JPS59101868A - Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof - Google Patents

Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof

Info

Publication number
JPS59101868A
JPS59101868A JP21130982A JP21130982A JPS59101868A JP S59101868 A JPS59101868 A JP S59101868A JP 21130982 A JP21130982 A JP 21130982A JP 21130982 A JP21130982 A JP 21130982A JP S59101868 A JPS59101868 A JP S59101868A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor substrate
region
main surface
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21130982A
Other languages
Japanese (ja)
Inventor
Takahide Ikeda
池田 隆英
Tokuo Watanabe
篤雄 渡辺
Mitsuru Hirao
充 平尾
Kiyoshi Tsukuda
佃 清
Tatsuya Kamei
亀井 達弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21130982A priority Critical patent/JPS59101868A/en
Publication of JPS59101868A publication Critical patent/JPS59101868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain the one which has a low forward directional voltage drop and does not generate the deterioration of withstand voltage of a shallow P-N junction and an economical manufacture with a small number of processes by a method wherein the first electrode is formed of the mixture of the second electrode material and the material for a semiconductor substrate. CONSTITUTION:After contact windows are bored by photoetching the substrate wherein a bipolar transistor is formed, an Al.Si 8 is successively vapor-deposited in the same device. Next, only the Al.Si layer on an SBD 9 part is removed by a photoetching process. Successively, an electrode pattern over the entire body is formed by photoetching. As a result, a pure Al electrode 10 is formed at the SBD part, and electrodes 7 and 8 of a double layer film of pure Al/Al.Si are formed at the emitter electrode part. Thereafter, contact alloying is performed. Consequently, a junction of phiB=0.72eV is formed at the SBD part, and while the electrode 11 at the emitter part changes into the one of Al.Si wherein Si almost uniformly distributes in concentration by the diffusion of the Si from the Al.Si, therefore the reaction with the electrode and the Si semiconductor substrate does not promote further.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に係り、特に半導体基体に低抵抗接
触する電極と半導体基体にショットキー障壁を形成して
接触する電極とを具備する半導体装置及びその製造方法
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to a semiconductor device comprising an electrode that makes low resistance contact with a semiconductor substrate and an electrode that makes contact with the semiconductor substrate by forming a Schottky barrier. and its manufacturing method.

〔従来技術〕[Prior art]

半導体基体に低抵抗接触する電極と、半導体基体にショ
ットキー障壁を形成する様に接触する電極とを具備する
半導体装置の一つとして、ショットキーダイオードをク
ランプダイオードに用いるショットキーTTL回路(以
下5TTL (SchottkyTransistor
 ’pransistor Logic)と略す)が、
従来広く用いられている。電極と半導体基体との整流接
触を利用するショットキーダイオード(以下S B D
 (8chottky 13arrier Diode
 )ト略す)は、順方向電圧降下が低いほど回路スピー
ドの劣化に対する余裕度が大きく、または素子面積を小
さくできる。この順方向特性を決めるのは、電極に用い
る金属と半導体基体であるN型シリコンとの仕事函数の
差(以下φBと略す)であシ、φBが小さいほど望まし
い。
A Schottky TTL circuit (hereinafter referred to as 5TTL) that uses a Schottky diode as a clamp diode is one of the semiconductor devices equipped with an electrode that contacts a semiconductor substrate with low resistance and an electrode that contacts the semiconductor substrate to form a Schottky barrier. (Schottky Transistor
'Pransistor Logic') is
Conventionally widely used. A Schottky diode (hereinafter referred to as SBD) uses rectifying contact between an electrode and a semiconductor substrate.
(8chottky 13arrier Diode
), the lower the forward voltage drop, the greater the margin against deterioration of circuit speed, or the smaller the element area. This forward characteristic is determined by the difference in work function (hereinafter abbreviated as φB) between the metal used for the electrode and the N-type silicon that is the semiconductor substrate, and the smaller φB is, the more desirable it is.

ところで、従来低電カシヨツトキーTTL(LSTTL
)に用いる電極金属としては、φBの低電pureAt
が一般に用いられる(φvr =0.67 e V〜0
.72eV)。第1図はP u re A を電極をS
BD電極(6)およびバイポーラトランジスタのエミッ
タ電極(5)に用いた従来例の断面構造を示している。
By the way, the conventional low-voltage key TTL (LSTTL)
) As the electrode metal used for
is generally used (φvr = 0.67 e V~0
.. 72eV). Figure 1 shows P u re A and the electrode S
The cross-sectional structure of a conventional example used for a BD electrode (6) and an emitter electrode (5) of a bipolar transistor is shown.

1はコレクタ層となるN型りj半導体基体、2はP型ベ
ース層、3はN型エミツタ層、4は酸化膜、5はN型エ
ミツタ層3に低抵抗接触するpureAl電極、6は半
導体基体1の主表面に露出するP型ベース層2、N型エ
ミツタ層とショットキー障壁が形成する様に接触するp
ureAt電極である。
1 is an N-type semiconductor substrate serving as a collector layer, 2 is a P-type base layer, 3 is an N-type emitter layer, 4 is an oxide film, 5 is a pure Al electrode in low resistance contact with the N-type emitter layer 3, and 6 is a semiconductor P-type base layer 2 exposed on the main surface of substrate 1 and P-type base layer 2 in contact with N-type emitter layer to form a Schottky barrier.
This is a ureAt electrode.

ところで、pureAxt電極に用いた場合、pure
AtとSi基板との反応によシ、浅いPN接合の場合に
は耐圧劣化が生じる。通常0.8μm以上の接合深さく
第1図のエミツタ層3の接合深さ)にしか適用できない
By the way, when used for pure Axt electrode, pure
Due to the reaction between At and the Si substrate, breakdown voltage deterioration occurs in the case of a shallow PN junction. Usually, it can be applied only to a junction depth of 0.8 μm or more (the junction depth of the emitter layer 3 in FIG. 1).

一方、近年、高集積化のためにPN接合深さが浅くなシ
(例えばエミッタ深さ0.4μm)、これに対する電極
としては、5i(i−数%含んたAl(以下ht−st
と略す)が用いられてきている。
On the other hand, in recent years, due to high integration, the PN junction depth has become shallow (e.g. emitter depth 0.4 μm), and electrodes for this have become 5i (hereinafter ht-st) containing several % of aluminum.
) has been used.

この場合、At中に含まれた3iが、AtとSi基板と
の反応を防ぐ。しかし、ht*siで形成されたSBD
の電極は、電極と3iとの界面にSiの析出が生じ□る
現象等のため、見かけ上のφBに0.8eV以上になっ
てしまう。第2図は従来例であるところの電極としてh
t−siを用いた場合の断面構造を示している。5/、
6/は夫夫ht−s:によるエミッタおよび8BD電極
であシ、第1図と同一符号は同−物及び相当物を示す。
In this case, 3i contained in At prevents the reaction between At and the Si substrate. However, SBD formed with ht*si
In the case of the electrode, the apparent φB becomes 0.8 eV or more due to the phenomenon that Si is precipitated at the interface between the electrode and 3i. Figure 2 shows a conventional example of electrode h.
The cross-sectional structure when using t-si is shown. 5/,
6/ is the emitter and 8BD electrode according to Hufu ht-s:, and the same reference numerals as in FIG. 1 indicate the same and equivalent parts.

浅いPN接合に適用できる電極構造としては、白金シリ
サイド(pt−si)も用いられているがφBは大きイ
(0,85eV)。
Platinum silicide (PT-Si) is also used as an electrode structure applicable to shallow PN junctions, but φB is large (0.85 eV).

尚、半導体基体がP型の場合、SBD穏ではφBが大き
くすることが望まれるが(例えば、Atではo、+xe
v、ptstでは0.25eV、N型の場合と同様に、
浅いPN接合に適用でき、しかもSBD部ではφBが大
きくできる金属は卸られていない。
Note that when the semiconductor substrate is P type, it is desirable to increase φB in the case of moderate SBD (for example, in case of At, o, +xe
v, ptst is 0.25 eV, similar to the N type case,
There are no metals on the market that can be applied to shallow PN junctions and can increase φB in the SBD portion.

以上の様に、従来例に於いては、順方向電圧降下が低い
こと、また、浅いPN接合の耐圧劣化が生じないことの
2点を同時には満足できなかった。
As described above, in the conventional example, it was not possible to simultaneously satisfy two points: low forward voltage drop and no deterioration of the withstand voltage of the shallow PN junction.

〔発明の目的〕 本発明の目的とするところは上記欠点を除去し、順方向
電圧降下が低く、かつ浅いPN接合の耐圧劣化が生じな
い半導体装置及び工程数が少なく経済的な半導体装置の
製造方法を提供することにある。
[Object of the Invention] The object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a semiconductor device with a low forward voltage drop and no deterioration of the withstand voltage of a shallow PN junction, and to manufacture an economical semiconductor device with a small number of steps. The purpose is to provide a method.

〔発明の概要〕[Summary of the invention]

上記目的を達成する本発明半導体装置の特徴とするとこ
ろは、主表面を有し、上記主表面に露出する第1導電型
の第1の領域、上記第1の領域との間に形成されるPN
接合が上記主表面に終端するように上記第1の領域内に
形成される第2導電型の第2の領域、を少なくとも有す
る半導体基体と、上記主表面に於いて上記第2の領域に
低抵抗接触する第1の電極と、上記第2の領域を除く上
記主表面の少なくとも一部にショットキー障壁が形成さ
れる様に接触する第2の電極とを具備するものに於いて
、上記第1の電極は上記第2の電極の材料と上記半導体
基体の材料との混合物からなることにある。
The semiconductor device of the present invention that achieves the above object is characterized by having a main surface, a first region of a first conductivity type exposed on the main surface, and a first region formed between the first region and the first region. P.N.
a semiconductor substrate having at least a second region of a second conductivity type formed within the first region such that a bond terminates at the main surface; A first electrode that contacts resistively and a second electrode that contacts at least a portion of the main surface excluding the second region so as to form a Schottky barrier. The first electrode is made of a mixture of the material of the second electrode and the material of the semiconductor substrate.

また、本発明半導体装置の製造方法の特徴とするところ
は、上記第1の電極は、上記第2の電極の材料からなる
第1層と、上記第1層上に形成される上記半導体基体の
材料、または上記第2の電極の材料と上記半導体基体の
材料との混合物からなる第2層とを積層して形成し、上
記第2層中の半導体基体の材料が上記第1層及び上記第
2層中にほぼ均一に濃度分布し、かつ上記第2の電極と
〔発明の実施例〕 以下本発明を実施例に基づき詳細に説明する。
Further, the method for manufacturing a semiconductor device of the present invention is characterized in that the first electrode includes a first layer made of the material of the second electrode and a semiconductor substrate formed on the first layer. or a second layer made of a mixture of the material of the second electrode and the material of the semiconductor substrate, and the material of the semiconductor substrate in the second layer is the same as the material of the first layer and the material of the semiconductor substrate. [Embodiments of the Invention] The present invention will be described in detail below based on Examples.

第3図は本発明半導体装置の一実施例であるSBD付の
NPN)ランジスタの断面概略図である。
FIG. 3 is a schematic cross-sectional view of an NPN transistor with SBD which is an embodiment of the semiconductor device of the present invention.

1はN型コレクタ層となる一対の主表面を有する半導体
基体であるN型Si基体、2はN型Si基体1の一方の
主表面に露出し、基体1ON型層との間に形成されるP
N接合が基体1の一方主表面に終端するように形成され
るP型ベース層、3はP型代−ス層2との間に形成され
るPN接合が基体1の一方の主表面に終端するよりにP
型代−ス層2内に形成されるN型エミツタ層、4は5i
oz等の絶縁膜、10は基体の一方の主表面に露出する
N型コレクタ層1、P型ベース層2にショットキー障壁
が形成される様に接触するpureAtからなるSBD
電極、11は基体の一方の主表面に露出するN型エミツ
タ層と低抵抗接触するht−stからなるエミッタ電極
である。
1 is an N-type Si substrate which is a semiconductor substrate having a pair of main surfaces serving as an N-type collector layer; 2 is exposed on one main surface of the N-type Si substrate 1 and is formed between the substrate 1 and the ON-type layer; P
A P-type base layer 3 is formed such that an N-junction terminates on one main surface of the substrate 1; Rather than P
The N-type emitter layer 4 formed in the mold base layer 2 is 5i.
10 is an SBD made of pure At, which is in contact with an N-type collector layer 1 exposed on one main surface of the substrate and a P-type base layer 2 so as to form a Schottky barrier.
The electrode 11 is an emitter electrode made of ht-st that makes low resistance contact with the N-type emitter layer exposed on one main surface of the substrate.

本実施例に於いては、SBD電極10はpureA7か
らなるので、NWシリコン基体1に対してφBを小さく
することができ、順方向電圧降下が低くなる。また、エ
ミッタ電極11はAt m S iからなるのでP型代
−ス層2とN型エミツタ層3との間に形成されるPN接
合を浅くできかつ耐圧劣化が生じない。
In this embodiment, since the SBD electrode 10 is made of pure A7, φB can be made smaller than that of the NW silicon substrate 1, and the forward voltage drop is reduced. Furthermore, since the emitter electrode 11 is made of AtmSi, the PN junction formed between the P-type substitute layer 2 and the N-type emitter layer 3 can be made shallow, and no breakdown voltage deterioration occurs.

第4図に第3図の実施例の製造方法の一例の工程図を示
す。
FIG. 4 shows a process diagram of an example of the manufacturing method of the embodiment shown in FIG.

公知の方法でPiベース層、N型エミツタ層が形成され
た半導体基体の主表面上の絶縁膜を電極形成部分のみを
公知のエツチング方法にて除去し、p u r e A
tを蒸着する。SBD電極をホトエツチングを用いて形
成した後、Az−sii蒸着し、エミッタ電極をホトエ
ツチングを用いて形成し、コンタクトアロイを行なう。
The insulating film on the main surface of the semiconductor substrate on which the Pi base layer and the N-type emitter layer were formed by a known method was removed by a known etching method only in the electrode formation portion, and then p
Deposit t. After the SBD electrode is formed using photoetching, Az-sii vapor deposition is performed, the emitter electrode is formed using photoetching, and contact alloying is performed.

第5図に第3図の実施例の製造方法の他の例である工程
図とそれに対応する概略断面図を示す。
FIG. 5 shows a process diagram of another example of the manufacturing method of the embodiment shown in FIG. 3 and a corresponding schematic sectional view.

バイポーラトランジスタの形成された基体にホトエツチ
ング全施し、コンタクト窓開け(第5図(a) ) f
行なった後、l) u r eAt7e Q−7μ” 
XSlを5%含んだAt−5isを0.3μm同一装置
内で連続して蒸着する(第5図(b))。この様な連続
蒸着は、例えば電子ビーム蒸着装置において、蒸着用ソ
ースとしてpurehtとSi1電子銃として2個用意
し、pureht 2蒸着しながら途中からSiを混入
させれば良い。また、スパッタ装置を用いる場合には、
pureA7のターゲットとht−siのターゲラトラ
同じ装置内に用意する事で可能である。
The entire substrate on which the bipolar transistor is formed is photo-etched, and a contact window is opened (Fig. 5(a)) f
After doing this, l) ur eAt7e Q-7μ”
At-5is containing 5% XSl was continuously deposited to a thickness of 0.3 μm in the same apparatus (FIG. 5(b)). Such continuous evaporation can be carried out by, for example, using an electron beam evaporation apparatus, by preparing two electron guns, one pure as an evaporation source and the other as an Si1 electron gun, and mixing Si in the middle of the evaporation of pure 2. In addition, when using a sputtering device,
This is possible by preparing the pure A7 target and the ht-si target controller in the same device.

すなわち、第5図(b)に相同する工程は、1回の蒸着
に等しい。なお、蒸着膜の構造としては、pureAt
(1μm)の上にSiのみを蒸着(0,1μm)しても
よい。
That is, the process homologous to FIG. 5(b) is equivalent to one vapor deposition. The structure of the deposited film is pureAt
(1 μm), only Si may be deposited (0.1 μm).

次に、ホトエツチング工程によ、9.5BDQ部上のA
z−si層のみ全除去する(第5図(C))。
Next, A on the 9.5BDQ section is removed by a photo-etching process.
Only the z-si layer is completely removed (FIG. 5(C)).

続いて、ホトエツチングによシ全体の電極パターンを形
成する(第5図(d))。この結果、SBD部にはpu
reht電極10が、エミッタ電極部分にはp u r
 eAt/At−8i (7) 2層膜の電極7,8が
形成される。
Subsequently, the entire electrode pattern is formed by photo-etching (FIG. 5(d)). As a result, pu
reht electrode 10, emitter electrode part is p u r
eAt/At-8i (7) Two-layer film electrodes 7 and 8 are formed.

この後、コンタクトアロイ(4soc、3o分、H2雰
囲気)を行なう。この結果、SBD部はφm =0.7
2 eVの接合が形成され、一方エミッタ部(’a合深
す0.4 p m ) cD電極11は、ht−siか
らのBiの拡散によシSiがほば均一に濃度分布するA
t−5i(si含有量約15%)となるため電極とSi
半導体基体との反応は殆んど進まず、浅いPN接合に対
する耐圧劣化の問題は生じない(第5図(e))。
After this, contact alloying (4 soc, 3 o minutes, H2 atmosphere) is performed. As a result, the SBD section has φm =0.7
A junction of 2 eV is formed, while the emitter part ('a junction depth 0.4 pm) cD electrode 11 is formed of an A layer with a nearly uniform concentration distribution of Si due to the diffusion of Bi from the ht-Si.
t-5i (Si content approximately 15%), so the electrode and Si
The reaction with the semiconductor substrate hardly progresses, and the problem of breakdown voltage deterioration due to shallow PN junctions does not occur (FIG. 5(e)).

以上説明してきた様に、本実施例によれば、第4図に示
した例に比べ、電極蒸着回数が1回で済むため、工程数
の低減の利点を持ち、また、コンタクト抵抗のばらつき
等の問題も生じない。すなわち、比較的簡単な工程でφ
βの低いSBDと、浅い接合に対する電極形成を実現で
き、SBDを用いた半導体装置の製造上効果が大きい。
As explained above, according to this example, compared to the example shown in FIG. No problem arises. In other words, φ is achieved through a relatively simple process.
It is possible to realize an SBD with a low β and electrode formation for a shallow junction, which is highly effective in manufacturing semiconductor devices using the SBD.

以上述べた実施例に於いては、N型半導体基体を例にと
って説明したが、P型半導体基体にも本発明は適用でき
る。
Although the embodiments described above have been explained using an N-type semiconductor substrate as an example, the present invention can also be applied to a P-type semiconductor substrate.

また、SBDの付い7’cNPN)ランジスタを例にと
って説明したが、これに限らず、一般的な、主表面を有
し、上記主表面に露出する第1導電型の第1の領域、上
記第1の領域との間に形成されるPN接合が上記主表面
に終端するように上記第1の領域内に形成される第2導
電型の第2の領域、を少なくとも有する半導体基体と、
上記主表面に於いて上記第2の領域に低抵抗接触する第
1の電極と、上記第2の領域を除く上記主表面の少なく
とも一部にショットキー障壁が形成される様に接触する
第2−の電極とを具備する半導体装置に本発明は適用で
きる。
Although the explanation is given by taking a 7'cNPN) transistor with an SBD as an example, the present invention is not limited to this. a semiconductor substrate having at least a second region of a second conductivity type formed within the first region such that a PN junction formed between the semiconductor substrate and the first region terminates at the main surface;
A first electrode in low resistance contact with the second region on the main surface, and a second electrode in contact with at least a portion of the main surface excluding the second region so as to form a Schottky barrier. The present invention can be applied to a semiconductor device including a - electrode.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明によれば、順方向電圧降下が低く
、かつ浅いPN接合の耐圧劣化が生じない半導体装置を
得ることができる。
As described above, according to the present invention, it is possible to obtain a semiconductor device in which the forward voltage drop is low and the breakdown voltage of the shallow PN junction does not deteriorate.

さらに、本発明によれば、工程数が少なく経済的な半導
体装置の製造方法を得ることができる。
Further, according to the present invention, it is possible to obtain an economical method of manufacturing a semiconductor device with a small number of steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来例である半導体装置の概略断面
図、第3図は本発明半導体装置の一実施例の概略断面図
、第4図は第3図の実施例の製造方法の一例を示す概略
工程図、第5図は本発明半導体装置の製造方法の一実施
例を示す概略工程図とそれに対応する概略断面図である
。 l・・・N型半導体基体、2・・・P型ベース層、3・
・・N型エミツタ層、10・・・8BD電極、11・・
・エミッタ電極。
1 and 2 are schematic sectional views of a conventional semiconductor device, FIG. 3 is a schematic sectional view of an embodiment of the semiconductor device of the present invention, and FIG. 4 is a schematic sectional view of an embodiment of the semiconductor device of the present invention. FIG. 5 is a schematic process diagram showing an example of a method for manufacturing a semiconductor device of the present invention, and a corresponding schematic sectional view. l...N-type semiconductor substrate, 2...P-type base layer, 3...
...N-type emitter layer, 10...8BD electrode, 11...
・Emitter electrode.

Claims (1)

【特許請求の範囲】 1、主表面を有し、上記主表面に露出する第1導電型の
第1の領域、上記第1の領域との間に形成されるPN接
合が上記主表面に終端するように上記第1の領域内に形
成される第2導電型の第2の領域、を少なくとも有する
半導体基体と、上記主表面に於いて上記第2の領域に低
抵抗接触する第1の電極と、上記第2の領域を除く上記
主表面の少なくとも一部にショットキー障壁が形成され
る様に接触する第2の電極とを具備するものに於いて、
上記第1の電極は上記第2の電極の材料と上記半導体基
体の材料との混合物t・らなることを特徴とする半導体
装置。 2、特許請求の範囲第1項に於いて、上記半導体基体は
3iからなり、上記第1の電極はAt−8i“からなシ
、上記第2の電極はpureAAからなること′f、%
徴とする半導体装置。 3、主表面を有し、上記主表面に露出する第1導電型の
第1の領域、上記第1の領域との間に形成されるPN接
合が上記主表面に終端するように上記第1の領域内に形
成される第2導電型の第2の領域、を少なくとも有する
半導体基体と、上記主表面に於いて上記第2の領域に低
抵抗接触する第1の電極と、上記第2の領域を除く上記
主表面の少なくとも一部にショットキー障壁が形成され
る様に接触する第2の電極とを具備する半導体装置の製
造方法に於いて、上記第1の電極は、上記第2の電極の
材料からなる第1層と1.上記第1層上に形成される上
記半導体基体の材料、または上記第2の電極の材料と上
記半導体基体の材料との混合物からなる第2層とを積層
して形成し、上記第2層中の半導体基体の材料が上記第
1層及び上記第2層中にほぼ均一に濃度分布し、かつ上
記第2の電極と上記半導体基体との接触部がショットキ
ー障壁を形成するに十分な温度と時間で熱処理すること
を特徴とする半導体装置の製造方法。 4゜特許請求の範囲第3項に於いて、上記半導体基体は
Siからなり、上記第1の電極はht−siからなシ、
上記第2の電極はpureAtからなることを特徴とす
る半導体装置の製造方法。
[Claims] 1. A first region of a first conductivity type having a main surface and exposed on the main surface, a PN junction formed between the first region and the main surface terminating at the main surface. a semiconductor substrate having at least a second region of a second conductivity type formed in the first region, and a first electrode in low resistance contact with the second region on the main surface. and a second electrode that contacts at least a portion of the main surface excluding the second region so as to form a Schottky barrier,
A semiconductor device, wherein the first electrode is made of a mixture of the material of the second electrode and the material of the semiconductor substrate. 2. In claim 1, the semiconductor substrate is made of 3i, the first electrode is made of At-8i", and the second electrode is made of pure AA'f,%
Semiconductor device with special characteristics. 3. a first region of a first conductivity type that has a main surface and is exposed on the main surface; a semiconductor substrate having at least a second region of a second conductivity type formed in a region of In the method for manufacturing a semiconductor device, the first electrode includes a second electrode that contacts at least a portion of the main surface excluding a region so as to form a Schottky barrier. a first layer consisting of an electrode material; 1. A second layer made of a mixture of the material of the semiconductor substrate formed on the first layer or the material of the second electrode and the material of the semiconductor substrate is laminated, and the second layer is formed in the second layer. The material of the semiconductor substrate has a substantially uniform concentration distribution in the first layer and the second layer, and the contact portion between the second electrode and the semiconductor substrate has a temperature sufficient to form a Schottky barrier. A method for manufacturing a semiconductor device, characterized in that heat treatment is performed over a period of time. 4. In claim 3, the semiconductor substrate is made of Si, and the first electrode is not made of ht-si,
A method of manufacturing a semiconductor device, wherein the second electrode is made of pure At.
JP21130982A 1982-12-03 1982-12-03 Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof Pending JPS59101868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21130982A JPS59101868A (en) 1982-12-03 1982-12-03 Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21130982A JPS59101868A (en) 1982-12-03 1982-12-03 Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59101868A true JPS59101868A (en) 1984-06-12

Family

ID=16603802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21130982A Pending JPS59101868A (en) 1982-12-03 1982-12-03 Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59101868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134295A (en) * 2007-11-08 2009-06-18 Yamada Kogaku Kogyo Kk Method for simultaneously viewing two or more sides of figure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134295A (en) * 2007-11-08 2009-06-18 Yamada Kogaku Kogyo Kk Method for simultaneously viewing two or more sides of figure

Similar Documents

Publication Publication Date Title
US3189973A (en) Method of fabricating a semiconductor device
US3855612A (en) Schottky barrier diode semiconductor structure and method
US3938243A (en) Schottky barrier diode semiconductor structure and method
US3601888A (en) Semiconductor fabrication technique and devices formed thereby utilizing a doped metal conductor
US4385433A (en) Method of forming metal silicide interconnection electrodes in I2 L-semiconductor devices
JP3079851B2 (en) Method for manufacturing silicon carbide electronic device
JPH0553299B2 (en)
US3746944A (en) Contact members for silicon semiconductor devices
JPS59101868A (en) Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof
JPS61102059A (en) Semiconductor device
JPH07193025A (en) Manufacture of semiconductor device
JP2754693B2 (en) Manufacturing method of plated electrode
JPS5935182B2 (en) Electrode structure of semiconductor devices
JPS58164241A (en) Manufacture of semiconductor device
JPS6235273B2 (en)
JPS58212169A (en) Semiconductor device with 3-layer electrode structure
JPS61156837A (en) Manufacture of semiconductor device
JPS6169122A (en) Manufacture of semiconductor device
JPS5848459A (en) Semiconductor device
JPS62193280A (en) Schottky barrier diode
JPS59175764A (en) Semiconductor device
JPS6394674A (en) Schottky barrier semiconductor device
JPH01136365A (en) Schottky diode
JPH0226790B2 (en)
JPH048955B2 (en)