JPS5923474B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS5923474B2
JPS5923474B2 JP53158353A JP15835378A JPS5923474B2 JP S5923474 B2 JPS5923474 B2 JP S5923474B2 JP 53158353 A JP53158353 A JP 53158353A JP 15835378 A JP15835378 A JP 15835378A JP S5923474 B2 JPS5923474 B2 JP S5923474B2
Authority
JP
Japan
Prior art keywords
layer
transistor
silicon
semiconductor device
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53158353A
Other languages
Japanese (ja)
Other versions
JPS5583253A (en
Inventor
敏彦 小野
浩夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP53158353A priority Critical patent/JPS5923474B2/en
Publication of JPS5583253A publication Critical patent/JPS5583253A/en
Publication of JPS5923474B2 publication Critical patent/JPS5923474B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置に関し、特に同一半導体基板内にト
ランジスタとショットキ・バリア・ダイオード(SBD
と略す)とが形成される集積回路(ICと略す)の電極
の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor device that includes a transistor and a Schottky barrier diode (SBD) within the same semiconductor substrate.
The present invention relates to the structure of electrodes of an integrated circuit (abbreviated as IC) in which an integrated circuit (abbreviated as IC) is formed.

従来、例えば第1図に示すICにおいて、領域Iの部分
に示すSBDは順方向電圧降下Vfを小さく、且つ順方
向特性を安定にする目的から、その電極構造は同図に示
すように、シリコン基板1表面に該シリコン基板1の表
面を覆う絶縁膜2に設けられた開口を介して接する第一
層としてチタンTi層3を形成し、その上層にアルミニ
ウムAl層4を形成した二層構造が用いられている。
Conventionally, for example, in the IC shown in FIG. 1, the SBD shown in region I has an electrode structure made of silicon, as shown in the figure, in order to reduce the forward voltage drop Vf and stabilize the forward characteristics. A two-layer structure in which a titanium Ti layer 3 is formed as a first layer in contact with the surface of the substrate 1 through an opening provided in an insulating film 2 covering the surface of the silicon substrate 1, and an aluminum Al layer 4 is formed on the top layer. It is used.

上記二層構造はSBDにとつてはVfは小さく且つ熱変
動に対しても比較的安定である一が、同図の領域■に示
すトランジスタのエミッタ電極としては、製造工程中に
おけるエミッターベース耐圧不良率が高く好適とは言い
難い。なお、同図において、5はトランジスタのベース
領域、6はエミッタ領域、Tは多結晶半導体シリコン層
を示す。
The above two-layer structure has a small Vf for an SBD and is relatively stable against thermal fluctuations. However, as an emitter electrode of a transistor shown in area The rate is high and it is difficult to say that it is suitable. In the figure, 5 indicates a base region of the transistor, 6 indicates an emitter region, and T indicates a polycrystalline semiconductor silicon layer.

一方、トランジスタの電極として第2図に示すようにシ
リコンSiを含んだAl層8を用いることにより、エミ
ッターベース接合の破壊あるいは耐圧不良の発生を防ぐ
ことができるが、逆に熱変動によりSBDのVf特性が
不安定になる。
On the other hand, by using an Al layer 8 containing silicon as the electrode of the transistor, as shown in FIG. 2, it is possible to prevent the destruction of the emitter base junction or the occurrence of breakdown voltage failure, but on the other hand, it is possible to prevent the occurrence of SBD failure due to thermal fluctuations. Vf characteristics become unstable.

上記問題点を解消する為に、第一層に白金シリサイド層
、第二層にチタン、第三層にタングステンを用いる電極
構造が提唱されているが、材料が高価でありまた工程が
非常に煩雑になる。本発明の目的は上記問題点を除去し
て、SBDにとつてはVf特性が良好且つ安定で、トラ
ンジスタにとつてはエミッターベース耐圧不良を発生せ
ず、且つ簡便な方法で製作し得る電極構造を有する半導
体装置を提供することにある。
In order to solve the above problems, an electrode structure using a platinum silicide layer for the first layer, titanium for the second layer, and tungsten for the third layer has been proposed, but the materials are expensive and the process is extremely complicated. become. An object of the present invention is to eliminate the above-mentioned problems, and to provide an electrode structure that has good and stable Vf characteristics for SBDs, does not cause emitter-base breakdown voltage defects for transistors, and can be manufactured by a simple method. An object of the present invention is to provide a semiconductor device having the following features.

本発明の特徴は同一半導体基板内にトランジスタとショ
ットキ・バリア・ダイオードSBDとが形成される半導
体装置において、電極が、下層がチタンTi)ハフニウ
ムHf)クロームCrからえらばれた一つの金属からな
り上層がシリコンSiを含有したアルミニウムAlから
構成されてなることにある。
A feature of the present invention is that in a semiconductor device in which a transistor and a Schottky barrier diode SBD are formed in the same semiconductor substrate, the electrode is made of one metal selected from titanium (Ti), hafnium (Hf), chromium (Cr), and the upper layer is is made of aluminum containing silicon (Al).

以下本発明を実施例に基づいて説明する。The present invention will be explained below based on examples.

第3図は本発明の一実施例を示す要部断面図である。FIG. 3 is a sectional view of a main part showing an embodiment of the present invention.

1はN型シリコン基板、2は絶縁膜、3は厚さ100〔
λ〕程のTi層、5はトランジスタのペース領域、6は
トランジスタのエミツタ領域、7は多結晶シリコン層、
8はSiを含有するAl層であつて、また領域1はシヨ
ツトキ・バリア・ jダイオードSBDl領域はトラン
ジスタを示す。
1 is an N-type silicon substrate, 2 is an insulating film, and 3 is a thickness of 100 [
λ] Ti layer, 5 a transistor pace region, 6 a transistor emitter region, 7 a polycrystalline silicon layer,
Reference numeral 8 denotes an Al layer containing Si, and region 1 represents a shotgun barrier j diode SBDl region a transistor.

図に示すごとく本実施例では、SBDI物ではシリコン
基板1の表面に形成された絶縁層(SiO2層)2を選
択的に除去してベース−コレクタ接合を表出する電極窓
を設け、該電極窓において 1シリコン基板1の表面に
接触する第一層の金属層としてTi層3を形成し、該T
i層3の表面にSiを含有するAl層8が形成されてい
る。一方トランジスタ部ではシリコン基板1表面に形成
されたSiO2層2を選択的に除去して工 1ミツタ領
域6表面に電極窓を設け、該電極窓においてエミツタ領
域6の表面に接触する多結晶シリコン層7を形成し、該
多結晶シリコン層7表面にTi層3が形成され、該Ti
層3の表面にSiを含有するAl層8が形成されている
。本実施例において、Ti層3の厚さ及びAl層8のS
i含有量を決定するには、前述のSBDのf特性とその
安定性及びトランジスタのエミツターベース耐圧不良率
と、電極を形成した後の工程の温度条件との間の関係を
慎重に考慮しなければならない。
As shown in the figure, in this embodiment, in the SBDI product, an insulating layer (SiO2 layer) 2 formed on the surface of a silicon substrate 1 is selectively removed to provide an electrode window that exposes the base-collector junction. In the window, a Ti layer 3 is formed as a first metal layer in contact with the surface of the silicon substrate 1;
An Al layer 8 containing Si is formed on the surface of the i-layer 3 . On the other hand, in the transistor section, the SiO2 layer 2 formed on the surface of the silicon substrate 1 is selectively removed to provide an electrode window on the surface of the emitter region 6, and the polycrystalline silicon layer contacts the surface of the emitter region 6 in the electrode window. A Ti layer 3 is formed on the surface of the polycrystalline silicon layer 7, and a Ti layer 3 is formed on the surface of the polycrystalline silicon layer 7.
An Al layer 8 containing Si is formed on the surface of the layer 3. In this example, the thickness of the Ti layer 3 and the S of the Al layer 8 are
To determine the i content, carefully consider the relationship between the above-mentioned f characteristics of the SBD, its stability, the emitter base voltage failure rate of the transistor, and the temperature conditions of the process after forming the electrodes. There must be.

即ち電極を形成したあと、半導体素子は組立工程および
気密封止工程で高温にさらされるが、その温度はモール
ド封止型、セラミツク封止型等により著しく異なる。
That is, after the electrodes are formed, the semiconductor element is exposed to high temperatures during the assembly process and hermetic sealing process, but the temperature varies considerably depending on the mold sealing type, ceramic sealing type, etc.

例えばモールド封止型の中には組立および封止工程の最
高温度が170〔℃〕程度ですむ場合があるのに対し、
セラミツク封止型の或る種のものは封止工程の温度が5
00〔℃〕に達する場合がある。上述のような工程の温
度処理条件が半導体素子に及ぼす影響を第4図、第5図
、第6図により説明する。
For example, with some mold sealing types, the maximum temperature during the assembly and sealing process may only be around 170 [℃].
For some types of ceramic encapsulation, the temperature of the encapsulation process is 5.
It may reach 00°C. The influence that the temperature treatment conditions of the above-mentioned process have on the semiconductor device will be explained with reference to FIGS. 4, 5, and 6.

第4図はSBDf)Vf特性の温度サイクリング試験に
よる変動の様子゛を示すもので、同図aは黒丸が500
〔℃〕白丸が350〔℃〕に各30分間放置した後のf
1同図bは黒丸が450〔℃〕、白丸が350〔℃〕に
各30分間放置した後のVfの値を示す。
Figure 4 shows how the SBDf)Vf characteristics change due to temperature cycling tests.
[°C] The white circle is f after being left at 350 [°C] for 30 minutes each.
1 In Figure b, the black circles indicate the Vf values after being left at 450 [°C], and the open circles indicate the values of Vf after being left at 350 [°C] for 30 minutes.

試料のAないしDの内容は第1表に示す。なおシリコン
基板の主面の結晶面方位が(100)面および(111
)面のいずれの場合も両者の間に差は認められない。な
お第1表でSi含有率は重量比で示してある。
The contents of samples A to D are shown in Table 1. Note that the crystal plane orientation of the main surface of the silicon substrate is the (100) plane and the (111) plane.
) There is no difference between the two in any case. In Table 1, the Si content is shown in weight ratio.

第4図により明らかなごとく、500〔℃〕の封止温度
にさらされた場合、SBDf)Vf特性が安定なものは
試料Dのみで、Siの含有率が少なくなるにつれて変動
巾は大きくなる。更にTi層が存在しない場合は変動巾
が著しく大きくなり且つ全体に上昇傾向(矢印)を示し
ている。上記現象は物理的には次のように解される。
As is clear from FIG. 4, only sample D has stable SBDf)Vf characteristics when exposed to a sealing temperature of 500 [° C.], and the range of variation increases as the Si content decreases. Furthermore, when there is no Ti layer, the range of fluctuation becomes significantly larger and shows an overall upward trend (arrow). The above phenomenon can be physically understood as follows.

即ち半導体素子が高温にさらされるとAl中にSiが溶
解し、温度が下がると再析出して降り積り、シリコン基
板表面に成長する。この再成長したSi層は基板とは導
電型の異なるAlを含んだP型シリコンであるのでVf
を劣化させる。ところがTi層があると上記Siの再成
長を妨げるのでfの劣化を防ぐことができる。しかしT
iはAlと反応してTiAl,の形になつていて、これ
はSiをAlの中に導入する嫌体となるので、SiをA
l中に多量に溶解させ、Tiが薄い場合Siの再成長を
完全に防止することができない。そこで予めAl中にS
iを含有せしめておけばAl中にSiが更に溶解するの
を抑えることができる。試料B,C,D2:.Al中の
Siの含有率が上るにつれてfの安定度が増すのは、上
述のAl中へのSiの溶解を抑える度合の差によると解
される。第5図は前記4種類の試料を400〔℃〕、4
50〔℃〕、480〔℃〕、500〔℃〕の4段階の温
度に各30分間さらした時にエミツターベース間耐圧(
VebO)の不良率が増加する様子を示したものである
That is, when a semiconductor element is exposed to high temperatures, Si dissolves in Al, and when the temperature drops, it re-precipitates and deposits, growing on the surface of the silicon substrate. This regrown Si layer is P-type silicon containing Al, which has a different conductivity type from that of the substrate, so Vf
deteriorate. However, the presence of the Ti layer prevents the regrowth of Si, thereby preventing the deterioration of f. But T
i reacts with Al to form TiAl, which acts as an abhorrent for introducing Si into Al.
If a large amount of Ti is dissolved in Ti and the Ti is thin, regrowth of Si cannot be completely prevented. Therefore, in advance, S
By containing i, further dissolution of Si in Al can be suppressed. Samples B, C, D2:. The reason why the stability of f increases as the content of Si in Al increases is considered to be due to the above-mentioned difference in the degree to which dissolution of Si in Al is suppressed. Figure 5 shows the four types of samples mentioned above at 400 [℃], 4
The emitter-base breakdown voltage (
This figure shows how the defective rate of VebO) increases.

同図aは半導体基板の主面の面方位が(100)面の場
合、同図bは同じく(111)面の場合である。第5図
aにおいて試料B,C,D三者の間に著しい差が認めら
れる。
Figure a shows the case where the plane orientation of the main surface of the semiconductor substrate is the (100) plane, and figure b shows the case where the plane orientation is also the (111) plane. In Figure 5a, there is a significant difference between samples B, C, and D.

これは前述のTiとAlとの反応の不均一性に起因する
ものと考えることができる。即ち、TiとAlの反応が
急激に進んだ部分からSiがAl中に溶け込み、代つて
A′が基板の中に導入される。このような現象がエミツ
タ領域で生じると、エミツターベース接合は表面から浅
い所に形成されているので簡単に接合が破壊され、Ve
bO不良となる。しかしこの場合にもAl中に予めSi
を含有させておけば、更にSiがAl中に溶解するのを
抑えることができるので、Si含有率の高い試料Dでは
前記条件ではEbO不良の発生を防止できたものと解さ
れる。第5図aとbとの差は結晶方位によるもので、上
記VebO不良発生の問題は半導体基板に主面が(10
0)面のものを用いた場合の方が大きく、(111)面
のものの場合はAl中にSiを0.6〔%〕含有させて
おけば500〔℃〕までVebO不良の発生を防止でき
る。また100〔λ〕程のTiが存在しても400〔℃
〕以下の低温では、いずれの場合にもEbO不良の発生
を防止できることが明らかとなつた。第6図は、Ti層
が有効に働く厚さの限界を求めた結果を示すもので、一
番条件の悪い第二層が純Alの場合についてTi層の厚
さを変えて温度480〔℃〕に各30分間さらした時の
EbO不良の発生状況を示している。
This can be considered to be due to the non-uniformity of the reaction between Ti and Al mentioned above. That is, Si dissolves into Al from the portion where the reaction between Ti and Al rapidly progresses, and A' is instead introduced into the substrate. If such a phenomenon occurs in the emitter region, the emitter-base junction is easily destroyed because it is formed shallowly from the surface, and Ve
bO becomes defective. However, in this case as well, Si is added in Al in advance.
If it is contained, it is possible to further suppress the dissolution of Si into Al, so it is understood that the occurrence of EbO defects could be prevented in Sample D, which has a high Si content, under the above conditions. The difference between FIG.
It is larger when using a 0)-plane type, and in the case of a (111)-plane type, if 0.6 [%] of Si is contained in Al, the occurrence of VebO defects can be prevented up to 500 [℃]. . Furthermore, even if about 100 [λ] of Ti is present, the temperature will rise to 400 [℃].
] It has become clear that the occurrence of EbO defects can be prevented in any case at low temperatures below. Figure 6 shows the results of determining the limit of the thickness at which the Ti layer can work effectively.In the case where the second layer, which has the worst conditions, is pure Al, the thickness of the Ti layer is changed and the temperature is increased to 480°C. ] shows the occurrence of EbO defects when exposed for 30 minutes each.

なお、半導体基板は結晶面方位(111)面のものを用
いた。同図より明らかなごとく、Ti層の厚さが170
〔A〕を越えると急速にVebo不良が増大する。
Note that the semiconductor substrate used was one with a (111) crystal plane. As is clear from the figure, the thickness of the Ti layer is 170 mm.
When [A] is exceeded, Vebo defects rapidly increase.

この原因は前述のごとくTi層が厚くなると、Ti層と
Alとの反応の不均一性が急速に増大するためである。
The reason for this is that, as described above, as the Ti layer becomes thicker, the non-uniformity of the reaction between the Ti layer and Al increases rapidly.

一方Ti層が薄い場合は反応の不均一性は減少するが、
極端い薄いとTi層が存在しないのと同じになるので、
膜生成技術の現状から見て50〔A〕程度が実用上の限
界と考えられる。以上説明したごとく、本発明によれば
第一層(下層)にTi、第二層(上層)にSiを含有せ
しめたAlを用いた構造をもって電極を構成することに
より、SBDにとっても、トランジスタにとっても好適
な電極構造を有する半導体装置を提供することができる
。更に本実施例の電極構造は、同一蒸着工程において連
続的に蒸着することにより形成できるので、製造工程が
非常簡単化できる利点がある。
On the other hand, when the Ti layer is thin, the nonuniformity of the reaction decreases;
If it is extremely thin, it will be the same as if the Ti layer does not exist, so
Considering the current state of film production technology, about 50 [A] is considered to be the practical limit. As explained above, according to the present invention, by configuring the electrode with a structure using Al containing Ti in the first layer (lower layer) and Si in the second layer (upper layer), it is possible to improve both the SBD and the transistor. A semiconductor device having a very suitable electrode structure can be provided. Furthermore, since the electrode structure of this embodiment can be formed by continuous vapor deposition in the same vapor deposition process, there is an advantage that the manufacturing process can be extremely simplified.

本発明は上記実施例に限らず、更に変形実施できる。The present invention is not limited to the above-mentioned embodiments, and can be implemented in further modifications.

例えば第一層金属はTiに限定する必要はなく、ハフニ
ウムHf、またはクロームCrを用いても同様の効果を
示す。
For example, the first layer metal need not be limited to Ti; the same effect can be obtained by using hafnium Hf or chromium Cr.

また第一層金属の厚さ、および第二層のAl中のSiの
含有率は第4図ないし第6図により工程条件等を考慮し
て適宜選択され得る。
Further, the thickness of the first metal layer and the content of Si in Al of the second layer can be appropriately selected in consideration of process conditions and the like as shown in FIGS. 4 to 6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来構造の説明に供する要部断面
図、第3図は本発明の一実施例を示す要部断面図、第4
図、第5図及び第6図は上記一実施例の効果の説明に供
するための特性図表である。 1・・・シリコン基板、2・・・・・絶縁膜、3・・・
・・チタン層、4・・・・アルミニウム層、5・・・・
・ベース領域、6・・・・エミッタ領域、7・・・多結
晶シリコン層、8・・・シリコン含有アルミニウム層、
I・・・・・ショットキ・バリア・ダイオード領域、I
I・・・トランジスタ領域。
1 and 2 are main part sectional views for explaining the conventional structure, FIG. 3 is a main part sectional view showing an embodiment of the present invention, and FIG.
5 and 6 are characteristic charts for explaining the effects of the above embodiment. 1... Silicon substrate, 2... Insulating film, 3...
...Titanium layer, 4...Aluminum layer, 5...
- Base region, 6... Emitter region, 7... Polycrystalline silicon layer, 8... Silicon-containing aluminum layer,
I... Schottky barrier diode region, I
I...Transistor area.

Claims (1)

【特許請求の範囲】 1 同一半導体基板に少なくともトランジスタとショッ
トキバリア・ダイオードとが形成されてなる半導体装置
において、前記トランジスタとショットキバリア・ダイ
オードの電極が、60〜170〔Å〕の厚さを有するチ
タン、ハフニウム、クロームの中から選ばれた一つの金
属よりなる第1の層と、該第1の層上に配設されたシリ
コンを0.6〔重量%〕以上含有せるアルミニウムから
なる第2の層から構成されてなることを特徴とする半導
体装置。
[Scope of Claims] 1. In a semiconductor device in which at least a transistor and a Schottky barrier diode are formed on the same semiconductor substrate, the electrodes of the transistor and the Schottky barrier diode have a thickness of 60 to 170 [Å]. A first layer made of one metal selected from titanium, hafnium, and chromium, and a second layer made of aluminum containing 0.6 [wt%] or more of silicon disposed on the first layer. A semiconductor device comprising layers of.
JP53158353A 1978-12-19 1978-12-19 semiconductor equipment Expired JPS5923474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53158353A JPS5923474B2 (en) 1978-12-19 1978-12-19 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53158353A JPS5923474B2 (en) 1978-12-19 1978-12-19 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS5583253A JPS5583253A (en) 1980-06-23
JPS5923474B2 true JPS5923474B2 (en) 1984-06-02

Family

ID=15669793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53158353A Expired JPS5923474B2 (en) 1978-12-19 1978-12-19 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS5923474B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745228A (en) * 1980-08-29 1982-03-15 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS6066465A (en) * 1983-09-21 1985-04-16 Seiko Epson Corp Semiconductor device
JPS61216361A (en) * 1985-03-20 1986-09-26 Sanyo Electric Co Ltd Forming method of electrode
JPS61216362A (en) * 1985-03-20 1986-09-26 Sanyo Electric Co Ltd Manufacture of high-frequency transistor
JPS62235774A (en) * 1986-04-07 1987-10-15 Matsushita Electronics Corp Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380966A (en) * 1976-12-27 1978-07-17 Hitachi Ltd Manufacture of electrode fdr semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380966A (en) * 1976-12-27 1978-07-17 Hitachi Ltd Manufacture of electrode fdr semiconductor device

Also Published As

Publication number Publication date
JPS5583253A (en) 1980-06-23

Similar Documents

Publication Publication Date Title
US3189973A (en) Method of fabricating a semiconductor device
US4757028A (en) Process for preparing a silicon carbide device
US3917495A (en) Method of making improved planar devices including oxide-nitride composite layer
US4063275A (en) Semiconductor device with two passivating layers
US3942241A (en) Semiconductor devices and methods of manufacturing same
US2945286A (en) Diffusion transistor and method of making it
JPS5923474B2 (en) semiconductor equipment
JPS58212177A (en) Insulated gate type transistor and manufacture thereof
US3519900A (en) Temperature compensated reference diodes and methods for making same
JPS6364057B2 (en)
US5612236A (en) Method of forming a silicon semiconductor device using doping during deposition of polysilicon
JPH0451068B2 (en)
US4224636A (en) Semiconductor device with thermally compensating SiO2 -silicate glass-SiC passivation layer
JPS609159A (en) Semiconductor device
US3371255A (en) Gallium arsenide semiconductor device and contact alloy therefor
JPS60103671A (en) Semiconductor device
JPS58123724A (en) Semiconductor device
JPS6057227B2 (en) Manufacturing method of semiconductor device
JPS605068B2 (en) MOS type semiconductor device
JPH01298758A (en) Manufacture of semiconductor device
JPH04373124A (en) Semiconductor device and manufacture thereof
JPS59227119A (en) Silicon semiconductor device
JPS59202661A (en) Manufacture of semiconductor device
JPS59101868A (en) Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof
JPS6196757A (en) Semiconductor device