JPH0546662B2 - - Google Patents

Info

Publication number
JPH0546662B2
JPH0546662B2 JP61284715A JP28471586A JPH0546662B2 JP H0546662 B2 JPH0546662 B2 JP H0546662B2 JP 61284715 A JP61284715 A JP 61284715A JP 28471586 A JP28471586 A JP 28471586A JP H0546662 B2 JPH0546662 B2 JP H0546662B2
Authority
JP
Japan
Prior art keywords
cadmium
negative electrode
layer
paste
oxygen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61284715A
Other languages
Japanese (ja)
Other versions
JPS63138651A (en
Inventor
Hideo Kaiya
Shingo Tsuda
Minoru Yamaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61284715A priority Critical patent/JPS63138651A/en
Publication of JPS63138651A publication Critical patent/JPS63138651A/en
Publication of JPH0546662B2 publication Critical patent/JPH0546662B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池用ペースト式カドミ
ウム負極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a paste-type cadmium negative electrode for alkaline storage batteries.

従来の技術 アルカリ蓄電池用ペースト式カドミウム負極
は、一般に酸化カドミウムあるいは水酸化カドミ
ウムを主体とし、これにカーボニルニツケル、グ
ラフアイト等の導電性粉末、ポリビニルアルコー
ル、カルボキシメチルセルロース等の結着剤及び
水やエチレングリコール等の溶媒を加え、混練し
て調整したペーストをニツケルメツキした開孔鋼
板等の導電性芯材に塗着し、乾燥後、アルカリ溶
液中で化成することによつて製造される。
Conventional technology Paste-type cadmium negative electrodes for alkaline storage batteries generally consist of cadmium oxide or cadmium hydroxide as a main ingredient, and conductive powders such as carbonyl nickel and graphite, binders such as polyvinyl alcohol and carboxymethyl cellulose, and water and ethylene. It is manufactured by adding a solvent such as glycol and kneading the prepared paste, applying it to a conductive core material such as a nickel-plated perforated steel plate, drying it, and then chemically converting it in an alkaline solution.

前記の化成工程の目的は、活物質材料に用いる
酸化カドミウム、水酸化カドミウムなどの放電状
態のカドミウム化合物の一部または全部を充電状
態の金属カドミウムに変換し、負極内に予備充電
部分を付与することにある。
The purpose of the above chemical conversion step is to convert part or all of the cadmium compound in a discharged state, such as cadmium oxide or cadmium hydroxide, used for the active material into metallic cadmium in a charged state, and to provide a pre-charged portion within the negative electrode. There is a particular thing.

また、予備充電部分を付与する化成工程を省略
するために、酸化カドミウムあるいは水酸化カド
ミウムとともに金属カドミウムを混合して用いる
場合もある。
Further, in order to omit the chemical conversion step for providing a pre-charged portion, metal cadmium may be used in combination with cadmium oxide or cadmium hydroxide.

発明が解決しようとする問題点 このようにペースト式カドミウム負極は、焼結
式に比べて製造が容易で、高い容量密度が得られ
る利点を有する。しかし焼結式負極のように基板
兼骨格をなす導電性マトリクスが存在しないた
め、電池充電時に生成する金属カドミウムの成長
は主に芯材近傍で起こり、極板表面層までその成
長は達しにくい。このため過充電時に正極から発
生する酸素ガスと金属カドミウムとの反応が効率
的に行われず、密閉形電池に使用すると、電池の
内圧が高くなるという欠点がある。
Problems to be Solved by the Invention As described above, the paste type cadmium negative electrode has the advantage that it is easier to manufacture and can provide a higher capacity density than the sintered type. However, unlike sintered negative electrodes, there is no conductive matrix that serves as a substrate and skeleton, so the growth of metallic cadmium produced during battery charging occurs mainly near the core material, making it difficult for the growth to reach the surface layer of the electrode plate. For this reason, the reaction between the oxygen gas generated from the positive electrode and metal cadmium during overcharging does not occur efficiently, and when used in a sealed battery, there is a drawback that the internal pressure of the battery increases.

本発明は、このようなペースト式カドミウム負
極における酸素ガス吸収能力の向上をはかり、大
電流充電(短時間充電)を可能にするものであ
る。
The present invention aims to improve the oxygen gas absorption capacity of such a paste-type cadmium negative electrode, thereby enabling large current charging (short-time charging).

問題点を解決するための手段 本発明は酸素カドミウムあるいは水酸化カドミ
ウムを主体とするか又はこれに金属カドミウムを
混入したペースト状活物質を芯材に塗着し、その
層表面に、フツ素樹脂粉末層と、このフツ素樹脂
粉末層表面にこの樹脂粉末層を部分的に貫通して
ペースト状活物質層と電気的に接触する耐アルカ
リ性で導電性を有する物質の多孔層とを形成した
ものであり、負極での酸素ガス吸収能力の向上を
はかるものである。
Means for Solving the Problems The present invention applies a paste-like active material mainly composed of oxygen cadmium or cadmium hydroxide or mixed with metal cadmium to a core material, and then coats the layer surface with a fluorine resin. A powder layer and a porous layer of an alkali-resistant and electrically conductive material formed on the surface of the fluororesin powder layer, which partially penetrates the resin powder layer and makes electrical contact with the paste active material layer. This is intended to improve the oxygen gas absorption ability of the negative electrode.

作 用 カドミウム負極上での酸素ガス吸収機構におい
ては、つぎの(1)および(2)式の化学的または電気化
学的反応が生じる。
Action In the oxygen gas absorption mechanism on the cadmium negative electrode, the following chemical or electrochemical reactions (1) and (2) occur.

O2+2H2O+2Cd→Cd(OH)2 ……(1) O2+2H2O+4e-→4OH- ……(2) 化成工程あるいは電池充電時に生成される金属
カドミウムは、通常導電性芯体の近傍に形成され
る。しかし、本発明のように極板表面に導電性の
多孔層が形成されている場合は、極板表面の導電
性層側からも金属カドミウムの成長は進行し、極
板表面に金属カドミウムの層が形成される。この
極板表面側からも充電が進行し、極板表面に金属
カドミウムの層を形成するためには、極板表面に
設けられた導電層が導電層全体にわたつて通電性
を確保している必要があり、連続層を形成してい
ることが必要である。
O 2 +2H 2 O+2Cd→Cd(OH) 2 ...(1) O 2 +2H 2 O+4e - →4OH - ...(2) Metallic cadmium produced during the chemical formation process or during battery charging is usually located near the conductive core. is formed. However, when a conductive porous layer is formed on the surface of the electrode plate as in the present invention, the growth of metal cadmium also progresses from the conductive layer side on the surface of the electrode plate, resulting in a layer of metal cadmium on the surface of the electrode plate. is formed. In order for charging to proceed from the surface side of the electrode plate and to form a layer of metal cadmium on the surface of the electrode plate, the conductive layer provided on the surface of the electrode plate must ensure electrical conductivity across the entire conductive layer. It is necessary to form a continuous layer.

また、導電層から負極内部への通電は、上記導
電層が部分的にペースト状活物質層と接触してい
ればよく、充電時には、この負極活物質と部分的
に接触した導電層から充電が進行し、金属カドミ
ウムは、ここを中心として負極表面を覆うように
生成する。
In addition, the conduction of current from the conductive layer to the inside of the negative electrode only requires that the conductive layer is partially in contact with the paste-like active material layer, and during charging, charging is carried out from the conductive layer that is partially in contact with the negative electrode active material. As the process progresses, metallic cadmium is generated to cover the surface of the negative electrode centering on this point.

密閉形電池では、過充電時に正極より発生する
酸素ガスの負極での吸収反応が重要である。この
負極での酸素ガス吸収が悪いと、過充電時に電池
内圧が上昇するので、大電流での充電ができな
い。言い換えると、短時間充電ができない。酸素
ガスの一部は前記(1)式により化学的に負極の金属
カドミウムにより吸収されるものであるから、本
発明によるもののように金属カドミウムが極板表
面に多く分布している方がガスとの接触が多くな
り有利である。
In sealed batteries, the absorption reaction at the negative electrode of oxygen gas generated from the positive electrode during overcharging is important. If this negative electrode absorbs oxygen gas poorly, the internal pressure of the battery will rise during overcharging, making it impossible to charge with a large current. In other words, it cannot be charged for a short period of time. A part of the oxygen gas is chemically absorbed by the metal cadmium of the negative electrode according to the above equation (1), so it is better to have a large amount of metal cadmium distributed on the electrode plate surface as in the case of the present invention. This is advantageous because there will be more contact.

また、負極での化学的な酸素ガスの吸収は、負
極の金属カドミウムにより行なわれるが、この
際、金属カドミウムと、電解液と、酸素ガスとの
三相界面の存在が重要となる。三相界面の形成度
合いが大きいほど酸素ガスの導入と吸収は効率よ
く進行する。周知のごとくフツ素樹脂は、撥水性
が大きいため、本発明によるフツ素樹脂粉末層は
活物質表面層での前記の三相界面の形成を容易と
し、金属カドミウム上での酸素ガス吸収効率はさ
らに向上する。
Further, chemical absorption of oxygen gas at the negative electrode is carried out by the metal cadmium of the negative electrode, and in this case, the existence of a three-phase interface between the metal cadmium, the electrolyte, and the oxygen gas is important. The greater the degree of formation of the three-phase interface, the more efficiently the introduction and absorption of oxygen gas proceeds. As is well known, fluororesin has high water repellency, so the fluororesin powder layer according to the present invention facilitates the formation of the above-mentioned three-phase interface on the active material surface layer, and the oxygen gas absorption efficiency on metal cadmium is Further improvement.

また、酸素ガスの吸収は、前記(2)式の電気化学
反応によつても進行する。電気化学反応による酸
素ガスの吸収は、導電体の表面の三相界面で進行
する。本発明による負極では、極板の表面に設け
た導電層下側とフツ素樹脂粉末層との界面に形成
される三相界面において電気化学反応による酸素
ガス吸収が進行し、前記の化学反応による酸素ガ
スの吸収と相まつてガス吸収効率はさらに向上す
る。
Further, the absorption of oxygen gas also proceeds by the electrochemical reaction of formula (2) above. Absorption of oxygen gas by electrochemical reaction proceeds at the three-phase interface on the surface of the conductor. In the negative electrode according to the present invention, oxygen gas absorption due to an electrochemical reaction progresses at the three-phase interface formed at the interface between the lower side of the conductive layer provided on the surface of the electrode plate and the fluororesin powder layer, and the absorption of oxygen gas due to the above chemical reaction proceeds. Together with the absorption of oxygen gas, the gas absorption efficiency is further improved.

以上のように本発明によるカドミウム負極の構
成を用いれば、化学的な酸素吸収の主体をなす金
属カドミウムを酸素吸収が効率よく行なわれる負
極の活物質層表面に生成させ、さらに撥水層の存
在により酸素吸収が加速されるとともに、負極表
面積と同等程度の面接を有する撥水層と電位のか
かつた固層としての導電層との界面で撥水層を透
過した酸素ガスが電気化学的に吸収されるため、
負極の酸素吸収性は非常に優れたものになる。
As described above, if the configuration of the cadmium negative electrode according to the present invention is used, metal cadmium, which is the main component of chemical oxygen absorption, can be generated on the surface of the active material layer of the negative electrode where oxygen absorption is efficiently performed, and the presence of a water-repellent layer can also be achieved. This accelerates oxygen absorption, and oxygen gas that has passed through the water-repellent layer is electrochemically absorbed at the interface between the water-repellent layer, which has a surface area comparable to the surface area of the negative electrode, and the conductive layer, which is a solid layer with a high potential. In order to be
The oxygen absorbency of the negative electrode is extremely excellent.

実施例 以下本発明の実施例を説明する。Example Examples of the present invention will be described below.

平均粒径約1μmの酸化カドミウム粉末をポリビ
ニルアルコールのエチレングリコール溶液で練合
してペースト1とし、これをニツケルメツキした
開孔鉄板からなる芯材2に塗着し、次に、この極
板をフツ素樹脂を分散させた溶液に浸漬し、乾燥
を行ないフツ素樹脂粉末層3を形成した。次にポ
リビニルアルコールを結着剤として用いたカーボ
ンペーストを塗布してフツ素樹脂粉末表面上に導
電性の多孔層4を形成した。なお、カーボン粒子
は部分的にフツ素樹脂粉末相互間に入り込み、こ
の層を貫通するため、ペースト状活物質層との電
気的接触が得られる。
Cadmium oxide powder with an average particle size of approximately 1 μm is kneaded with a polyvinyl alcohol ethylene glycol solution to form a paste 1, which is applied to a core material 2 made of a nickel-plated perforated iron plate. A fluororesin powder layer 3 was formed by immersing it in a solution containing a base resin dispersed therein and drying it. Next, a carbon paste using polyvinyl alcohol as a binder was applied to form a conductive porous layer 4 on the surface of the fluororesin powder. Note that the carbon particles partially penetrate between the fluororesin powders and penetrate this layer, so that electrical contact with the paste-like active material layer can be obtained.

第1図は、本発明による負極の断面概略図であ
る。
FIG. 1 is a schematic cross-sectional view of a negative electrode according to the present invention.

この極板を比重1.20の水酸化ナトリウム水溶液
中で陰電解し、金属カドミウムを付与する化成を
行い、水洗、乾燥した。
This electrode plate was subjected to negative electrolysis in an aqueous sodium hydroxide solution with a specific gravity of 1.20, chemically formed to impart metal cadmium, washed with water, and dried.

この極板を所定の寸法に切断し、焼結式ニツケ
ル正極と組み合わせて1200mAh相当の密閉型蓄
電池を構成し、電池特性を試験した。
This electrode plate was cut into predetermined dimensions and combined with a sintered nickel positive electrode to construct a sealed storage battery equivalent to 1200mAh, and the battery characteristics were tested.

試験は、負極の酸素ガス吸収性を評価するため
の過充電時の電池内圧試験を行つた。電池内圧試
験は、20℃において、1〜3C相当(1.2〜3.6A)
の電流で充電したときの電池内圧のピークで評価
した。
The test was a battery internal pressure test during overcharging to evaluate the oxygen gas absorption ability of the negative electrode. Battery internal pressure test is equivalent to 1-3C (1.2-3.6A) at 20℃
The evaluation was based on the peak of the battery internal pressure when charging with a current of .

第2図は充電レートと電池内圧力のピークとの
関係を示す。aは上記実施例の負極を用いた電
池、bは従来の化成工程までを行つた比較例の負
極を用いた電池を示す。本発明による負極は、充
電時に金属カドミウムが極板表面に分布しやす
く、また、フツ素樹脂粉末の存在による三相界面
の形成により、金属カドミウム上での化学反応に
よる酸素ガス吸収能力が向上するとともに、極板
表面の導電層とフツ素樹脂粉末層との界面での電
気化学的酸素ガス吸収が同時に機能して酸素ガス
吸収能力は極めて高い。従つて電池aは電池内圧
が低く、大電流による高率充電が可能である。
FIG. 2 shows the relationship between the charging rate and the peak of the battery internal pressure. A shows a battery using the negative electrode of the above example, and b shows a battery using a negative electrode of a comparative example, which was subjected to the conventional chemical formation process. In the negative electrode according to the present invention, metal cadmium is easily distributed on the electrode plate surface during charging, and the formation of a three-phase interface due to the presence of fluorine resin powder improves the ability to absorb oxygen gas through a chemical reaction on the metal cadmium. At the same time, electrochemical oxygen gas absorption at the interface between the conductive layer on the surface of the electrode plate and the fluorine resin powder layer functions at the same time, and the oxygen gas absorption capacity is extremely high. Therefore, battery a has a low internal pressure and can be charged at a high rate with a large current.

発明の効果 以上のように本発明によれば、ペースト式カド
ミウム負極の酸素ガス吸収特性を大幅に改良する
ことができる。
Effects of the Invention As described above, according to the present invention, the oxygen gas absorption characteristics of a paste-type cadmium negative electrode can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による負極の断面概略図、第2
図は本発明による負極を用いたニツケルカドミウ
ム蓄電池と、従来法によるものとの電池内圧と充
電電流との関係を示す図である。 1……ペースト、2……芯材、3……フツ素樹
脂粉末層、4……カーボンペースト。
FIG. 1 is a schematic cross-sectional view of a negative electrode according to the present invention, and FIG.
The figure is a diagram showing the relationship between battery internal pressure and charging current for a nickel-cadmium storage battery using a negative electrode according to the present invention and one using a conventional method. 1... Paste, 2... Core material, 3... Fluorine resin powder layer, 4... Carbon paste.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性芯材に塗着した酸化カドミウムあるい
は水酸化カドミウムを主体とするかは又はこれに
金属カドミウムを混入したペースト状活物質層の
表面にフツ素樹脂粉末層と、このフツ素樹脂粉末
層の表面に部分的にこの樹脂粉末層を貫通して前
記活物質層と電気的に接触する耐アルカリ性で導
電性を持つた多孔層とを設けたことを特徴とする
ペースト式カドミウム負極。
1 A fluororesin powder layer is formed on the surface of a paste-like active material layer mainly composed of cadmium oxide or cadmium hydroxide or mixed with metal cadmium, which is coated on a conductive core material, and this fluororesin powder layer is coated on a conductive core material. A paste-type cadmium negative electrode characterized in that an alkali-resistant and conductive porous layer is provided on the surface of the paste-type cadmium negative electrode, partially penetrating the resin powder layer and electrically contacting the active material layer.
JP61284715A 1986-11-28 1986-11-28 Paste type cadmium negative electrode Granted JPS63138651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284715A JPS63138651A (en) 1986-11-28 1986-11-28 Paste type cadmium negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284715A JPS63138651A (en) 1986-11-28 1986-11-28 Paste type cadmium negative electrode

Publications (2)

Publication Number Publication Date
JPS63138651A JPS63138651A (en) 1988-06-10
JPH0546662B2 true JPH0546662B2 (en) 1993-07-14

Family

ID=17682042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284715A Granted JPS63138651A (en) 1986-11-28 1986-11-28 Paste type cadmium negative electrode

Country Status (1)

Country Link
JP (1) JPS63138651A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796463A (en) * 1980-12-05 1982-06-15 Matsushita Electric Ind Co Ltd Manufacture of cadmium electrode for sealed alkaline storage battery
JPS6081765A (en) * 1983-10-12 1985-05-09 Sanyo Electric Co Ltd Manufacturing method for paste type cadmium negative electrode plate
JPS60202666A (en) * 1984-03-26 1985-10-14 Sanyo Electric Co Ltd Paste type cadmium anode plate for alkaline storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796463A (en) * 1980-12-05 1982-06-15 Matsushita Electric Ind Co Ltd Manufacture of cadmium electrode for sealed alkaline storage battery
JPS6081765A (en) * 1983-10-12 1985-05-09 Sanyo Electric Co Ltd Manufacturing method for paste type cadmium negative electrode plate
JPS60202666A (en) * 1984-03-26 1985-10-14 Sanyo Electric Co Ltd Paste type cadmium anode plate for alkaline storage battery

Also Published As

Publication number Publication date
JPS63138651A (en) 1988-06-10

Similar Documents

Publication Publication Date Title
US4957827A (en) Rechargeable alkaline manganese cells with zinc anodes
US3785868A (en) Zinc electrode
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
US4003754A (en) Hermetic alkaline storage battery
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JPH0546662B2 (en)
JPH0568828B2 (en)
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPH0675397B2 (en) Method for producing paste type cadmium negative electrode
US3533843A (en) Zinc electrode and method of forming
US3600226A (en) Method for making cadmium electrodes for nickel-cadmium cells
JPH0234433B2 (en)
JPS62136763A (en) Manufacture of paste type cadmium negative electrode
JP3387763B2 (en) Manufacturing method of alkaline storage battery
JPS62140361A (en) Manufacture of paste type cadmium negative electrode
JP3043775B2 (en) Cadmium negative electrode for alkaline storage batteries
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
Selvan et al. Effect of iron addition to the cadmium electrode
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH0513078A (en) Nickel positive electrode for alkaline battery
JPS6034228B2 (en) Sealed alkaline storage battery
JPH03746B2 (en)
JPH0536437A (en) Method for initial charge and discharge of alkaline storage battery
JPH03159064A (en) Nickel-cadmium storage battery
JPH03133058A (en) Manufacture of paste type cadmium negative electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term