JPH0314234A - Titanium silicide wiring structure - Google Patents

Titanium silicide wiring structure

Info

Publication number
JPH0314234A
JPH0314234A JP15106989A JP15106989A JPH0314234A JP H0314234 A JPH0314234 A JP H0314234A JP 15106989 A JP15106989 A JP 15106989A JP 15106989 A JP15106989 A JP 15106989A JP H0314234 A JPH0314234 A JP H0314234A
Authority
JP
Japan
Prior art keywords
layer
titanium
titanium silicide
wiring
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15106989A
Other languages
Japanese (ja)
Inventor
Atsushi Maeda
敦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15106989A priority Critical patent/JPH0314234A/en
Publication of JPH0314234A publication Critical patent/JPH0314234A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to improve the heat resistance of a titanium silicide wiring layer by a method wherein the surface of a wiring is covered with a titanium oxide layer, a silicon oxide layer or an oxide layer consisting of the mixture of a titanium oxide and a silicon oxide. CONSTITUTION:A titanium layer is applied on a silicon substrate 1 of an integrated circuit device or on a polycrystalline silicon thin film and a titanium silicide wiring structure is constituted into a structure, which is provided with a wiring layer 2 transformed into a titanium silicide by a heat treatment and either of a titanium oxide layer and a silicon oxide layer, which are formed in such a way as to cover the upper part of the above layer 2 before a heat treatment process necessary for the formation of the integrated circuit device subsequent to the above silicification process, or a protective layer 3 consisting of the mixture of a titanium oxide and a silicon oxide. For example, a titanium oxide layer 3 is formed on the surface of a titanium silicide wiring layer 2 formed on a semiconductor substrate 1 in such a way as to cover the surface of the layer 2. As a method for obtaining such a wiring structure, there is, for example, a method that after a titanium silicide wiring layer 2 is formed, a heat treatment is performed in an O2-containing atmosphere of a high temperature of 500 to 1000 deg.C or thereabouts.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は集積回路装置におけるチタンシリ勺イド配線
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a titanium silicate wiring structure in an integrated circuit device.

〔従来の技術〕[Conventional technology]

従来の集積回路装置において、ポリシリコンは例えばM
 OS F E T (Metal 0xide Se
m1conductorField Effect T
ransistor)においてはゲート電極及び配線材
料として、また例えばバイポーラトランジスタにおいて
はエミッタ電極あるいはヘース電極として使用されてき
た。しかしながら、ポリシリコン配線は数10Ω/口の
比較的高い抵抗値を持ち、集積回路の微細化に伴って電
極及び配線寸法が縮小されるに従って、集積回路の高速
化の妨げとなる。さらに集積回路の微細化に伴い、拡散
層深さを浅くする必要が生ずるが、これに伴い拡散配線
抵抗も増大してしまい、素子の高速化が困難となる。
In conventional integrated circuit devices, polysilicon is e.g.
OS FET (Metal Oxide Se
m1conductorField Effect T
It has been used as a gate electrode and wiring material in transistors (transistors), and as an emitter electrode or heath electrode in bipolar transistors, for example. However, polysilicon wiring has a relatively high resistance value of several tens of Ω/hole, and as the dimensions of electrodes and wiring are reduced with the miniaturization of integrated circuits, this becomes an impediment to increasing the speed of integrated circuits. Furthermore, with the miniaturization of integrated circuits, it becomes necessary to reduce the depth of the diffusion layer, but this also increases the resistance of the diffusion wiring, making it difficult to increase the speed of the device.

そこで、ポリシリコン層及び拡散層の抵抗値を下げるこ
との可能な配線構造としてポリシリコン層及び拡散層の
上面を自己整合的にチタンシリサイド(TiSiz)化
するものがある。
Therefore, as a wiring structure capable of lowering the resistance values of the polysilicon layer and the diffusion layer, there is one in which the upper surfaces of the polysilicon layer and the diffusion layer are made of titanium silicide (TiSiz) in a self-aligned manner.

第3図は例えば特開昭58−132951号公報に記載
されたこのような従来のチタンシリサイド配線構造を示
す断面図であり、図において、1はSt基板、2はチタ
ンシリサイド層、4は5iOz層である。
FIG. 3 is a cross-sectional view showing such a conventional titanium silicide wiring structure described in, for example, Japanese Unexamined Patent Publication No. 58-132951. In the figure, 1 is an St substrate, 2 is a titanium silicide layer, and 4 is a 5iOz It is a layer.

第4図(a)〜(C)は第3図に示すチタンシリサイド
配線構造の作製工程を示す図であり、図において5はチ
タン層である。
FIGS. 4(a) to 4(C) are diagrams showing the manufacturing process of the titanium silicide wiring structure shown in FIG. 3, and in the figures, 5 is a titanium layer.

次に作製工程について説明する。まず第4図(a)に示
すように配線以外の領域にSiO□膜4が形成されたウ
ェハ上に、スパックにより第4図(b)に示すようにチ
タン層5を形成する。この後600〜650°Cの温度
で所定時間熱処理を行なうことにより第4図(C)に示
すようにチタン層5のうちSi基板1に接する部分、ま
たは図示しないポリシリコン膜に接する部分がシリサイ
ド化されてチタンシリサイド層2となる。この後、シリ
サイド化されていないチタン層を除去することにより第
3図に示す配線構造が得られる。
Next, the manufacturing process will be explained. First, as shown in FIG. 4(a), a titanium layer 5 as shown in FIG. 4(b) is formed on a wafer on which a SiO□ film 4 has been formed in areas other than the interconnections by sppacking. After that, by performing heat treatment at a temperature of 600 to 650°C for a predetermined time, as shown in FIG. The titanium silicide layer 2 is formed as a titanium silicide layer 2. Thereafter, by removing the unsilicided titanium layer, the wiring structure shown in FIG. 3 is obtained.

上述の方法によりポリシリコン層及び拡散層の上面に1
Ω/口程度の低抵抗のチタンシリサイド層を容易に形成
することができ、集積回路装置の高速化をはかることが
できる。
By the method described above, 1
It is possible to easily form a titanium silicide layer with a low resistance on the order of Ω/mm, and it is possible to increase the speed of integrated circuit devices.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のチタンシリサイド配線構造は以上のように構成さ
れており、配線の抵抗を低減することができるが、集積
回路装置の製造工程においては900〜1000°Cと
いう高温の熱処理を繰り返し行なうことが不可欠であり
、この高温熱処理によりチタンシリサイド配線層におい
てチタン(T i )の凝集が見られるなど、熱による
劣化が大きく、工程を経るに従って、抵抗チタンが増大
してしまうという問題点があった。
The conventional titanium silicide wiring structure is configured as described above and can reduce the resistance of the wiring, but in the manufacturing process of integrated circuit devices, it is essential to repeatedly perform heat treatment at high temperatures of 900 to 1000°C. This high-temperature heat treatment causes agglomeration of titanium (T i ) in the titanium silicide wiring layer, resulting in significant thermal deterioration, and there is a problem in that the resistance of titanium increases as the process progresses.

この発明は上記のような問題点を解消するためになされ
たもので、チタンシリサイド配線層の耐熱性を向上させ
ることのできるチタンシリサイド配線構造を得ることを
目的とする。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to obtain a titanium silicide wiring structure that can improve the heat resistance of the titanium silicide wiring layer.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るチタンシリサイド配線層は、配線の表面
をチタン酸化物、シリコン酸化物あるいはこれらの混合
酸化物で被覆するようにしたものである。
In the titanium silicide wiring layer according to the present invention, the surface of the wiring is coated with titanium oxide, silicon oxide, or a mixed oxide thereof.

〔作用〕[Effect]

この発明においては、チタンシリサイド配線表面をチタ
ンの凝集を抑える効果を持つ酸化物で被覆したから、熱
処理によるチタンシリサイド配線の劣化を抑制し、低抵
抗な配線層を安定して得ることができる。
In this invention, since the surface of the titanium silicide wiring is coated with an oxide that has the effect of suppressing agglomeration of titanium, deterioration of the titanium silicide wiring due to heat treatment can be suppressed and a low-resistance wiring layer can be stably obtained.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例によるチタンシリサイド配
線構造を示す断面図であり、図において、半導体基板1
上に形成されたチタンシリサイド配線層2の表面に、チ
タン酸化物層3が上記チタンシリサイド層2の表面を覆
うように形成されている。
FIG. 1 is a sectional view showing a titanium silicide wiring structure according to an embodiment of the present invention.
A titanium oxide layer 3 is formed on the surface of the titanium silicide wiring layer 2 formed above so as to cover the surface of the titanium silicide layer 2.

ここで、第1図に示したようなチタンシリサイド配線構
造を得るための方法としては、例えば先行技術として示
したチタンシリサイドの製造フローに従って、チタンシ
リサイド配線層を形成した後、800〜1000 ”C
程度の高温の02雰囲気中で熱処理を行なう方法がある
。この02雰囲気中での高温熱処理によってチタン酸化
物層3が形成される。
Here, as a method for obtaining a titanium silicide wiring structure as shown in FIG. 1, for example, after forming a titanium silicide wiring layer according to the titanium silicide manufacturing flow shown as the prior art,
There is a method of performing heat treatment in an 02 atmosphere at a high temperature of about 100 ml. The titanium oxide layer 3 is formed by this high temperature heat treatment in the 02 atmosphere.

第2図はチタンシリ′す゛イド配線のシー1−抵抗値の
変化を900°Cの熱処理時間に対してプロットしたも
のである。従来例によって作成したチタンシリサイド配
線は900°c、1.20分の熱処理の後においては初
期の10倍の抵抗値を示しており、劣化が著しい。それ
に対して本発明の実施例によるチタンシリサイド配線は
抵抗値の上昇がほとんど認められず、耐熱性は大幅に向
上している。
FIG. 2 is a plot of the change in Sea 1 -resistance value of the titanium silicide wire with respect to the heat treatment time at 900°C. After heat treatment at 900° C. for 1.20 minutes, the titanium silicide interconnection fabricated according to the conventional example exhibits a resistance value ten times that of the initial value, showing significant deterioration. In contrast, in the titanium silicide wiring according to the embodiment of the present invention, almost no increase in resistance value was observed, and the heat resistance was significantly improved.

このように本実施例ではチタンシリサイド配線表面をチ
タン酸化物層で被覆したから、このチタン酸化物がチタ
ンシリサイドの熱処理によるチタン凝集を抑え、熱処理
によるチタンシリサイド配線の劣化を抑制し、低抵抗な
配線層を安定して得ることができる。
In this example, since the surface of the titanium silicide wiring was covered with a titanium oxide layer, this titanium oxide suppressed the aggregation of titanium caused by the heat treatment of the titanium silicide, suppressed the deterioration of the titanium silicide wiring due to the heat treatment, and resulted in low resistance. A wiring layer can be stably obtained.

なお、上記実施例ではチタンシリサイド配線表面をチタ
ン酸化物で被覆するようにしたものについて述べたが、
シリコン酸化物層、あるいはチタン酸化物とシリコン酸
化物の混合層で被覆するようにしてもよく、上記実施例
と同様の効果を奏する。
In addition, in the above embodiment, the surface of the titanium silicide wiring was coated with titanium oxide, but
It may be coated with a silicon oxide layer or a mixed layer of titanium oxide and silicon oxide, and the same effects as in the above embodiments can be obtained.

C発明の効果〕 以上のように、この発明によればチタンシリサイド配線
構造において、チタンシリサイド層の表面を酸化物層で
覆った構成としたから、配線の耐熱性が向上し、この結
果、集積回路の製造工程中の熱処理による配線抵抗の増
大を抑えることが可能となり、安定した素子特性を容易
に得ることができる効果がある。
C Effects of the Invention As described above, according to the present invention, in the titanium silicide wiring structure, the surface of the titanium silicide layer is covered with an oxide layer, so the heat resistance of the wiring is improved, and as a result, the integration It is possible to suppress an increase in wiring resistance due to heat treatment during the circuit manufacturing process, and there is an effect that stable device characteristics can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるチタンシリサイド配
線構造を示す断面図、第2図はこの発明の効果を示すた
めの特性図、第3図は従来のチタンシリサイド配線構造
の断面図、第4図は従来のチタンシリサイド配線構造の
作製工程を示す図である。 1は半導体基板、2ばチタンシリサイド層、3ば酸化物
層、4はS iO2層。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view showing a titanium silicide wiring structure according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the effects of the invention, and FIG. 3 is a sectional view of a conventional titanium silicide wiring structure. FIG. 4 is a diagram showing the manufacturing process of a conventional titanium silicide wiring structure. 1 is a semiconductor substrate, 2 is a titanium silicide layer, 3 is an oxide layer, and 4 is an SiO2 layer. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)集積回路装置のシリコン基板もしくはポリシリコ
ン薄膜上にチタンを被着させ、熱処理によりチタンシリ
サイド化した配線層と、 上記シリサイド化工程後の、集積回路装置作製に必要な
熱処理工程前に上記配線層上を覆うように形成されたチ
タン酸化物、シリコン酸化物のいずれか、またはそれら
の混合物からなる保護層とを備えたことを特徴とするチ
タンシリサイド配線構造。
(1) A wiring layer in which titanium is deposited on a silicon substrate or polysilicon thin film of an integrated circuit device and titanium silicide is formed by heat treatment; A titanium silicide wiring structure comprising a protective layer made of titanium oxide, silicon oxide, or a mixture thereof formed to cover the wiring layer.
JP15106989A 1989-06-13 1989-06-13 Titanium silicide wiring structure Pending JPH0314234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15106989A JPH0314234A (en) 1989-06-13 1989-06-13 Titanium silicide wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15106989A JPH0314234A (en) 1989-06-13 1989-06-13 Titanium silicide wiring structure

Publications (1)

Publication Number Publication Date
JPH0314234A true JPH0314234A (en) 1991-01-22

Family

ID=15510628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15106989A Pending JPH0314234A (en) 1989-06-13 1989-06-13 Titanium silicide wiring structure

Country Status (1)

Country Link
JP (1) JPH0314234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500759B1 (en) * 1998-10-05 2002-12-31 Seiko Epson Corporation Protective layer having compression stress on titanium layer in method of making a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500759B1 (en) * 1998-10-05 2002-12-31 Seiko Epson Corporation Protective layer having compression stress on titanium layer in method of making a semiconductor device

Similar Documents

Publication Publication Date Title
JPH0456325A (en) Manufacture of semiconductor device
JPS6056293B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS62113421A (en) Manufacture of semiconductor device
JPS6364057B2 (en)
JPH0314234A (en) Titanium silicide wiring structure
JPS59200418A (en) Manufacture of semiconductor device
JPS59207652A (en) Semiconductor integrated circuit device and manufacture thereof
JPS609160A (en) Semiconductor device and manufacture thereof
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
JPS59112641A (en) Semiconductor device and manufacture thereof
JPS61140177A (en) Semiconductor device
JPS61174743A (en) Manufacture of electrode wiring of semiconductor device
JPH0510820B2 (en)
JPS5814750B2 (en) Manufacturing method of semiconductor device
JPS5975667A (en) Manufacture of semiconductor device
JPS58155767A (en) Manufacture of metal oxide semiconductor type semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPH03265139A (en) Manufacture of semiconductor device
JPS61164240A (en) Semiconductor integrated circuit device
JPH0441510B2 (en)
JPS5889869A (en) Manufacture of semiconductor device
JPS6118350B2 (en)
JPS60163466A (en) Manufacture of semiconductor device
JPS6042849A (en) Manufacture of semiconductor device
JPS592191B2 (en) Method for manufacturing electrodes for semiconductor devices