JP3079851B2 - Method for manufacturing silicon carbide electronic device - Google Patents

Method for manufacturing silicon carbide electronic device

Info

Publication number
JP3079851B2
JP3079851B2 JP24076993A JP24076993A JP3079851B2 JP 3079851 B2 JP3079851 B2 JP 3079851B2 JP 24076993 A JP24076993 A JP 24076993A JP 24076993 A JP24076993 A JP 24076993A JP 3079851 B2 JP3079851 B2 JP 3079851B2
Authority
JP
Japan
Prior art keywords
heat treatment
silicon carbide
electrode
electronic device
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24076993A
Other languages
Japanese (ja)
Other versions
JPH0799169A (en
Inventor
慎次 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24076993A priority Critical patent/JP3079851B2/en
Publication of JPH0799169A publication Critical patent/JPH0799169A/en
Application granted granted Critical
Publication of JP3079851B2 publication Critical patent/JP3079851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To conduct a heat treatment at a low temperature and to prevent graphite from being precipitated on the surface of an ohmic electrode by a method wherein a nickel-silicon alloy layer whose nickel composition is at specific atomic % is formed on an n-type silicon carbide substrate, the heat treatment is conducted and the ohmic electrode is formed on the silicon carbide substrate. CONSTITUTION:Ni and Si are sputtered and vapor-deposited simultaneously, by an RF magnetron sputtering method, on the surface of an n-type SiC substrate 1, and an Ni-Si alloy layer 2 is formed in such a way that Ni and Si are set at an atomic ratio of 38:62. As a heat treatment after that, this assembly is annealed in a vacuum of 2X10 Torrs, at 600 deg.C and for 30min, and a current- voltage characteristic without a rectification property is displayed. In addition, when the composition ratio of Ni to Si is changed, a good ohmic property is displayed when the composition of Ni is at an atomic ratio of 33% or higher and 67% or lower. Thereby, an electrode which can be connected easily is obtained without a need for a heat treatment at a high temperature, by a heat treatment at a temperature of 700 deg.C or lower and without precipitating graphite on the face of the electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、新しい半導体材料とし
て炭化けい素 (以下SiCと記す) を用いるSiC電子デバ
イスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a SiC electronic device using silicon carbide (hereinafter referred to as SiC) as a new semiconductor material.

【0002】[0002]

【従来の技術】現在Siを用いたパワー・デバイスは高周
波大電力の制御を目的として開発が行われ、各種の構造
的工夫により、高性能化が進められてきた。しかし、こ
れも理論的な限界に近づきつつある。また、パワー・デ
バイスは高温や放射線等の悪環境下における動作を要求
されることが多いが、Siにおいてはこのようなデバイス
は実現できない。このように、より高性能化を達成しよ
うとするためには新しい材料の適用が必要である。以上
の要求に対してSiCは6H型で2.93evの広い禁制帯幅を
持つため、高温での電気伝導制御や耐放射線性に優れ、
Siより約1桁高い絶縁破壊電界は高耐圧デバイスへの適
用を可能とし、さらにSiの約2倍の電子の飽和ドリフト
速度は高周波大電力制御を可能とするので、SiCは高周
波大電力制御に期待できる半導体材料である。
2. Description of the Related Art At present, power devices using Si are developed for the purpose of controlling high frequency and high power, and high performance has been promoted by various structural measures. But this is also approaching its theoretical limits. In addition, power devices are often required to operate under adverse environments such as high temperature and radiation, but such devices cannot be realized with Si. Thus, in order to achieve higher performance, it is necessary to apply a new material. In response to the above requirements, since SiC has a wide band gap of 2.93 ev in the 6H type, it has excellent electric conduction control and radiation resistance at high temperatures,
The dielectric breakdown electric field, which is about one digit higher than Si, can be applied to high voltage devices, and the saturation drift speed of electrons, which is about twice that of Si, enables high-frequency, high-power control. It is a promising semiconductor material.

【0003】[0003]

【発明が解決しようとする課題】以上のようなSiCの優
れた材料特性をパワー・デバイスに応用しようとする
際、n形SiC上へのオーム性電極材料としてNiが使われ
ている。しかしながら、真空蒸着法等でNiをn形SiC上
に堆積しただけでは金属と半導体の界面にショットキー
障壁が形成され整流性を示し、オーム性を示さない。熱
処理を施してNiのSiC中への拡散とSiC中のSiのNi中へ
の拡散を促すことによって、はじめてオーム性電極を得
ることができる。しかしながら、このためには1000℃以
上の高温で熱処理を行わなければならない欠点があっ
た。また、熱処理中に、NiとSiC中のSiは相互に拡散し
てけい化ニッケルを形成するが、SiC中のCはNi電極の
表面に拡散してグラファイトとして析出してしまう。こ
のグラファイトが電極への導体の接続に支障となる欠点
があった。
In applying the above excellent material characteristics of SiC to a power device, Ni is used as an ohmic electrode material on n-type SiC. However, simply depositing Ni on n-type SiC by a vacuum deposition method or the like forms a Schottky barrier at the interface between the metal and the semiconductor, and exhibits rectifying properties and does not exhibit ohmic properties. An ohmic electrode can be obtained for the first time by performing heat treatment to promote the diffusion of Ni into SiC and the diffusion of Si in SiC into Ni. However, this has a disadvantage that heat treatment must be performed at a high temperature of 1000 ° C. or higher. Further, during the heat treatment, Ni and Si in SiC diffuse into each other to form nickel silicide, but C in SiC diffuses to the surface of the Ni electrode and precipitates as graphite. There was a disadvantage that the graphite hindered the connection of the conductor to the electrode.

【0004】本発明の目的は、上述の欠点を除去するた
め、n形SiCの上にNiによりオーム性電極を形成するた
めの熱処理が低温で行うことができ、また電極表面にグ
ラファイトの析出のないSiC電子デバイスの製造方法を
提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks, so that a heat treatment for forming an ohmic electrode made of Ni on n-type SiC can be carried out at a low temperature, and the deposition of graphite on the electrode surface can be prevented. The object of the present invention is to provide a method for manufacturing a SiC electronic device.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のSiC電子デバイスの製造方法は、n形Si
C基体上にNi組成が33〜67原子%のNi−Si合金層を形成
後、熱処理を施してSiC基体上にオーム性電極を形成す
るものとする。そのようなNi−Si合金層をNiとSiと同時
に蒸着することにより形成することが良い方法である。
別の本発明のSiC電子デバイスの製造方法は、n形SiC
基体上に順にSi層およびNi層を積層し、積層体中にNiが
33〜67原子%で存在するようにしたのち、熱処理を施し
てSiC基体上にオーム性電極を形成するものとする。そ
のような積層体のSi層およびNi層をそれぞれ蒸着により
形成することが良い方法である。いずれの方法において
も熱処理の温度が700 ℃以下であることが目的に叶って
いる。
In order to achieve the above object, a method for manufacturing a SiC electronic device according to the present invention comprises the steps of:
After forming a Ni-Si alloy layer having a Ni composition of 33 to 67 atomic% on a C substrate, heat treatment is performed to form an ohmic electrode on the SiC substrate. It is a good method to form such a Ni-Si alloy layer by vapor deposition simultaneously with Ni and Si.
Another method for manufacturing a SiC electronic device according to the present invention comprises an n-type SiC
A Si layer and a Ni layer are sequentially laminated on the substrate, and Ni is contained in the laminate.
After being present at 33 to 67 atomic%, heat treatment is performed to form an ohmic electrode on the SiC substrate. It is a good method to form each of the Si layer and the Ni layer of such a laminate by vapor deposition. In any case, the purpose is that the heat treatment temperature is 700 ° C. or lower.

【0006】[0006]

【作用】SiC基体の上にNi−Si合金層、あるいはSi、Ni
積層体を形成しておくと、SiC基体からのSiの供給なし
にNiSi2 ( Ni33原子%、Si67原子%) が形成でき、SiC
基体に対してオーム性接触をする電極が得られる。いず
れの場合も、Niが原子比で33%以下ではSiが余剰となり
伝導性を阻害し、67%以上あるとNiSi2 とSiCとの界面
に余剰のNiが存在し、不連続な界面となってしまう。Ni
およびSiからのNiSi2 の形成には、1000℃以上の高温を
必要とせず、700 ℃以下の低温で十分である。また、Si
をSiCから供給するのでないため、余剰になったCがNi
中に拡散して電極の表面にグラファイトとして析出する
現象も生じない。
[Function] Ni-Si alloy layer on SiC substrate, or Si, Ni
By forming a laminate, NiSi 2 (33 atomic% of Ni, 67 atomic% of Si) can be formed without supplying Si from the SiC substrate.
An electrode is obtained that makes ohmic contact with the substrate. In either case, Ni is Si inhibits conductivity becomes surplus at 33% or less in atomic ratio, excess Ni is present at the interface between the NiSi 2 and SiC when more than 67%, a discontinuous interface Would. Ni
The formation of NiSi 2 from Si and Si does not require a high temperature of 1000 ° C. or higher, and a low temperature of 700 ° C. or lower is sufficient. Also, Si
Is not supplied from SiC, so surplus C becomes Ni
There is also no phenomenon of diffusing into and depositing as graphite on the surface of the electrode.

【0007】[0007]

【実施例】以下、図を引用して本発明の実施例について
説明する。図1に電極部を示した一実施例の電子デバイ
スでは、n形SiC基板1の表面にRFマグネトロン・ス
パッタ法により、NiとSiを同時にスパッタ蒸着をし、Ni
とSiは原子比で38:62になるようにNi−Si合金層2を形
成した。この後の熱処理として、2×10-6Torrの真空中
600 ℃で30分間アニールしたところ、図3の線11に示す
ように整流性のない電流−電圧特性を示した。比較のた
めに従来方法でNi電極をスパッタ蒸着で形成し、1200℃
で10分間アニールして電流−電圧特性を測定したところ
図3の線13に示すように整流性を示さなかったものの、
線11の本発明の実施例の方が抵抗が低く、電流が流れや
すいことが分かった。さらにNiとSiの組成比を変えて、
実験したところ、Niの組成が原子比で33%以上でかつ67
%以下のときに良好なオーム性を示した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In an electronic device according to an embodiment having an electrode portion shown in FIG. 1, Ni and Si are simultaneously sputter-deposited on the surface of an n-type SiC substrate 1 by RF magnetron sputtering.
And Si formed the Ni—Si alloy layer 2 in an atomic ratio of 38:62. As a heat treatment after this, in a vacuum of 2 × 10 −6 Torr
Annealing at 600 ° C. for 30 minutes showed current-voltage characteristics without rectification as shown by line 11 in FIG. For comparison, a Ni electrode was formed by sputtering using the conventional method and
When the current-voltage characteristics were measured by annealing for 10 minutes, the rectification did not show as shown by the line 13 in FIG.
It has been found that the embodiment of the present invention of line 11 has a lower resistance and allows a current to flow easily. Furthermore, by changing the composition ratio of Ni and Si,
According to experiments, the composition of Ni was 33% or more in atomic ratio and 67%.
%, Good ohmic properties were exhibited.

【0008】図2に電極部を示した別の実施例の電子デ
バイスでは、n形SiC基板1の表面にRFマグネトロン
・スパッタ法により、Si層3をスパッタ蒸着をし、次い
でNi層4をスパッタ蒸着をした。この時、NiとSiの組成
比が原子比で40:70になるようにSi層3とNi層4を形成
した。このあとの熱処理として、2×10-6Torrの真空中
600 ℃で30分間アニールしたところ、図3の線12に示す
ように整流性のない電流−電圧特性を示すとともに、従
来法の電極よりも抵抗が低く良好なオーム性電極を得る
ことができた。Ni層4とSi層3の厚さの比で2.2 :8よ
りもNiの比率が低くなると良好なオーム性を示さなかっ
た。この比率よりもNi層が薄くなると、熱処理でNiがSi
中でNiSi2 を形成しながら拡散していくので、NiがSiC
表面に到達することができないためと考えられる。
In an electronic device of another embodiment having an electrode portion shown in FIG. 2, an Si layer 3 is sputter-deposited on the surface of an n-type SiC substrate 1 by RF magnetron sputtering, and then a Ni layer 4 is sputtered. Evaporation was performed. At this time, the Si layer 3 and the Ni layer 4 were formed such that the atomic ratio of Ni and Si was 40:70. As a subsequent heat treatment, in a vacuum of 2 × 10 -6 Torr
After annealing at 600 ° C. for 30 minutes, a current-voltage characteristic without rectification as shown by line 12 in FIG. 3 was obtained, and a good ohmic electrode having lower resistance than the conventional electrode was obtained. . When the ratio of Ni was lower than 2.2: 8 in the thickness ratio of the Ni layer 4 and the Si layer 3, good ohmic properties were not exhibited. If the Ni layer becomes thinner than this ratio, Ni
Ni diffuses while forming NiSi 2 in the
This is probably because they could not reach the surface.

【0009】また、これらの実施例の表面をしらべたと
ころグラファイトの析出がなく、従来方法に比べ、導線
のボンディング加工が実施しやすくなった。
Further, when the surfaces of these examples were examined, no graphite was deposited, and the bonding process of the conductive wire became easier than in the conventional method.

【0010】[0010]

【発明の効果】本発明によれば、n形SiC基体上のオー
ム性電極を、Ni−Si合金からあるいはNi−Si積層体から
形成することにより、純Ni電極の場合のように1000℃以
上の高温の熱処理を必要とせず、700 ℃以下の低温の熱
処理ですむようになった。また、電極面へのグラファイ
トの析出もなくなり、接続の容易な電極が得られるの
で、SiC電子デバイスの製造に与える効果は極めて大き
い。
According to the present invention, by forming an ohmic electrode on an n-type SiC substrate from a Ni-Si alloy or from a Ni-Si laminate, the ohmic electrode can be used at a temperature of 1000 ° C. or higher as in the case of a pure Ni electrode. No high-temperature heat treatment is required, and a low-temperature heat treatment of 700 ° C or less is required. In addition, the deposition of graphite on the electrode surface is also eliminated, and an electrode that can be easily connected is obtained, so that the effect on the manufacture of SiC electronic devices is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のSiC電子デバイスの電極部
を示す断面図
FIG. 1 is a sectional view showing an electrode portion of a SiC electronic device according to one embodiment of the present invention.

【図2】本発明の別の実施例のSiC電子デバイスの電極
部を示す断面図
FIG. 2 is a cross-sectional view illustrating an electrode portion of a SiC electronic device according to another embodiment of the present invention.

【図3】本発明の実施例および従来例のn形SiC基板用
電極の電流−電圧特性線図
FIG. 3 is a current-voltage characteristic diagram of an electrode for an n-type SiC substrate according to an example of the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1 n形SiC基板 2 Ni−Si合金層 3 Si層 4 Ni層 1 n-type SiC substrate 2 Ni-Si alloy layer 3 Si layer 4 Ni layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/28 H01L 29/41 H01L 29/16 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/28 H01L 29/41 H01L 29/16

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】n形炭化けい素基体上にニッケル組成が33
〜67原子%のニッケル・けい素合金層を形成後、熱処理
を施して炭化けい素基体上にオーム性電極を形成するこ
とを特徴とする炭化けい素電子デバイスの製造方法。
A nickel composition having a nickel composition of 33 on an n-type silicon carbide substrate.
A method for manufacturing a silicon carbide electronic device, comprising: forming a nickel-silicon alloy layer of up to 67 at%, followed by heat treatment to form an ohmic electrode on a silicon carbide substrate.
【請求項2】ニッケル・けい素合金層をニッケルとけい
素とを同時に蒸着することにより形成する請求項1記載
の炭化けい素電子デバイスの製造方法。
2. The method for manufacturing a silicon carbide electronic device according to claim 1, wherein the nickel-silicon alloy layer is formed by simultaneously depositing nickel and silicon.
【請求項3】n形炭化けい素基体上に順にけい素層およ
びニッケル層を積層し、積層体中にNiが33〜67原子%で
存在するようにしたのち、熱処理を施して炭化けい素基
体上にオーム性電極を形成することを特徴とする炭化け
い素電子デバイスの製造方法。
3. A silicon carbide layer and a nickel layer are sequentially laminated on an n-type silicon carbide substrate so that Ni is present at 33 to 67 atomic% in the laminate, and then heat treatment is performed. A method for manufacturing a silicon carbide electronic device, comprising forming an ohmic electrode on a substrate.
【請求項4】積層体のけい素層およびニッケル層をそれ
ぞれ蒸着により形成する請求項3記載の炭化けい素電子
デバイスの製造方法。
4. The method for manufacturing a silicon carbide electronic device according to claim 3, wherein the silicon layer and the nickel layer of the laminate are formed by vapor deposition, respectively.
【請求項5】熱処理の温度が700 ℃以下である請求項1
ないし4のいずれかに記載の炭化けい素電子デバイスの
製造方法。
5. The heat treatment temperature is 700 ° C. or less.
5. The method for producing a silicon carbide electronic device according to any one of items 1 to 4.
JP24076993A 1993-09-28 1993-09-28 Method for manufacturing silicon carbide electronic device Expired - Lifetime JP3079851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24076993A JP3079851B2 (en) 1993-09-28 1993-09-28 Method for manufacturing silicon carbide electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24076993A JP3079851B2 (en) 1993-09-28 1993-09-28 Method for manufacturing silicon carbide electronic device

Publications (2)

Publication Number Publication Date
JPH0799169A JPH0799169A (en) 1995-04-11
JP3079851B2 true JP3079851B2 (en) 2000-08-21

Family

ID=17064443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24076993A Expired - Lifetime JP3079851B2 (en) 1993-09-28 1993-09-28 Method for manufacturing silicon carbide electronic device

Country Status (1)

Country Link
JP (1) JP3079851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829374B2 (en) 2007-07-20 2010-11-09 Panasonic Corporation Silicon carbide semiconductor device and method for manufacturing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060006393A1 (en) 2004-07-06 2006-01-12 Ward Allan Iii Silicon-rich nickel-silicide ohmic contacts for SiC semiconductor devices
JP4965576B2 (en) 2007-02-14 2012-07-04 パナソニック株式会社 Semiconductor device and manufacturing method thereof
JP4962168B2 (en) * 2007-06-27 2012-06-27 日産自動車株式会社 Semiconductor device and manufacturing method thereof
JP5446148B2 (en) * 2008-07-02 2014-03-19 富士電機株式会社 Method for manufacturing silicon carbide semiconductor device
JP5369581B2 (en) * 2008-09-29 2013-12-18 住友電気工業株式会社 Back electrode for semiconductor device, semiconductor device, and method for manufacturing back electrode for semiconductor device
US8563372B2 (en) * 2010-02-11 2013-10-22 Cree, Inc. Methods of forming contact structures including alternating metal and silicon layers and related devices
EP2560194A4 (en) 2010-04-14 2013-11-20 Sumitomo Electric Industries Silicon carbide semiconductor device and method for manufacturing same
JP5418466B2 (en) 2010-11-01 2014-02-19 住友電気工業株式会社 Semiconductor device and manufacturing method thereof
JP2014003252A (en) 2012-06-21 2014-01-09 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device and method for manufacturing the same
CN103058193B (en) * 2013-01-25 2015-03-04 哈尔滨工业大学 Method for preparing silicon carbide nanowire by adopting metallic nickel or amorphous carbon lamination
JP2016046309A (en) * 2014-08-20 2016-04-04 住友電気工業株式会社 Silicon carbide semiconductor device manufacturing method
JP6686581B2 (en) 2016-03-16 2020-04-22 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
DE102022100072A1 (en) 2022-01-03 2023-07-06 Infineon Technologies Ag METHOD OF MAKING A METAL SILICIDE LAYER ABOVE A SILICON CARBIDE SUBSTRATE AND SEMICONDUCTOR DEVICE INCLUDING A METAL SILICIDE LAYER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829374B2 (en) 2007-07-20 2010-11-09 Panasonic Corporation Silicon carbide semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0799169A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
JP2509713B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP3079851B2 (en) Method for manufacturing silicon carbide electronic device
US5278431A (en) Diamond rectifying contact with undoped diamond layer
US4478881A (en) Tungsten barrier contact
US5877077A (en) Method of producing an ohmic contact and a semiconductor device provided with such ohmic contact
JPH0582991B2 (en)
JP3085078B2 (en) Method for manufacturing silicon carbide electronic device
US4954852A (en) Sputtered metallic silicide gate for GaAs integrated circuits
JPH0361346B2 (en)
JP3186053B2 (en) Method for forming metal wiring structure of semiconductor integrated circuit device
JPH0147012B2 (en)
JPH0864801A (en) Silicon carbide semiconductor element and its manufacture
JP6808952B2 (en) Manufacturing method of silicon carbide semiconductor device
JPS6015970A (en) Semiconductor device
EP0443296B1 (en) Process for obtaining multilayer metallization of the back of a semiconductor substrate
JPS61183961A (en) Manufacture of electrode
JPS61290775A (en) Semiconductor device
JP3150469B2 (en) Semiconductor device
JPS61156837A (en) Manufacture of semiconductor device
JPS59101868A (en) Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof
KR100195326B1 (en) Structure of metal wiring & forming method thereof
JP2950958B2 (en) Superconducting element manufacturing method
JPH04206741A (en) Formation of schottky junction
JPS6018138B2 (en) Method for forming metal electrodes on semiconductor substrates
JPS61174671A (en) Schottky junction type semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term