JPS6046080A - 太陽電池の製造方法 - Google Patents

太陽電池の製造方法

Info

Publication number
JPS6046080A
JPS6046080A JP58196928A JP19692883A JPS6046080A JP S6046080 A JPS6046080 A JP S6046080A JP 58196928 A JP58196928 A JP 58196928A JP 19692883 A JP19692883 A JP 19692883A JP S6046080 A JPS6046080 A JP S6046080A
Authority
JP
Japan
Prior art keywords
current path
short circuit
circuit current
semiconductor region
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58196928A
Other languages
English (en)
Other versions
JPH0572756B2 (ja
Inventor
マサツグ・イズ
ヴインセント・デイヴイツド・キヤンネラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Conversion Devices Inc
Original Assignee
Energy Conversion Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/520,054 external-priority patent/US4464823A/en
Application filed by Energy Conversion Devices Inc filed Critical Energy Conversion Devices Inc
Publication of JPS6046080A publication Critical patent/JPS6046080A/ja
Publication of JPH0572756B2 publication Critical patent/JPH0572756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/469Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After-treatment of these layers
    • H01L21/47Organic layers, e.g. photoresist
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/206Particular processes or apparatus for continuous treatment of the devices, e.g. roll-to roll processes, multi-chamber deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本発明は、「光電池デバイス内の短絡′電流通路を除去
するための装置および方法」と題する1982年10月
21日付の米国I#許出願第435,890号の一部継
続出願の発明に対応する。
本発明は潜在短絡電流通路を包含する光電池デバイスの
短絡電流通路を検出し除去するための改良さnた方法$
−よび装置に係る。本発明の方法および装置は特に広領
域半導体光電池デバイスを製造する場合に使用されるべ
く適用する。
本発明は、光電池デバイスの渣在短絡電流通路を検出し
除去するための方法および装置を包含し、さらに連続ア
モルファス合金半導体層が複数のデポジションチャンバ
の各々を介して移動する基板上に連続的にデポジットさ
れる光電池デバイスの連続生産システム内で1と共に使
用され得る。
近年、比収的広い領域をカバーし得且つp形及びn形材
料を形成すべくドープし得るアモルファス半導体合金を
デポジットせしめるシステムの開発に多大な努力が払わ
nてきた。これらp形及びn形材料は、作動面で結晶性
デバイスと実質的に等価であるp −i −n形デバイ
スを製造するためのものである。
現在ではグロー放電技術によりアモルファス合金を製造
することが可能である。この合金は(1)容認し得るエ
ネルギギャップ内局在状態密度と(2)秀れた電子的性
質とを有する。このような技術は1980年10月7日
付の8tanford R,0vshinsky及びA
run Madan名義米国特許第4.226.891
3号” Amorphous Sem1conduct
ors Equivalent To Crystal
lineSemiconductors″に開示されて
お9、該合金はまた、1980年8月12日付で5ta
nford R,Ovshinslgr及びMasat
sugu Izu に与えらtた同一名称の米国特許第
4,217,374号に詳細に記載されている蒸着法に
よっても製造し得る。こnらの特許に開示されているよ
うに、アモルファス半導体層内に導入されたフッ素はと
nら層内の局在不良状態密度を実質的に減少させるべく
作用して、ゲルマニウムの如き別の合金材料の添加を容
易にする。
光電池デバイスの効率を向上させるのに多重電池(mu
ltiple cells ) f使用するという構想
は既に1955年にはE、D、 Jacksonによっ
て論じら扛ていた。これは1960年8月16日付米国
特許第2.949,498号に開示さ扛ている。この特
許で提案さnた多重セル構造はp−n接合結晶半導体デ
バイスを使用するものであった。この構想の本質は太陽
スペクトルの種々の部分をより効果的に集めて開路電圧
(Voc−)を増大させるべく、種々のバンドギャップ
デバイス(band gap devlees )を使
用するこ七にある。
タンデム電池デバイスは2個以上の電池を有しており・
光が各電池を順次通過し、バンドギャップの大きい材料
とこれに続くl又は複数個のバンドギャップの小さい材
料とが第1電池を通過した光を吸収する。
アモルファス光電池デバイスを大量生産し得ることは営
/i″U上重要な意味をもつ。太陽電池製造の場合はバ
ッチ生産するしかない結晶シリコンと異なシ、アモルフ
ァスシリコン合金は直積の広イ基板上に多層状にデポジ
ットさn得るため、太1場電池を連続的大量処理システ
ムにょシ生産できる。
この種の連続的処理システムはステンレススチールよシ
なる基板を有してお広例えば夫々特定の材l)のテホシ
ションに使用される一連のデポジションチャンバを該基
板が順次通過し得る。p−1−n形構造の太陽電池を製
造する場合は、第1チヤンバ内でp形アモルファス合金
をデポジットし、第2チヤンバ内で真性アモルファス合
金をデポジットし、第3チヤンバでn形アモルファスl
i[−デボジッljる。デポジットした各合金、特に真
性合金は純度が高くなければならないため、真性デポジ
ションチャンバ内のデポジション壌境を他チャンバ内の
ドーピング成分から隔離して、該真性チャンバ内へのド
ーピング成分の拡散を防止する・主として光電池の製造
に係る011述のシステムでは・チャンバ間の隔離がガ
スゲート(gaa gate )によシ実現される。即
ちこのガスゲートを介してガスが単一方向に流され且つ
不活性ガスが基板材料ウェブの周りに導入されるのであ
る。
前記の米国特許出願においては、アモルファス合金材料
を広い領域をカバーする連続基板上にデポジットする場
合、プロセスガスをグロー放電によシ分離して行う。高
品質のアモルファス半導体合金を有するデバイスを形成
するため細心の注意が払われるとはいえ、デバイスの所
定表面領域に及んでアモルファス半導体合金を通過する
短絡電流通路が存在するという可能性が限定的にではあ
るが残存する。このような短絡電流通路はデバイスから
最適性能を得るためには有害である。最適性能の得られ
ない理由は、この種のデバイスが普通、光発生チャージ
キャリヤの電流としての集束を可能ならしめ、さらに光
子エネルギが通過してデバイスのチャージキャリヤを発
生きせるための↑ 領域即ち活性領域内に入射することを可能ならしめる頭
部接点をデバイスに形成するため、最終工程でデポジッ
トされたアモルファス十4体層上に透明な伝導性材料の
層を付与されているためである。この最終デポジット層
は伝導性のため、デバイス中に唯1個所の短絡電流通路
が存在しただけでデバイスのかなシ広い領域をカバーし
て得られる電圧に大幅な制限を加え得る。そnゆえデバ
イスの電圧出力並びに効率はこのような短絡電流通路に
より実質的に減退さ扛得る。前記米国特許出願第435
,890号の目的はこのような短絡電流通路を検出し除
去することである。
米国特粁第4,166,918号に開示されている光電
池デバイス内の短絡電流通路を除去するための1試案は
デバイスに逆バイアス電圧を印加して不良個所′fc断
線しようとするものである。該記載の説明によれば、サ
ーメツト層のない逆バイアスの印加は短絡の効果を増大
させ、電池の破壊に結びつきやすい。
米国特許出願第435,890号の装置及び方法はこれ
に反して光電池デバイスの現存短絡電流通路を全体的に
除去することを目的とする。これに加えて本発明の方法
および装置は、基板の不規則性或いは逆拡散反射鏡を形
成すべき荒い基板表面の存在にかかわシなく、基板廻シ
の短絡電流通路を除去することをも目指す。さらに、米
国特許出願第435,890号および本発明の装置及び
方法は、多重セルデバイスの連続製造を含む連続プロセ
ス製造技術に直接的に適用し得る。
米国特許出願第435,890号では実在短絡電流通路
の削除に成功しているが、1周期作動後に動作状態に入
る潜在的な短N@通路が存在し得ることも判明している
。こnらの潜在短絡電流通路は、この特許出願の装置及
び方法によって実在短絡電流通路を削除した後になお存
在し得る。本発明はこれらの潜在短絡電流通路を動作さ
せて除去すべき実在短絡電流通路に誘導することを目指
丁。
本発明は、1基板を覆う少くとも1個の牛導体領域、及
び少くともl半導体領域を覆う伝導性の光透過材料の1
層を含む形式の光′11!池デバイス内で前もって存在
する潜在性の短絡電流通路を検出し除去するための装置
及び方法を提供する。前もって存在する除去すべき短絡
電流通路は、基板から伝導性の光透過材料の層までの少
くとも1半導本領域を横切って広がる。潜在短絡通路は
実在短絡電流通路に変換され・次に除去さnる。本発明
に従って短絡電流通路を除去するため、短絡電流通路の
抵抗率は、短絡電流通路から伝導性光透過材料を電気的
に絶縁することに工って、伝導性光透過材料と半導体領
域との間の界面において実質的に増加さ扛る。
本発明の1具体例によれば、光電池デバイスは潜在短絡
電流通路を実在短絡電流通路に変換すべく先ずバイアス
をかけられる。l電池当υおよそ2ボルト乃至10ボル
トのバイアスがこのために適している。バイアスは、基
板と伝導性光透過材料との間に結合された電極を有する
デバイスに直接的かあるいは伝導性溶液を介して間接的
に印加さn得る。それ故絶縁は、伝導性透明材prを電
気接点即ち短絡電流通路との結線から取除くことにLつ
て得られる。この作業は例えば、伝導性光透過材料に希
釈電解溶液を付与し、さらに短絡電流通路と電解液に電
流を通過させることで完了する。
その結果、伝導性透明材料は、充分量の伝導性送本発明
の他の具体例によれば、絶縁は、絶縁材料のボディを半
導体領域の、伝導性光透過材料のデポジションに先立っ
て短絡電流通路をカバーする面1Rを覆ってデポジット
することにょシ得られる。
本発明のさらに別の具体例によれば・短絡電流通路は、
導電性溶液を介してデバイスの不連続面積に電圧を印加
することによって検出され位置決定されることができる
。溶液を通過して流れる電流があらかじめ定められた水
準よp大でおれば、短絡電流通路の所在が発見される。
次に短絡電流通路は伝導性腐食(etchant )溶
液に適性電圧並び以上の作業は光電池デバイス製造用の
連続又はバッチ製造方式の一部を構成するか又はこのよ
うな製造方式から隔離した場所で実施されてもよい。
複数の電解質源は、その各々が伝導性光透過材料に不連
続表面積を接触させ、相互に並べて配置されており、光
電池デバイスが、その全幅及び全長に及ぶ短絡電流通路
の連続的な検出及び除去のための装置を通って連続的に
移動され得るべく構成され得る。また、デバイスの全幅
に延在する単一の細長い電解質源を、デバイスが該電解
質源の連続的通過をうけるため、本発明に従って短絡電
流通路を削除するために使用することができる。
■光電池 第1図は全体力I符号10で示される光電池を示してい
る。この電池は複数の連続的p −i −n層で形成さ
れており、好ましい具体例では各層にアモルファス手導
体合金が含まれている。本発明の基板シールドは、一連
の単離したテポジションテヤンバ内で基板材料の可動ウ
ェブにアモルファス合金層を連続的にデポジットするこ
とによりこの種のデバイスを製造すべく開発されたもの
である。
よシ特定的に言えば、第1図は別個のp−i −n形電
池12a、12b及び12cから成る太陽電池の如きp
i−n形光電池デバイスlOを示している。最下部の電
池12aの下は基板であるが、該基板は好ましくはステ
ンレススチール、アルミニウム、タンメル、モリブデン
もしくはクロムの如き伝導性金属材料製であってよい0
基板はさらに伝導性材料の単−又は複数の層をデポジッ
トした非伝導性ベースを含んでも工い。この用途を考慮
して「基板」なる用語は可撓性フィルムのみでなぐ、予
処理によって添加された伝導性の層全てをも含むものと
する。
電?th12a、12b、12cはいずれも、7%ルフ
ァス合金半導体領域又はボディから成っている。この合
金ボディはいず牡もn形伝導性領域即ち層20a 、2
0b及び20cと、真性領域即ち層18a、18b及び
18cと、p形伝導性領域即ち層16a、16b及び1
6cとを含んでいる。
第1図から明らかなように、電池12bは中間電池であ
るが、更に別の中間電池を図面に示されている電池の上
に積み重ねてもよく、このような構造も本発明の範囲内
に含まれる。また、ここではp−1n形電池を示したが
、本発明の短絡検出及び除去装置は単−又は多重n −
1−p電池の製造装置にも使用し得る。
半導体合金層のデポジションに続き、更に別のデポジシ
ョン処理を別個の環境上で又は連続工程の一部として実
施し得ることにも留意されたい。
このステップでは例えばインジウム、錫及び酸素の合金
(I TO) ’I”CO(transparent 
conductive oxide=透明伝導性酸化物
)の如き伝導性光透過材料の透明又は半導体層22が付
加さ扛る。本発明の1具体例にもとすき以後に開示する
如く、デバイス内短絡電流通路を検出除去した後、電池
の面積が十分広い場合、又は該T2O層22の伝導性が
不十分な場合には、デバイスに電極グリッド24を付加
してもよい。このグリッド24はキャリア通路を短縮し
て伝導効率を高める機能を果たす。
■ 多重形グロー放電デポジションチャンバ第2図は光
電#I’に連続的に製造するための多重チャンバ式グロ
ー放電デポジション装置の線図を示している。この装置
は全体が符号26で示さ扛る。該装置26は複数の単離
したデボ・ジション用チャンバを備えておシ、とnらチ
ャンバはスイープガスをゆつくシと通過させるよう構成
されたガスゲートにより互いに接続されている。
この装置26は、好ましい具体例では、連続的に送シ出
さ牡る基板材料11のデポジション面上に形成されたp
 −1−n形構造をもつ面積の広い大容積のアモルファ
ス光電池ヲ量産゛丁べぐ構成されている。
多重p −i −n層電池の製造に必要なアモルファス
合金層をデポジットするために該装置26は3つのデポ
ジションチャンバ28 、30及ヒ32から成るチャン
バグループを少くとも1組備えている。各チャンバグル
ープは、通過して行く基板11のデポジション面上にp
形伝導性アモルファス合金層をデポジットするための第
1テボジシヨンチヤンバ28と、該基板11の移動に伴
い前記、p彫金金層の上に真性アそルファス合金層をデ
ポジットするための第2デポジシヨンチヤンバ30と、
該基板工1の移動に伴い@記真性層の上にn形伝導性合
金層をデポジットするための第3チヤンバ32とで構成
されている。勿論、ここではデボジ7ヨンテヤンバグル
ープt−1組しか示さなかったが、任意の数のアモルフ
ァスp −1’ −n形層をもつ光電池を製造する能力
を機械に与えるべく、更に別のチャンバグループ又は更
に別の個別チャンバを該装置に加え得る。基板繰シ出し
コア11a及び基板巻取9コア1ibi夫々デボジシヨ
ンチヤンパ28及び32内に示したのは説明の便宜のた
めだけで、実際にはこnらコアlla及び11bがデポ
ジションチャンバと作動的に接続された別個のチャンバ
内に収納さt′L得る。
チャンバグルーズの各デポジションチャンバ28.30
及び32はグロー放電にょシ単−牛導体層を基板ll上
にデポジットせしめるよう構成さnる。
そのためデボジションテヤンバ2s、so及032は電
極グループ34と、ガス供給管35と、ガス排管36と
、無線周波数発生器38と、同調回路39と、複数の輻
射加熱素子40と、真性デポジションチャンバを各ドー
パントチャンバに作動的に接続するガスゲート42とを
備えている。
供給管35は各デポジションチャンバ毎に発生したプラ
ズマ領域にプロセスガス混合気を導入すべく電極グルー
プ34と作動的に接続さnている。
無線周波数発生器38はデポジションチャンバに導入さ
れる基本的プロセスガスをデポジット丁べき種に解離す
ることによりプラズマを形成すべく電極グループ34、
輻射加熱素子40及び接地基板11と協働する。
このようにして得られた種はその後基板底面にデポジッ
トされてアモルファス半導体層を形成する。
同調回路39は、発生器38の出力インピーダンスを電
極グループ34の入力インピーダンスに整合させる。こ
れにニジ発生器39と電極グループ34間の効率の茜い
電力伝達が可能である。
第1図の好ましい具体例を表わす光電池10を形成する
には、先ずチャンバ28内でp形アモルファス半導体層
を基板11上にデポジットし1次いでチャンバ30内で
このp形層上に真性アモルファス合金層をデポジットし
、その後チャンバ32内でこの真性層上にn形アモルフ
ァスlJiをデポジットする。その結果として、装置2
6は基板ll上に少くとも3つのアモルファス合金層を
デポジットし、デポジションチャンバ3o内にデポジッ
トさnた真性層は、ドーパント又はドーピング種として
参照される少くとも1つの種が存在しないことから、デ
ポジションチャンバ内にデポジットさnた層とは組成的
に異なる。光電池工0はシリコン合金、ゲルマニウム合
金及び所望の如くシリコン及びゲルマニウムを含有する
合金であp得る。
効率の高い光電池デバイスlOを製造するためには、磁
性基板11の面にデポジットさ扛た半導体層、特に真性
層の純度が高くなければならない。
ガスゲート42は隣接するチャンバからのプロセスガス
の逆拡散が各々のチャンバが相互に給酸されてしまわぬ
よう事実上予防する。
I 短絡電流通路検出器及び除去器 第3図は略図として、デバイス上に伝導性透明材料の層
を形成するため最終的にデポジットされたアモルファス
シリコン合金上にITOiデポジット丁べきデポジショ
ンチャンバ50と、実在及び潜在短絡電流通路を検出及
び除去すべき装置5工とを示す。供給コア52は第2図
の装置にニジ加工さnた光電池デバイスを含んでお9、
ζ扛らのデバイスはチャンバ50及び装置51を介して
巻取コア53に1xt5喀る。加工後コア53は取外さ
れ、最終工程のためさらに次のステーシヨンに送られる
ことができる。
第3図の装置は第2図の装置から切p離して示している
が、チャンバ50は、コア52′f、取外した第2図の
取終チャンバ32の直後に続き得るものと理解されなけ
nばならない。この場合基板は今やデバイスを形成する
アモルファスシリコン合金の層を含み、チャンバ32か
らチャンバ50へ連続的に送らn得る。またバッチ製造
デバイスはチャンバ50及び装置51内で個別に連続し
て加工さね得る。
短絡変換器54の作動は本発明の第一の具体例に従って
第4A図を参照することにより最も良く理解される。部
分的に完成したデバイス55は、例、tばステンレスス
チールよりなる伝導性基板61、少くとも1個の活性領
域を含み、チャージキャリアを光電的に発生し得る半導
体領域62、及び例えばインジウム、錫、酸化物→1(
ITO)の如き伝導性の光透過又は透明材料の層64を
含む。電極56はITO層64又は前もって貼着された
来電グリッド(図示しない)に貼着され、電圧源57に
ょシ基板61に納会される。電極56は機械的に又は流
体的にデバイス55に貼清さn得る。
半導体領域62は異なる形式の複数の潜在短絡不良を含
むことができ、そのうち2つを図示する。
第一の不良58は領域62内に完全におさま9、第二の
不良59も領域62内にあるが但しITO層6層上4合
されている。これらの不良は、完成した光電池が前もっ
て存在する短絡通路の有害な作用すべてを受けて動作す
る間実在短絡電流不良に変換され得ることが判明してい
る。
本発明は潜在不良を実在不良に変換して、これらの不良
が場内作業に先立って除去され得ることを目的とする。
潜在不良はいくつかの異なる特性を示す。いくつかの不
良は抵抗性のものだけで、いくつかの不良は順又は逆接
続(ダイオードつトして働き、他のいくつかは抵抗及び
光電池不良の結合であり、またいくつかは抵抗及び接続
形の不良の結合である。不良5B及び59は電圧源57
と電極56によυ電圧パルスを層62に印加することに
よって変換される。−電圧パルスは、Voeの範囲内で
個別の光電池毎に10ボルトまでであり3 得る。そしてこのようにして10 乃至5秒の間2電池
形タンデムデバイス1個当92乃至20ボルトの範囲内
で印加され得る。一般に高めの電圧は低電圧の場合x9
所要時間が少ない。
すべての種類の不良が確実に変換さnるためには、印加
電圧の極性を変え、照明下で印加することができる。こ
の最も厳格なり−スはすべての条件下で必要なわけでは
なく、種々の適用に応じて変化させることができる。従
って順又は逆方向バイアスは照明下で又は照明なしで使
用され得る。
いずれの場合にせよ、潜在不良は実在短絡不良に変換さ
れ、その後下記の如き方法で除去さ扛ることができる。
オ、、A工よ、ヨツ。44o工。、□ヤよゎ 1ば、短
絡検出器及び除去器51の作業は第4B図及び第5図を
参照して最も良く理解され得る。第4B図では部分的に
完成されたデノ(イス60は伝導性の基板61を含み、
半導体領域62は光電式にチャージキャリアvi″発生
し得る少くとも1個の活性領域を含み、さらにITO層
6層上4電々極66のごく近傍に配置されている。電極
66とITO層6層上4間には伝導性の腐食電解溶液源
又はビード68が挿入されている。ビード68は不連続
面積をITO層6層上4触させる。実地上では、これら
の複数の電極及びビードは、デノくイス60の全幅及び
全長を横切って存在するすべての短絡電流通路を検出し
除去するため相互に並べて配置さn、あるいは電極66
は細長の形状を与えらn、さらにビード68と共にデバ
イスの全幅を横切って延在する。
電圧源70は、アース電位にある基板61と電極66と
の間に結合されている。電極66はアースに対し正極に
されている。その結果、p−in形電池の場合、デバイ
ス60は、電池70から電極66及びビード68を経て
伝導性光透過材料に印加される。さらに正極性の強い電
圧に対し逆方向にバイアスをかけられる。これはn −
i −p形デバイスに対しても同様に適用し得るが、こ
の場合にはデバイスはj負方向にバイアスをかけられる
であろう。
デバイス60は、説明のため、基板61かもITo層6
4まで、半導体領域62を経て延在する短絡電流通路7
2をもつ。通路72はあらかじめ実在している通路であ
り得るか、又は変換された潜在不良であシ得る。短絡電
流通路が上述の如く除去さnない場合は、デバイスの出
力電圧及び従ってデバイスの効率に重大な影#を与える
第5図は短絡電流通路72がどのように検出されるかを
示す。第5図のダークI −V曲線から判る如く、印加
電圧が例えば順方向伝導バイアス電圧voよシ小さいv
lであれば、デバイス60のビードロ8の下側に短絡電
流通路のない部分は非常に低い電流を通すであろうoし
かしながら、短絡電流通路がビード68の下側に延びて
いると・短絡電流通路72によって与えろ詐るやや低め
の抵抗が比較的多量の電流を流nさせるであろう。それ
故デバイスを流れる電流があらかじめ定められたレベル
を超えると、短m電流通路は電極66に結合された電流
限界検出器74にエフ検出され得る。
本発明に従い短絡電流通路72を除去するため・電流通
路72の抵抗率は、短絡電流通路72との電気結合から
ITO層6層上4縁することによってITO層6層上4
導体領域62との間の界面75において実質的及び選択
的に増加される。この作業を完了するため、ビード又は
ソース68を形成する伝導性の腐食電解液は、電流が通
過する時ITO層64を腐食(attack or e
tch)する形式のものである。この電解液は例えば希
釈した酸。
塩、又はアルカリ電Wf溶液でちゃ得る。酸性又は塩化
水素酸は双方共好ましい溶液である。電流はビード68
及びITO層6層上4過し、短絡電流通路72は電解液
をしてITO層64′t−腐食させる。
腐食速度は電流密度が最も高い部分において最高とな9
、高密度を維持すると充分な電流が存在するかぎシ継紐
する。その結果、腐食は短絡電流通路72の近傍に集中
し、さらにITOが短絡電流通路72から充分に絶縁し
得る程除去さ扛るまで継続するでちろう。腐食が完了す
ると、除去さnたITOの不連続な部分は破線76で示
す結果をもたら丁。このように除去さ扛たITOの場合
、このITO層6層上4留部分は短絡電流通路72かう
効果的に電気的に絶縁さn、その結果として基板6エか
らITO層6層上4の短絡電流通路7″′除去さt″′
・ 1 上記の方法の重大なl利点は腐食工程が自己限定的であ
ることである。短絡電流通路を除去するために必要な量
のITOだけが除去されるが、その理由は短絡電流通路
がひとたび除去されると、ITO材料とビード68の間
にはさらに腐食を進行させるための電流の通過は全く存
在しなくなるためである。しかしながら、小電流はビー
ド68及び短絡電流通路72を通って流れ続けるであろ
うO インジウム 錫 酸4e−#”)会合の如き伝導性の透
明材料の場合、電解液は例えば0.01%乃至1%希釈
の塩化水素酸溶液又は0.1%乃至10%の酸性酸溶液
であり得る。溶液を通過する電流密度はlcd当510
 乃至10 アンペアであシ得る。
さらに短絡電流通路を除去するために必要な腐食時間は
、ITOの厚さ及び温度に従って1乃至100秒である
。電解液も同じ(0,05モルのNhCL塩希釈液であ
り得る。浴液を通る電流密度Fio、l乃至1ミリアン
ペアで61)得る。さらに腐食時間はITOの厚さ及び
温度に従って5乃至500秒であり得る。
第6図は上述の方法が光電池デノくイスの連続製造工程
中に実地にどのように組込ま′n得るかを示す。図から
れかるμ口く、第6図の装置はさらに・絶縁材料を短絡
電流通路を除去丁べく腐食さ扛たデバイスの不連続部分
に対し貼着するためのアブリクータを含んでいる。こn
によって短絡電流通路が後はど貼着される10記の型の
グリッド電極に接することはない。
第6図をさらに詳細に検討すれば、伝導性基板8工、少
くとも1活性領域を含む半導体領域82、及び例えばイ
ンジウム 錫 酸化物(ITO)のような伝導性透明材
料の層84を含む光電池デノくイス80は、短絡電流通
路検出及び除去ステーション88のごく近傍に配置され
たドラム86上に連続的に延在する。1d在不良はステ
ーション88に先立って変換される。
ステーション88は、電極92を支持する取付ブラケッ
ト90、金属プレート94、絶縁物93及びワイパ96
を含む。ステーション88はまた、ワイパ96の下流に
取付けられたアプリケータ98、電流限界検出器100
、及び電極92とアプリケータ98の間に直列に結合さ
nfcタイ々102’iも含んでいる。伝導性腐食電解
溶液のソース又はビード106はさらにITO層84と
、電極92及びプレート94との間に配置されている。
最後に、電圧源104はドラム86と、電極92及びプ
レート94との間に結合されている。
作動状態で、電極92の下側の不連続部分が短絡電流通
路を全く含まないとき、電圧源104を通る電流は電流
限界検出器100をトリガするか又はITO層84の何
らかの腐食をひきおこすかするには不充分であろう。し
かしながら、第4B図の具体例について先に説明した如
く、短絡電流通路が電極92の下側に延在するとき、ド
ラム86、デバイス80.及び電解液106から電極9
2までデバイスを通過する電流の鋭い立上シが存在する
であろう。この電流は、電流限界検出器100をトリガ
するためにあらかじめ定めらnた充分な値をさらに上廻
るであろう。トリガがなさnると電流限界検出器はメイ
ツ102をセットする。
短絡電流通路が検出されると、腐食液源106はITO
J音84の短絡電流通路部分の腐食を開始する。ドラム
86がデバイス80を進行させつつ回転すると、デバイ
スの腐食部分腐食液源106と接触して移動する。電圧
源104の電圧はさらにプレート94に納会さし、さら
に短絡電流通路を通過して腐食工程を維持すべく電流を
保持する。
デバイス80は、短絡′磁流通路の一部が腐食液源10
6を出る時までにITO層84を短絡電流通路から絶縁
するべく充分なITO材料が確実に除ヵ、□□、6ア、
。ヵよりゎえ7□。ゎ ゛食工程は自己限定形であるか
ら、短絡電流通路の一部が腐食液源106′t−出るよ
シ以前に充分に除去され得るとはいえ、ITO材料の、
短絡電流通路を除去するに要する量のみが除去されるで
あろう。
短絡電流通路の一部が腐食液源106を出ると、該通路
は1.デバイスから余分な腐食液を除去するワイパ96
の下側を通過する。ワイパは例えばスポンジ様で必9得
、さらに腐食液を中和化するためのデバイスに中和溶液
を加える。
次に短絡電流通路の一部は、デバイスITOを完全に乾
燥させ得る乾燥大気にこれをさらす通路に沿って進行す
る。ひとたび乾燥すると、除去された短絡電流通路を有
するデバイス部分はアプリケータ98の下側を通過する
。アプリケータ98は検出器100によってセットさn
たメイツ102に応答して、定めろnた量の絶縁材料を
、短絡電流通路を除去丁べく腐食されたITO層部分に
貼着する。これによって後に貼着されるグリッド′嶋極
が短絡電流通路に接触しないよう防ぐことができる。
第4B図の具体例に関して指摘した如く、仮数の並列し
た電極92が短絡電流通路検出用に備えられ、こnK続
いて該通路を除去するためデバイス80の全幅を横切っ
て延在する単一の細長のプレート94が配置されている
。どちらの場脅においても、デバイスの全幅を横切るす
べての短絡電流通路は検出され除去さnる。
第7図は第6図のステーションを通って加工された後の
デバイスの構造全示す。図から分る如くデバイス80は
伝導性基板81、例え□ば真性領域が活性領域であるp
 −i −n形デバイスを形成する半導体領域82、及
びITOの層84を含′fJ。
デバイス80はさらに、基板8工から領域82を介して
ITO層84へと前もって延在する短絡電流通路83を
含む。しかしながらITO層84がライン85に沿って
腐食さn、短絡′成流通路83をITO層84から絶縁
するため、短絡電流通路83は今や除去さnる。腐食し
去られたITO層84の不連続部分内には、アプリケー
タ98によって加えられる41!、縁材料87のデポジ
ットが存在する。短絡電流通路が完全に除去されたこと
、及び該通路が後はど貼着されるグリッドtWに不注意
に接触して回復することはめシ得ないことがこの時点で
確認される。
次に第8図に基いて、導電性光透過材料のデポジション
以前−短絡電流通路の除去が可能であることを説明する
。この図ではデバイス118が支持ロール又はコア11
0に担持さnておジ短絡検出除去装置114に導入さ扛
る。第3図の具体例と同じく、デバイス118の供給が
、第8囚の如き製造システムの一体的部分を形成するコ
ア11゜でなく第2図のシステム即ちバッチシステムか
ら直接性なわれてもよい。デバイスエ18は次にチャン
バ116に入9、最終デポジット半導体領域上に光透過
材料がデポジットされる。処理工程を終えたデバイスは
最後に巻取コア112に巻回される。このコアを取出し
て更に最終処理ステーションに移すことができる。流体
結合電極の使用によって光透過材料を伴なわずに潜在欠
陥を変換することも可能である。
第9図は、第8図の短絡検出除去装置の具体例音用いた
デバイス122の処理シスチムニ2oの一例を示す。シ
ステム120は、電極124と電流しきい値デテクタ1
26とタイマー128とアプリケータ130とを有する
。該システムは更に、電圧源132と電解質浴液のビー
ド125とを含む。デバイスは導電性基板134と半導
体領域136とを含んでおシ、短絡電流通路138が基
板134から半導体領域136内に伸びている。
電圧源132の正極側は基板]34及びアース電位に接
続されて2シ、負極側は電極124に接続さtて電極を
基板に対して負電位に維持する。
p −i −r1電池を使用した場合、電池は電解質ビ
ード125を介して有効に逆バイアスさnる。第5図か
ら理解されるように、短絡電流通路が存在しないとき極
めて夕景の電流がデバイスに流れ、従って、電極124
と電解質ビード125とに流れる筈である。しかし乍ら
符号138で示すような短絡電流通路が電解質ビード1
25のF方に導入されると、電極124と電解質ビード
125とを流nる電流の急上昇が生じるであろう。この
電流上昇はデテクタ126にょシ検出さ扛、これによシ
タイマー12生がセットされる。
短絡電流通路138の所在の検出後にもデバイス122
は右方向への移動を継続し、やがて短絡゛電流通路13
8がアプリケータ130の下方に到達するであろう。こ
のときアプリケータはタイマー128に応答して、短絡
電流通路i38’i含むエリアの上方の半導体領域13
6に絶縁材料@をデポジットする。その結果、第8図の
チャンバ116に於いて導電性光透過材料層例えばIT
OがデバイスにデポジットさfLfcとき、I’l’O
は短絡電流通路138から電気的にe緑されることにな
る。
第10図は、前記の如き工程を終えたデバイス122を
示す。デバイス122は、前記導電性基板134と半導
体領域136と短絡電流通路138とを含む。短絡電流
通路138を含むエリア内の半導体領域136に、アプ
リケータ130によってデポジットさnたI!!!縁材
料部140が存在する半導体領域136と絶縁材料14
0との上にITOの如き導電性光透過材料層142が形
成される。
絶縁材料140は、ITO142と半導体領域136と
の間の界面で短絡電流通路138とITO142との間
の通路の抵抗率を実質的に増加する。その結果、ITO
142は短絡電流通路138から実質的に絶縁される。
結局、短絡電流通路138の除去が達成さnる。
短絡電流通路の所在を検出するには実際にはデバイスに
逆バイアスを印加するのが好ましいことも第5図よp理
解さnよう。デバイスが順方向にバイアスされていると
、デバイスの順導通が生じる可能性がある。このような
状態でも電流の急上昇が生じるため、電流検出デテクタ
がこの急上昇を短絡電流通路と誤解する恐nがある。し
かし乍ら逆バイアス状態では同様の事態は生じない。従
って、短絡電流通路の所在の検出には逆バイアスが好ま
しい。
第11図は、短絡電流通路を検出するために同じくデバ
イスに対して逆方向である電圧ポテンシャルが使用され
る第9図の具体例同様のシステムである。この場合デバ
イス150は既に、導電性基板156に重なる半導体領
域154の上にITO層152’ii含む。第9図の具
体例と同じく第11図のシステムは、電極124と、電
解質ビード125と、電流しきい値デテクタ126と、
タイマー128と、電池150i逆バイアスするように
配置さ扛た電圧源132とを含む。このシステムではア
プリケータに代えて、別の電極158と電圧源160と
電解質ビード162とが含まnている。゛電圧源160
はタイマー128によって起動さすると電極に正電位を
作用させるように構成さnている。従って、短絡電流通
路153が電極158の下刃に進むと、デテクタ126
によって予めセットさnていたタイマー128が′電圧
源160を起動するであろう。電圧源160によって電
極158に印加さ牡た正電位は、短絡電流通路153と
ITO152とに電流を流扛させ前記の如(ITOのエ
ッチを生起して短絡電流通路を除去する。この具体例に
於いて、km質125及び162のタイプと一度、並び
にデバイスに印加さnる電圧及びデバイスを流れる電流
の大きさと極性との各々に与えられる殿大割例値は等し
くない。例えば、電解質125はエツチング作用を行な
わず導電性であるだけで十分なので極めて薄い濃度でも
よいが、電解質162はエツチング作用を行なうため余
り薄い濃度は使用できない。更に、短絡電流通路153
に流詐る電流として、電極158と電圧源132とによ
って発生される電流は、電極124と電圧源132とに
よって発生される電流よシも実質的に高い値を有し得る
。これは、電極124が短絡電流通路の検出に関与し、
電極158が短絡電流通路の除去に使用さnるためであ
る。エフ高い電流を使用することによってエツチング時
間の短縮を図ることも可能である。
真性合金領域以外の盆金領域は、アモルファス領域でな
く・例えば多結晶領域でもよい。(“アモルファス”な
る用語は、長距離無秩序を有する合金又は材料を意味し
ており、短もしくは中距離秩序が含まnていてもよく、
また、時には成る程度結晶質粒子が含まれていてもよい
。)前記の記載に基いて本発明の変更及び変形が可能で
ある。特にバッチ製造されるデバイスでは、所望の結果
を得るように電極66とビード68とをデバイス表面を
横切って移動又は掃引させてもよい。また、例えばグリ
ッド電極が短絡電流通路と接触するエッチエリア内に伸
びていない場合等には絶縁材料87を必ずしも付加しな
くてもよい。
従って、特許請求の範囲を逸脱すること無く前記の詳細
な記載通シでない本発明の実施が可能であることを理解
さnたい。
【図面の簡単な説明】
第1図は複数のp −i −n形電池を含むタンデム又
はカスケード型光電池デバイスであって、電池の各々の
層がアモルファス半導体合金よりなる工程完了後をあう
わ丁部分断面図、第2図は第1図に示す元′亀池デバイ
スの連続製造用として構成式fした多重グロー放電チャ
ンバデポジション装置のダイヤグラム図、第3図は伝導
性光透過材料層を形成するためのデポジションチャンバ
及び、本発明の一具体例に従い短節電流通路を検出し除
去するための装置をあられj概略図、第4A図は本発明
を具体化する漕在短絡変換器の部分破断は略側面拡大図
、第4B図は本発明を具体化する短絡検出除去装置の部
分破断概略側面拡大図、第5図は本発明のさらに完全な
理解を得るために引用した典型的な光電池デバイスのダ
ークI −V曲勝、第6図は連続光電池デバイス製造シ
ステム中で用いられるべき本発明の他の具体例の部分/
li略側面側面図7図は本発明に従って短絡電流通路が
検出され除去された後の光電池デバイスの破断側面図、
第8図は本発明の他の具体例に従って短絡電流通路が検
出され除去された後に光透過材料の層を形成するための
デポジションチャンバの概略図、第9図は本発明の他の
具体例の部分概略側面図・第10図は第8図及び第9図
の具体例によって短絡′酸流通路が除去された後の光電
池デバイスの破断側面図、第11図は本発明を具体化し
た別の短絡電流通路検出除去装置の部分概略側面図であ
る。 io・・・光電池デバイス、11・・・基板材料、12
ae12b+12c・・・電池、26・・・グロー放電
デポジション装置、28,30.32・・・デポジショ
ンチャンバ。 代理人弁理士今 村 元 FIG、4B 516 手続補正書 特許庁長官若杉和夫殿 1、事件の表示 昭和58年特許願第196928号2
、発明の名称 光電池デバイスの短絡電流及び潜在短絡
電流通路を除去するための方法および装備 3、補正をする者 事件との関係 特許出願人 名 称 エナージー・コンバージョン・デバイセス・イ
ンコーホレーテッド 4、代 理 人 東京都新宿区新宿1丁目1番14号 
山田ビル(内容に変更なし)

Claims (1)

  1. 【特許請求の範囲】 (1) 対向する界面を有する基板を覆う半導体領域と
    、該半導体領域の界面を檄う伝導性の光透過材料の層と
    を含む形式の光電池デバイスの製造法において、電位を
    作動化し・次に前記半導体領域を通して前記基板から@
    記界面にまで延在する作動化された実在短絡電流通路を
    除去し、前記デバイスにバイアスを印加して潜在電位不
    良を実在短絡電流通路に変換し、そのvi該短絡′亀流
    通路の抵抗率を選択的に前記半導体領域の界面において
    実質的に増加する方法。 (21fttJNQデバイスへのバイアス印加が逆バイ
    アス印加である特許請求の範囲第1項に記載の方法。 (3) 前記デバイスへのバイアス印加が順、逆方向の
    交互のバイアス印加である特許請求の範囲第1項に記載
    の方法。 (4) 前記バイアスの印加に先立って伝導性の光透過
    材料の層をデポジットする特許請求の範囲第1項に記載
    の方法。 (5) 前記短絡電流通路を先ず第一段階として位置決
    定し、その後該通路の抵抗率を実質的に増加する特許請
    求の範囲第1項に記載の方法。 (6)対向する界面を有する基板を覆う半導体領域と、
    該半導体領域の界面を覆う伝導性の透明材料の層とを含
    む形式の光電池デバイスを通過する電位を作動化し、次
    に作動化された実在短節電流通路を除去するための装置
    において、該電位及び実在短絡電流通路が基板から半導
    体領域を通って前記界面にまで延在し、前記デバイスに
    対してバイアスを印加して潜在電位不良を実在短絡′K
    L流通路に変換する手段と、該短絡電流通路の抵抗率を
    選択的に前記半導体領域の界面において実質的に増加す
    る手段とを含む装置。 (7)前記バイアス手段が前記デバイスを通過する逆バ
    イアスを印加する手段をも含む特許請求の範囲第6項に
    記載の装置。 (8) 前記バイアス手段が該デバイスを通して順及び
    逆方向のバイアスを交互に印加する手段をも含む特許請
    求の範囲第6項に記載の装置。 (9) 前記バイアスの印加に先立って伝導性の透明材
    料の層をデポジットする手段をも含む特許請求の範囲第
    6項に記載の装置。 Ql 前記短絡電流通路の所在を検出するための検出手
    段をも官む特許請求の範囲第6項に記載の装置。
JP58196928A 1983-08-03 1983-10-20 太陽電池の製造方法 Granted JPS6046080A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/520,054 US4464823A (en) 1982-10-21 1983-08-03 Method for eliminating short and latent short circuit current paths in photovoltaic devices
US520054 1983-08-03

Publications (2)

Publication Number Publication Date
JPS6046080A true JPS6046080A (ja) 1985-03-12
JPH0572756B2 JPH0572756B2 (ja) 1993-10-12

Family

ID=24071012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196928A Granted JPS6046080A (ja) 1983-08-03 1983-10-20 太陽電池の製造方法

Country Status (8)

Country Link
EP (1) EP0134364A3 (ja)
JP (1) JPS6046080A (ja)
KR (1) KR850003476A (ja)
AU (1) AU2042183A (ja)
BR (1) BR8305792A (ja)
ES (1) ES8503889A1 (ja)
IN (1) IN160221B (ja)
MX (1) MX159519A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053303A (ja) * 1999-08-12 2001-02-23 Kanegafuchi Chem Ind Co Ltd 太陽電池の短絡部除去方法
US6228662B1 (en) 1999-03-24 2001-05-08 Kaneka Corporation Method for removing short-circuited sections of a solar cell
US6365825B1 (en) * 1999-05-14 2002-04-02 Kaneka Corporation Reverse biasing apparatus for solar battery module
US7592626B2 (en) 2005-12-12 2009-09-22 Tdk Corporation Capacitor and method of manufacturing same
WO2010029939A1 (ja) * 2008-09-09 2010-03-18 三洋電機株式会社 太陽電池モジュールの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213910B1 (en) * 1985-08-24 1994-03-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device free from the current leakage through a semi-conductor layer
ES2198833T3 (es) 1999-03-25 2004-02-01 Kaneka Corporation Procedimiento de fabricacion de modulos de celulas solares de capa fina.
US9799927B2 (en) 2011-11-14 2017-10-24 Kabushiki Kaisha Nihon Micronics Repair apparatus of sheet type cell
DE102018001057A1 (de) * 2018-02-07 2019-08-08 Aic Hörmann Gmbh & Co. Kg Verfahren zur Verbesserung des ohmschen Kontaktverhaltens zwischen einem Kontaktgitter und einer Ermitterschicht einer Siliziumsolarzelle
CN108233329A (zh) * 2018-03-16 2018-06-29 西安赛诺克新能源科技股份有限公司 一种提高主电路断开响应速度的保护电路
CN117353651B (zh) * 2023-10-16 2024-04-16 中科宏一教育科技集团有限公司 光伏系统控制方法、装置、设备和介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584984A (ja) * 1981-06-26 1983-01-12 ア−ルシ−エ−・コ−ポレ−シヨン 太陽電池の性能を改善する方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197141A (en) * 1978-01-31 1980-04-08 Massachusetts Institute Of Technology Method for passivating imperfections in semiconductor materials
US4166918A (en) * 1978-07-19 1979-09-04 Rca Corporation Method of removing the effects of electrical shorts and shunts created during the fabrication process of a solar cell
JPS5683981A (en) * 1979-12-13 1981-07-08 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584984A (ja) * 1981-06-26 1983-01-12 ア−ルシ−エ−・コ−ポレ−シヨン 太陽電池の性能を改善する方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228662B1 (en) 1999-03-24 2001-05-08 Kaneka Corporation Method for removing short-circuited sections of a solar cell
US6365825B1 (en) * 1999-05-14 2002-04-02 Kaneka Corporation Reverse biasing apparatus for solar battery module
JP2001053303A (ja) * 1999-08-12 2001-02-23 Kanegafuchi Chem Ind Co Ltd 太陽電池の短絡部除去方法
JP4627575B2 (ja) * 1999-08-12 2011-02-09 株式会社カネカ 太陽電池の短絡部除去方法
US7592626B2 (en) 2005-12-12 2009-09-22 Tdk Corporation Capacitor and method of manufacturing same
WO2010029939A1 (ja) * 2008-09-09 2010-03-18 三洋電機株式会社 太陽電池モジュールの製造方法
US8158454B2 (en) 2008-09-09 2012-04-17 Sanyo Electric Co., Ltd. Method for manufacturing solar cell module

Also Published As

Publication number Publication date
EP0134364A3 (en) 1986-06-04
MX159519A (es) 1989-06-26
ES526597A0 (es) 1985-03-01
IN160221B (ja) 1987-07-04
ES8503889A1 (es) 1985-03-01
EP0134364A2 (en) 1985-03-20
AU2042183A (en) 1985-02-07
BR8305792A (pt) 1985-05-21
JPH0572756B2 (ja) 1993-10-12
KR850003476A (ko) 1985-06-17

Similar Documents

Publication Publication Date Title
JP2686022B2 (ja) 光起電力素子の製造方法
JPS5994473A (ja) 太陽電池の製造方法および装置
US4464823A (en) Method for eliminating short and latent short circuit current paths in photovoltaic devices
US4729970A (en) Conversion process for passivating short circuit current paths in semiconductor devices
US4633034A (en) Photovoltaic device and method
CA1277753C (en) Method of removing electrical shorts and shunts from a thin-film semiconductor device
US7256140B2 (en) Higher selectivity, method for passivating short circuit current paths in semiconductor devices
KR100334595B1 (ko) 광기전력소자의제조방법
JPH02158175A (ja) 光導電素子を製造する方法
WO1993023880A1 (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
US4510674A (en) System for eliminating short circuit current paths in photovoltaic devices
US4510675A (en) System for eliminating short and latent short circuit current paths in photovoltaic devices
JPS6046080A (ja) 太陽電池の製造方法
US6491808B2 (en) Electrolytic etching method, method for producing photovoltaic element, and method for treating defect of photovoltaic element
US7112264B2 (en) Plating apparatus and method
JP2004311970A (ja) 積層型光起電力素子
JP3823166B2 (ja) 電解エッチング方法、光起電力素子の製造方法及び光起電力素子の欠陥処理方法
JP3679937B2 (ja) 非晶質シリコン太陽電池及びその製造方法
JPH06151908A (ja) 太陽電池の欠陥封止方法
JP2005294326A (ja) 光起電力素子及びその製造方法
JPH06204519A (ja) 太陽電池
JPH06196732A (ja) 太陽電池
JPH06140648A (ja) 太陽電池及びその製造方法
JPH06204520A (ja) 太陽電池の欠陥部分封止法
JPH11145492A (ja) 光起電力素子の形成装置及び形成方法