JPS6057227B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS6057227B2
JPS6057227B2 JP13604676A JP13604676A JPS6057227B2 JP S6057227 B2 JPS6057227 B2 JP S6057227B2 JP 13604676 A JP13604676 A JP 13604676A JP 13604676 A JP13604676 A JP 13604676A JP S6057227 B2 JPS6057227 B2 JP S6057227B2
Authority
JP
Japan
Prior art keywords
layer
heat treatment
polycrystalline silicon
platinum
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13604676A
Other languages
Japanese (ja)
Other versions
JPS5360587A (en
Inventor
康孝 生嶋
元孝 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13604676A priority Critical patent/JPS6057227B2/en
Publication of JPS5360587A publication Critical patent/JPS5360587A/en
Publication of JPS6057227B2 publication Critical patent/JPS6057227B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法にかかり、特に多結晶珪
素層を用いた配線体が形成された半導体装置の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device in which a wiring body using a polycrystalline silicon layer is formed.

多結晶珪素層を用いた配線の抵抗値の減少方法として、
多結晶珪素膜上に白金層を堆積し、ひき続いて熱処理を
行い多結晶珪素層上に白金珪化物層を形成して抵抗値の
低い配線を形成する方法がある。
As a method for reducing the resistance value of wiring using a polycrystalline silicon layer,
There is a method in which a platinum layer is deposited on a polycrystalline silicon film, followed by heat treatment to form a platinum silicide layer on the polycrystalline silicon layer to form a wiring with a low resistance value.

例えばJournalofElectrochemic
alSociety(ジャーナル オブ エレクトロケ
ミカル ソサイエテイ)197奔、1714〜171利
用に記載されている報告もその一例である。しかしなが
ら上述した文献においては白金珪化物層の形成温度が6
500C以上で、且つ多結晶珪素層に高濃度不純物が添
加された時抵抗値が急激に変化すると報告されている。
For example, Journal of Electrochemic
An example of this is the report described in Journal of Electrochemical Society, 197 pages, pp. 1714-171. However, in the above-mentioned literature, the formation temperature of the platinum silicide layer is 6.
It has been reported that the resistance value changes rapidly when the temperature is 500 C or higher and a high concentration of impurity is added to the polycrystalline silicon layer.

また、650’C以下の熱処理ての白金珪化物層の抵抗
値の挙動については未知であつた。この発明の目的は多
結晶珪素上に遷移金属の珪化物層を有する配線体を精度
よく、再現性よく製造し、かつ形成された配線体の抵抗
が熱処理温度によつて大きく変化しない技術を提供する
ことにある。
Further, the behavior of the resistance value of the platinum silicide layer after heat treatment at 650'C or less was unknown. The purpose of this invention is to provide a technology for manufacturing a wiring body having a transition metal silicide layer on polycrystalline silicon with high accuracy and reproducibility, and in which the resistance of the formed wiring body does not change significantly depending on the heat treatment temperature. It's about doing.

この発明は、まず、不純物を添加しないかもしくはごく
微量含みその比抵抗が1チΩα以上の多結晶珪素層上に
白金の如き遷移金属膜を堆積し、ひき続いて4000C
乃至6000C’Cで熱処理して多結晶珪素層上に白金
珪化物層等の金属珪化物層を有する配線体を形成するも
のである。
In this invention, first, a transition metal film such as platinum is deposited on a polycrystalline silicon layer that does not contain impurities or contains a very small amount of impurities and has a specific resistance of 1 Ωα or more, and then
A wiring body having a metal silicide layer such as a platinum silicide layer is formed on a polycrystalline silicon layer by heat treatment at a temperature of 6000 C'C to 6000 C'C.

このように形成した時には、この配線体の抵抗値の熱処
理温度依存性が極めて小さく且つ抵抗値自体も小さいも
のである。以下、実施例に基づき図面を参照して本発明
を詳細に説明する。
When formed in this manner, the dependence of the resistance value of this wiring body on the heat treatment temperature is extremely small, and the resistance value itself is also small. Hereinafter, the present invention will be described in detail based on examples and with reference to the drawings.

まず、第1図aに示すように珪素単結晶基板1の一表面
部に厚さ0.1〜1μmの二酸化珪素層2を形成し、続
いて上記二酸化珪素層2の上面に接して、多結晶珪素層
3を0.1乃至1μmの厚さにJ堆積する。
First, as shown in FIG. 1a, a silicon dioxide layer 2 with a thickness of 0.1 to 1 μm is formed on one surface of a silicon single crystal substrate 1, and then a silicon dioxide layer 2 is formed in contact with the upper surface of the silicon dioxide layer 2. A crystalline silicon layer 3 is deposited to a thickness of 0.1 to 1 μm.

この多結晶珪素層3の堆積はシラン(SiH、)の熱分
解を利用し、多結晶珪素表面が滑らかになるようにする
ため600乃至700’Cで行われ、この多結晶珪素層
の抵抗率は約1(PΩ−cm程度である。尚、珪素単結
晶基板1の表面近傍に賀よ、通常のMOS型或いはバイ
ポーラ型トランジスタが上記二酸化珪素2の形成前にあ
らかじめ設けられていてもかまわない。次に第1図bに
示すように、上記多結晶珪素層3の上面に接して白金層
4を0.05乃至0.2μmの厚さに堆積する。
This polycrystalline silicon layer 3 is deposited using thermal decomposition of silane (SiH) at 600 to 700'C to make the polycrystalline silicon surface smooth, and the resistivity of this polycrystalline silicon layer is is approximately 1 (PΩ-cm). Note that a normal MOS type or bipolar type transistor may be provided in advance near the surface of the silicon single crystal substrate 1 before the silicon dioxide 2 is formed. Next, as shown in FIG. 1b, a platinum layer 4 is deposited to a thickness of 0.05 to 0.2 μm in contact with the upper surface of the polycrystalline silicon layer 3.

この白金層4の堆積はスパッタ法或は電子−ム蒸着法で
行う。ひき続いて第1図cに示すように、上記多結晶珪
素層3及び白金層4からなる構造を400乃至600℃
、窒素或いはアルゴンなどの不活性気体中で10乃至3
吟程度熱処理する。
The platinum layer 4 is deposited by sputtering or electron beam evaporation. Subsequently, as shown in FIG.
, 10 to 3 in an inert gas such as nitrogen or argon.
Heat treated to a high level.

この熱処理により多結晶層3と白金層4の間に白金珪化
物質層5が形成される。熱処理後には上記多結晶珪素層
3及び白金層4の膜厚は上記熱処理前の値よりもそれぞ
れ薄くなつている。最後に第1図dに示すように、約8
0′Cの王水中に浸漬して白金層4を除去し、白金珪化
物層5の表面を露出して、多結晶珪素層3と白金珪化物
層5から構成された抵抗値の低い配線体を有する半導体
装置が得られる。
This heat treatment forms a platinum silicide layer 5 between the polycrystalline layer 3 and the platinum layer 4. After the heat treatment, the film thicknesses of the polycrystalline silicon layer 3 and the platinum layer 4 are each thinner than the values before the heat treatment. Finally, as shown in Figure 1d, about 8
Platinum layer 4 is removed by immersion in 0'C aqua regia, and the surface of platinum silicide layer 5 is exposed to produce a low resistance wiring body composed of polycrystalline silicon layer 3 and platinum silicide layer 5. A semiconductor device having the following can be obtained.

第2図の曲線8は上記実施例に沿つて作製された多結晶
珪素及ひ白金珪化物より構成された配線体の層抵抗値と
熱処理温度の関係を示す曲線図で5ある。
A curve 8 in FIG. 2 is a curve diagram 5 showing the relationship between the layer resistance value and the heat treatment temperature of the wiring body made of polycrystalline silicon and platinum silicide produced according to the above embodiment.

ここては白金膜厚は1000Aに、又、熱処理時間は1
5分にそれぞれ固定した場合であるが、同図に示すよう
に、熱処理温度が400℃から600℃の範囲ては層抵
抗値は約3Ω/口であり、熱処理温度力鉤700℃以上
ては急増する。
Here, the platinum film thickness was 1000A, and the heat treatment time was 1
As shown in the same figure, when the heat treatment temperature ranges from 400℃ to 600℃, the layer resistance value is about 3Ω/hole, and when the heat treatment temperature is 700℃ or higher, rapidly increasing.

他の膜厚、熱処理時間でも同様の傾向があつた。即ち、
400℃から600℃の範囲て熱処理を行つて白金珪化
物を形成することにより層抵抗値の熱処理温度依存性が
きわめて小さく且つ層抵抗値も小さいことがわかる。
Similar trends were observed for other film thicknesses and heat treatment times. That is,
It can be seen that by performing heat treatment in the range of 400° C. to 600° C. to form platinum silicide, the dependence of the layer resistance value on the heat treatment temperature is extremely small, and the layer resistance value is also small.

以上述べたように、本発明半導体装置の製造方法によれ
ば、層抵抗値の熱処理温度依存性をきわめて小さくする
ことができるので、例え熱処理温度に変動が生じても、
低い抵抗値の配線体を持つ半導体装置を再現性よく、精
度よく製造することができ、実用上きわめて有効なもの
である。
As described above, according to the method of manufacturing a semiconductor device of the present invention, the dependence of the layer resistance value on the heat treatment temperature can be made extremely small, so even if the heat treatment temperature fluctuates,
A semiconductor device having a wiring body with a low resistance value can be manufactured with good reproducibility and precision, and is extremely effective in practice.

又、第2図の特性8において400℃力泊金珪化物が確
実に形成される最低の温度であり、これより低い温度て
は再現性が乏しくなる。一方、熱処理温度を800℃よ
りも高くすると急激に層抵抗が増大し表面が荒れてくる
。したがつて本発明に特定された条件によつて抵抗値が
低くかつ製品によつて抵抗値の偏差の小さい白金珪化物
層が再現性よく得られることとなる。
Further, in characteristic 8 of FIG. 2, 400° C. is the lowest temperature at which a metal silicide is reliably formed, and if the temperature is lower than this, reproducibility becomes poor. On the other hand, if the heat treatment temperature is made higher than 800° C., the layer resistance increases rapidly and the surface becomes rough. Therefore, under the conditions specified in the present invention, a platinum silicide layer having a low resistance value and a small deviation in resistance value depending on the product can be obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a−dは本発明の実施例の製造工程を示す断面図
、第2図は配線体の層抵抗値と熱処理温度の関係を示す
曲線図である。 1・・・・・・珪素単結晶基板、2・・・・・・酸化珪
素層、3・・・高抵抗値の多結晶珪素層、4・・・・・
白金層、5,7・・・・・・白金珪化物層、6・・・・
・・低抵抗値の多結晶珪素層。
1A to 1D are cross-sectional views showing the manufacturing process of an embodiment of the present invention, and FIG. 2 is a curve diagram showing the relationship between the layer resistance value of the wiring body and the heat treatment temperature. 1...Silicon single crystal substrate, 2...Silicon oxide layer, 3...High resistance polycrystalline silicon layer, 4...
Platinum layer, 5, 7...Platinum silicide layer, 6...
...Low resistance polycrystalline silicon layer.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁膜により一主面を選択的に被覆された基板上に
不純物を含有しないかもしくはごく微量含み10^5Ω
cm以上の高い抵抗率を持つ多結晶珪素膜を形成する工
程と、該多結晶珪素膜上に白金膜を形成する工程と、該
構造を400℃乃至600℃で熱処理して白金珪化物層
を形成する工程とを含むことを特徴とする半導体装置の
製造方法。
1 A substrate whose main surface is selectively covered with an insulating film does not contain impurities or contains a very small amount of impurities (10^5Ω)
A step of forming a polycrystalline silicon film with a high resistivity of cm or more, a step of forming a platinum film on the polycrystalline silicon film, and a heat treatment of the structure at 400°C to 600°C to form a platinum silicide layer. 1. A method of manufacturing a semiconductor device, the method comprising: forming a semiconductor device.
JP13604676A 1976-11-11 1976-11-11 Manufacturing method of semiconductor device Expired JPS6057227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13604676A JPS6057227B2 (en) 1976-11-11 1976-11-11 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13604676A JPS6057227B2 (en) 1976-11-11 1976-11-11 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5360587A JPS5360587A (en) 1978-05-31
JPS6057227B2 true JPS6057227B2 (en) 1985-12-13

Family

ID=15165903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13604676A Expired JPS6057227B2 (en) 1976-11-11 1976-11-11 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6057227B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL186352C (en) * 1980-08-27 1990-11-01 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE
US4516223A (en) * 1981-08-03 1985-05-07 Texas Instruments Incorporated High density bipolar ROM having a lateral PN diode as a matrix element and method of fabrication
JPS5975646A (en) * 1982-10-25 1984-04-28 Toshiba Corp Manufacture of semiconductor device
US4545116A (en) * 1983-05-06 1985-10-08 Texas Instruments Incorporated Method of forming a titanium disilicide
JPS6057646A (en) * 1983-09-08 1985-04-03 Seiko Epson Corp Semiconductor device
JPS60130844A (en) * 1983-12-20 1985-07-12 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS5360587A (en) 1978-05-31

Similar Documents

Publication Publication Date Title
JPS6213819B2 (en)
JPS6057227B2 (en) Manufacturing method of semiconductor device
JPS6029222B2 (en) Method for manufacturing solid-state electronic devices
JPH03227516A (en) Manufacture of semiconductor device
JPH0147012B2 (en)
JPS60193333A (en) Manufacture of semiconductor device
JPH02130961A (en) Field-effect transistor
JPS5923474B2 (en) semiconductor equipment
JPS58219759A (en) Manufacture of polycrystalline silicon resistor
JPS63281424A (en) Formation of polycide electrode
JP3419564B2 (en) DRAM manufacturing method and semiconductor device manufacturing method
JPS5814750B2 (en) Manufacturing method of semiconductor device
JPS5852853A (en) Manufacture of semiconductor device
JPS584973A (en) Electrode for semiconductor device
JPH0579184B2 (en)
JPS6218021A (en) Manufacture of semiconductor device
JP2830720B2 (en) Method for manufacturing semiconductor device
JPH04282860A (en) Manufacture of semiconductor device
JPS6118350B2 (en)
JPS592191B2 (en) Method for manufacturing electrodes for semiconductor devices
JPH0314234A (en) Titanium silicide wiring structure
JPS6132477A (en) Manufacture of semiconductor device
JPH05136137A (en) Manufacture of semiconductor device
JPH0322062B2 (en)
JPH08195360A (en) Manufacture of semiconductor device