明の酸化銀電池の正極合剤は、−1−述のAg2゜
微粒子により被覆されたAg0粒子とこのAgN io
、とを例えば機械的に混合したのち、所定形状に加圧成
型することにより容易に調製しうる。このときのAgN
i0.の配合量は、正極合剤の全重量に対して5〜30
重量%となるように設定することが好ましい。
The positive electrode mixture of the silver oxide battery of the present invention comprises Ag0 particles coated with the Ag2° fine particles described in -1- and the AgN io
, for example, by mechanically mixing the mixture and then press-molding it into a predetermined shape. AgN at this time
i0. The blending amount is 5 to 30% based on the total weight of the positive electrode mixture.
It is preferable to set the amount to be % by weight.

第1図はこのようにして得られた正極合剤の相構成を模
式的に示したものである。すなわち、図において、Ag
O粒子粒子粒面全体がAg2O微粒子2により被覆され
ており、しかもAg2o微粒子2により被覆されたAg
O粒子粒子粒界にはAg−Ni複合酸化物粒子3が存在
する。
FIG. 1 schematically shows the phase structure of the positive electrode mixture thus obtained. That is, in the figure, Ag
The entire particle surface of the O particles is covered with Ag2O fine particles 2, and the Ag2O particles 2 are coated with Ag2O fine particles 2.
Ag-Ni composite oxide particles 3 are present at the grain boundaries of the O particles.

かかる正極合剤にあっては、まず、AgOがその表面に
被覆されたAg2Oの電極電位で作動し、しかもAgN
i0.はAg2Oに接触するがAg0粒子に直接接触し
ないのでAgNiOxによるAgoの分解がなく長期間
貯蔵時の02ガスによる電池のフクレ等を防止すること
ができる。一方、AgaiO,は導電性の向−ヒに大き
く寄与するとともに、正極活物質としても機能するため
、電池の内部抵抗の低減と電気容量の増大の2点におい
て優れた効果を奏する。
In such a positive electrode mixture, AgO operates at the electrode potential of Ag2O coated on its surface, and moreover, AgN
i0. Although it contacts Ag2O, it does not directly contact Ag0 particles, so there is no decomposition of Ago by AgNiOx, and it is possible to prevent blistering of the battery due to O2 gas during long-term storage. On the other hand, since AgaiO greatly contributes to the conductivity and also functions as a positive electrode active material, it has two excellent effects: reducing the internal resistance of the battery and increasing the electric capacity.

[実施例] 実施例および比較例 第2図に示したような構造の5R821SW形酸化銀電
池を製造した。すなわち、Niメッキを施したFe製の
正極容器llに正極合剤12を加圧充填し、この」−に
イオン透過性のセパレータ13およびアルカリ電解液を
含浸させた多孔性繊維物質からなる電解液保持材14を
収納し、しかるのち、絶縁ガスケツ)17を介して、該
正極容器11に、ゲル状電極16を内填した金属製の負
極容器15を嵌合し、さらに正極容器11の開口周縁部
を内方へ屈曲せしめることにより該電池を封口して酸化
銀電池を完成した。
[Example] Example and Comparative Example A 5R821SW type silver oxide battery having the structure shown in FIG. 2 was manufactured. That is, a cathode mixture 12 is filled under pressure into a cathode container 11 made of Fe plated with Ni, and an electrolytic solution made of a porous fibrous material impregnated with an ion-permeable separator 13 and an alkaline electrolyte is placed in the cathode mixture 12. After storing the holding material 14, a metal negative electrode container 15 containing a gel electrode 16 is fitted into the positive electrode container 11 via an insulating gasket 17, and then the opening periphery of the positive electrode container 11 is fitted. The battery was sealed by bending the parts inward to complete a silver oxide battery.

かかる電池において、ゲル状負極1Bとしては、ポリア
クリル酸ナトリウム等のゲル化剤粉末と水酸化カリウム
などのアルカリ電解液との混合物を使用した。一方、本
発明の特徴である正極合剤12としては、つぎのような
ものを使用した。
In this battery, a mixture of a gelling agent powder such as sodium polyacrylate and an alkaline electrolyte such as potassium hydroxide was used as the gelled negative electrode 1B. On the other hand, as the positive electrode mixture 12 which is a feature of the present invention, the following was used.

すなわち、オゾン酸化法を適用して製造した平均粒径1
00. 、見掛密度3.2g/cnl ノAgOを0.
5%のポリアクリル酸ナトリウム水溶液に浸漬処理し、
しかるのちこの表面に平均粒径0.8−のAg2011
粒子を表示の被覆量(Ag20/AgO+Ag20)で
被覆した。
That is, the average particle size 1 produced by applying the ozone oxidation method
00. , an apparent density of 3.2 g/cnl and 0.5 g/cnl of AgO.
Immersion treatment in 5% sodium polyacrylate aqueous solution,
Afterwards, Ag2011 with an average particle size of 0.8-
The particles were coated with the indicated coverage (Ag20/AgO+Ag20).

また、AgNi0Xは、Ag塩とNi塩の混合溶液をア
ルカリ化して得た共沈殿物を乾燥したのちオゾンにより
乾式酸化を行なって得たx=2のものを使用した。しか
るのち、このAgNi0!(x=2.0)を正極合剤全
体の15重量%となるように配合して正極合剤12を得
た。
Further, AgNi0X used was one with x=2 obtained by drying a coprecipitate obtained by alkalizing a mixed solution of Ag salt and Ni salt and then performing dry oxidation with ozone. After that, this AgNi0! (x=2.0) was blended in an amount of 15% by weight of the entire positive electrode mixture to obtain positive electrode mixture 12.

このようにして得られた酸化銀電池者60個を60°C
で40日間貯蔵し、以下の評価試験を行なった。
The 60 silver oxide cells thus obtained were heated to 60°C.
The samples were stored for 40 days and the following evaluation tests were conducted.

(1)貯蔵前後における内部抵抗の変化IKHzの交流
において、貯蔵前後の内部抵抗(Ω)をΔ1σ定した。
(1) Change in internal resistance before and after storage Under IKHz alternating current, the internal resistance (Ω) before and after storage was determined by Δ1σ.

(2)貯蔵前後における電気容量の変化58にΩの負荷
抵抗で連続放電を行なわせた際の貯蔵前後の電気容量の
平均値を測定した。
(2) Change in capacitance before and after storage When 58 was subjected to continuous discharge with a load resistance of Ω, the average value of the capacitance before and after storage was measured.

(3)貯蔵後の電池のフクレ縫 ガス発生による貯蔵後の電池のフクレ量(m鵬)を測定
した。
(3) Blistering of the battery after storage The amount of blistering (m-peng) of the battery after storage due to gas generation was measured.

以上の結果を一括して表に示した。The above results are summarized in the table.

なお、比較のために、1.記のAgO+ Ag2Oのみ
により構成され、AgNi0つを含まない正極合剤およ
び、AgNi0□を含むがAg2O被m IAが1−記
範囲を逸脱した正極合剤を使用して1−記実施例と同様
の5R621SW形酸化銀電池を製造し、各60個につ
いて上記と同様の評価試験を行ない結果を表中+:、 
fit記した。
For comparison, 1. Same as Example 1-2 using the positive electrode mixture composed only of AgO+Ag2O and not containing 0 AgNi and the positive electrode mixture containing AgNi0□ but having Ag2O-covered mIA outside the range 1-. 5R621SW type silver oxide batteries were manufactured, and 60 of each were subjected to the same evaluation test as above, and the results are shown in the table.
I wrote it as fit.

[発明の効果] 以−にの説明から明らかなように、本発明の酸化銀電池
は、内部抵抗が小さく、かつ、電<Kt * Mが大き
く、しかもこれらの値は貯蔵後もほとんど変化すること
がないという優れた特性な備えている。また、02ガス
の発生に起因する貯蔵後のフクレもない。よって、本発
明電池の工業的価値は極めて大である。
[Effects of the Invention] As is clear from the explanation below, the silver oxide battery of the present invention has a small internal resistance and a large electric current<Kt*M, and these values hardly change even after storage. It has excellent characteristics such as: Furthermore, there is no blistering after storage due to the generation of 02 gas. Therefore, the industrial value of the battery of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸化銀電池に使用される正極合剤の構
成相を示す模式図、第2図は、酸化銀電池の構造を示す
縦断面図である。
FIG. 1 is a schematic diagram showing the constituent phases of the positive electrode mixture used in the silver oxide battery of the present invention, and FIG. 2 is a longitudinal sectional view showing the structure of the silver oxide battery.

Claims (1)

【特許請求の範囲】 1、一価酸化銀よりなる微粒子によりその表面が被覆さ
れた二価酸化銀粒子と、AgNiOx(1.0<x≦2
.0)で示される銀・ニッケル複合酸化物とからなる正
極合剤を具備することを特徴とする酸化銀電池。 2、該一価酸化銀微粒子の被覆量が、該一価酸化銀微粒
子および二価酸化銀粒子の合計重量に対して20〜70
重量%である特許請求の範囲第1項記載の酸化銀電池。
[Claims] 1. Divalent silver oxide particles whose surfaces are coated with fine particles made of monovalent silver oxide, and AgNiOx (1.0<x≦2
.. A silver oxide battery comprising a positive electrode mixture consisting of a silver/nickel composite oxide represented by 0). 2. The coating amount of the monovalent silver oxide fine particles is 20 to 70% based on the total weight of the monovalent silver oxide fine particles and the divalent silver oxide particles.
% by weight of the silver oxide battery according to claim 1.
JP60148399A 1985-07-08 1985-07-08 Silver oxide battery Pending JPS6210860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60148399A JPS6210860A (en) 1985-07-08 1985-07-08 Silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60148399A JPS6210860A (en) 1985-07-08 1985-07-08 Silver oxide battery

Publications (1)

Publication Number Publication Date
JPS6210860A true JPS6210860A (en) 1987-01-19

Family

ID=15451913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60148399A Pending JPS6210860A (en) 1985-07-08 1985-07-08 Silver oxide battery

Country Status (1)

Country Link
JP (1) JPS6210860A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234878A (en) * 2007-03-19 2008-10-02 Hitachi Maxell Ltd Flat-shaped silver oxide battery
JP2010033962A (en) * 2008-07-30 2010-02-12 Seiko Instruments Inc Flat alkaline primary cell, and method for manufacturing flat alkaline primary cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234878A (en) * 2007-03-19 2008-10-02 Hitachi Maxell Ltd Flat-shaped silver oxide battery
JP2010033962A (en) * 2008-07-30 2010-02-12 Seiko Instruments Inc Flat alkaline primary cell, and method for manufacturing flat alkaline primary cell

Similar Documents

Publication Publication Date Title
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
JPH11149921A (en) Alkali storage battery and surface treatment method of its positive electrode substance
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP3010950B2 (en) Alkaline storage battery and method for manufacturing the same
JP2002117842A (en) Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JPH10261412A (en) Alkaline storage battery nickel positive electrode and its manufacture
JPS6210860A (en) Silver oxide battery
JPS5916269A (en) Manufacture of positive plate for alkaline battery
JPH0221098B2 (en)
JP2564843B2 (en) Alkaline storage battery
JP3198891B2 (en) Positive electrode for alkaline storage battery
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JP2000173606A (en) Sintered-type nickel hydroxide positive electrode, alkaline storage battery using the positive electrode, and manufacture of sintered type nickel hydroxide positive electrode
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JPH11260359A (en) Alkaline storage battery
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries
JPS62285360A (en) Negative electrode for alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP3942253B2 (en) Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH08227711A (en) Alkaline storage battery and manufacture of its positive electrode
JPH11238507A (en) Alkaline storage battery
JPH0410181B2 (en)
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
JP3136688B2 (en) Nickel-hydrogen storage battery