JPS6039142A - Copper alloy - Google Patents

Copper alloy

Info

Publication number
JPS6039142A
JPS6039142A JP58146882A JP14688283A JPS6039142A JP S6039142 A JPS6039142 A JP S6039142A JP 58146882 A JP58146882 A JP 58146882A JP 14688283 A JP14688283 A JP 14688283A JP S6039142 A JPS6039142 A JP S6039142A
Authority
JP
Japan
Prior art keywords
alloy
effect
electric conductivity
conductivity
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58146882A
Other languages
Japanese (ja)
Inventor
Koji Nakajima
孝司 中島
Kenji Kubozono
久保薗 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58146882A priority Critical patent/JPS6039142A/en
Priority to KR1019850000767A priority patent/KR860006562A/en
Publication of JPS6039142A publication Critical patent/JPS6039142A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent

Abstract

PURPOSE:To provide a Cu alloy provided with high strength and high electric conductivity and suitable for use as the material of a lead frame for a semiconductor by adding specified amounts of Sn, P, Ni and Zn to Cu. CONSTITUTION:This Cu alloy consists of, by weight, 1.7-2.5% Sn, 0.01-0.15% P, 0.1-0.6% Ni, 0.05-1% Zn and the balance Cu with inevitable impurities. In the composition, the lower limit of the Sn content is the irreducible minimu of Sn required in consideration of the effect of added Ni, and the upper limit is defined in points of cost and electric conductivity. Ni in said range refines the grains of a Cu-Sn alloy contg. said amount of Sn and exerts little influence on the electric conductivity. Zn is added by said relatively large amount so as to increase the deoxidizing effect of P and to improve the plastic workability. The Cu alloy is relatively inexpensive and has characteristics comparable to those of conventional phosphor bronze.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電子機器用、主として半導体リードフレーム
用銅基合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a copper-based alloy for electronic equipment, mainly for semiconductor lead frames.

〔従来技術〕[Prior art]

半導体リードフレーム用材料は、高導電性、高強度、繰
り返し曲げ性、めっき性、はんだ付は性。
Materials for semiconductor lead frames have high conductivity, high strength, repeated bending properties, plating properties, and soldering properties.

耐熱性、低熱膨張係数等緒特性が要求される。Properties such as heat resistance and low coefficient of thermal expansion are required.

半導体フレーム用材料としては、従来よ〕高強度で熱膨
張係数の小さいFe−Mi系の42 alloyが主流
を占めているが、近年では半導体デバイスの高出力化、
低価格化への動向により銅系合金の使用比率が増大して
きている。半導体リードフレーム用の材料特性は理想的
な強度、繰り返し曲げ性、導電率の目安として引張強さ
50に9/ms+ 以上。
Conventionally, the mainstream material for semiconductor frames has been Fe-Mi-based 42 alloy, which has high strength and a small coefficient of thermal expansion.
Due to the trend toward lower prices, the proportion of copper-based alloys used is increasing. The ideal material properties for semiconductor lead frames include tensile strength of 50 to 9/ms+ as a guide for ideal strength, repeated bendability, and electrical conductivity.

伸び10チ以上、電気伝導率が50 % lAC3以上
が一般的要求仕様である。しかしながら、これらを全て
満足させる材料はこれまでの既存材料にはなく1強度、
繰り返し曲げを優先したりん青銅系の材料を導電性と価
格を優先した銅に微量元素を添加した各種銅基台金に大
別される。
The general required specifications are an elongation of 10 inches or more and an electrical conductivity of 50% lAC3 or more. However, there is no existing material that satisfies all of these requirements;
They are broadly divided into phosphor bronze materials, which prioritize repeated bending, and various copper-based metals, which prioritize conductivity and cost, and which are made by adding trace elements to copper.

しかしながら、従来のりん青銅では導電性が低(、Sn
が高コストのため必然的に材料費としては高価格となり
、一方、後者の銅に微量元素を添加したものでは強度不
足、繰り返し曲げ性等に難点がおる。
However, conventional phosphor bronze has low conductivity (Sn
However, due to the high cost of copper, the material cost is inevitably high.On the other hand, the latter, which is made by adding trace elements to copper, has problems such as insufficient strength and repeated bendability.

〔発明の概要〕[Summary of the invention]

本発明は上記欠点を解消するためになされたもので、り
ん青銅一種よ9低価格で、りん背銅一種に匹敵する機械
的強度とくり返し曲げ性が得られ。
The present invention has been made to solve the above-mentioned drawbacks, and it is possible to obtain mechanical strength and repeated bendability comparable to phosphor bronze type 1 at a cost that is 90% lower than that of phosphor bronze type 1.

しかも比較的高電導性を有する優れた電子機器用材料、
主として半導体リードフレーム用材料金提供することを
目的としている。
Moreover, it is an excellent material for electronic devices with relatively high conductivity.
The main purpose is to provide gold materials for semiconductor lead frames.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例について説明する。本発明は重
量%で錫(Sn) 1.7〜2.5%、燐(p)o、o
t〜0.15チ、ニッケル(Ni)0.1〜0,6チ及
び亜鉛(Zn)Tho、os〜1チ含有し、残部が銅お
よび不可避の不統物から成る銅基合金である。
An embodiment of the present invention will be described below. The present invention contains tin (Sn) 1.7-2.5%, phosphorus (p) o, o
It is a copper-based alloy containing t ~ 0.15 h, nickel (Ni) 0.1 to 0.6 h, and zinc (Zn) Tho, os ~ 1 h, with the balance consisting of copper and unavoidable impurities.

次に本発明合金を構成する合金成分の限定理由を説明す
る。
Next, the reason for limiting the alloy components constituting the alloy of the present invention will be explained.

Snの下限については、一般的に云われる引張強さ50
シー以上、伸び10チ以上の理想的強度水準が得られる
ために、 Ni添加の効果を加味して最小限必要な計ヲ
示し、上限については価格及び導電性の点より、1.7
〜2.5重量%とした。
As for the lower limit of Sn, the generally said tensile strength is 50
In order to obtain the ideal strength level of 10 cm or more and an elongation of 10 inches or more, we have shown the minimum required strength, taking into account the effect of Ni addition, and the upper limit is 1.7 cm from the point of view of price and conductivity.
~2.5% by weight.

Nij/(ついては上記Sn成分範囲内でCu−an合
金の結晶粒全微細化し、導電性への影響がほとんど認め
られず、またコスト的に安価な範囲とし。
Nij/(Then, the grain size of the Cu-an alloy is completely refined within the above Sn component range, hardly any influence on conductivity is observed, and the cost is low.

0.1〜0.6重量%とした。The content was 0.1 to 0.6% by weight.

Pについては脱酸効果が得られる量全下限とし。Regarding P, set the total lower limit of the amount that provides a deoxidizing effect.

上限については導電性の点より0.01〜0.15重量
%とじた。
The upper limit was set at 0.01 to 0.15% by weight from the viewpoint of conductivity.

Znについてはリードフレーム用としてのメッキ密着性
評価に対し、十分な脱酸を行うために、脱酸剤としての
効果と、塑性加工性の向上を目的としたものであり、こ
の効果の得られる範囲としてO,OS〜1重敬チとした
。脱酸剤としての効果はPにより、はゾ満足出来る品質
を得ることが出来るが、Pのみの場合その含有量により
電気伝導率に大きな影響を与え易いため、バラツキを最
小限に抑える必要があ勺、また高電導率を得るためには
要求範囲内でも出来るだけ低く抑える必要がある。
Regarding Zn, the purpose is to have an effect as a deoxidizing agent and to improve plastic workability in order to perform sufficient deoxidation for plating adhesion evaluation for lead frames. The range was O, OS to 1. As for the effect as a deoxidizing agent, it is possible to obtain very satisfactory quality by using P, but since P alone tends to have a large effect on electrical conductivity depending on its content, it is necessary to minimize the variation. Furthermore, in order to obtain high conductivity, it is necessary to keep it as low as possible within the required range.

このため、Pとしての脱酸効果を補い、かつPの減耗針
全制御する意味からも導電性への影響がほとんど認めら
れず、脱酸効果の比較的高いZnを添加していることに
特長がある。
For this reason, the addition of Zn, which has a relatively high deoxidizing effect, has almost no effect on conductivity in terms of supplementing the deoxidizing effect of P and fully controlling the depletion of P. There is.

以下1本発明の実施例について記述する。An embodiment of the present invention will be described below.

表1に実験にて作成した試料の成分値を示す。Table 1 shows the component values of the samples prepared in the experiment.

表 1 試料は各組成につき高周波誘導加熱炉で溶解し。Table 1 Samples of each composition were melted in a high-frequency induction heating furnace.

造塊後冷間圧延と焼鈍を繰り返し、最終圧延率を37チ
とし板厚0251181に仕上げた。この板より試料全
採取し、各諸物件を測定した。
After ingot formation, cold rolling and annealing were repeated, and the final rolling reduction was set to 37 inches, resulting in a plate thickness of 0251181 mm. All samples were collected from this board and various objects were measured.

機械的特性と導電率結晶粒度の結果を表2に示す。The results of mechanical properties and conductivity grain size are shown in Table 2.

[− ※繰り返し曲げ回数の測定方法 (90°一方向面げで1往復を1回として数える。試料
断面積0125m、荷重250 t )表2よ)1本発
明合金は機械的特性、繰り返し曲げ性が優れ、また導電
性についてはN1やZnの添加の影響があられれていな
い。即ち、試料扁2゜4.5.6あるいはA7.8では
N1の添加数が異なっているが、Ni添加により引張強
さ、硬さ、繰り返し曲げが著しく向上しておル、伸びや
導電率の低下というような悪影響社認められていない。
[- *Method for measuring the number of repeated bends (one round trip with a 90° one-way facet is counted as one time. Sample cross-sectional area 0125 m, load 250 t) Table 2) 1 The alloy of the present invention has mechanical properties and repeated bending properties. is excellent, and the conductivity is not affected by the addition of N1 or Zn. In other words, although the number of N1 added is different for the samples with a diameter of 2° 4.5.6 or A7.8, the addition of Ni significantly improves tensile strength, hardness, and repeated bending, as well as elongation and electrical conductivity. No negative impact, such as a decline in

また結晶粒度はN1添加による影響が著しく、これが機
械的特性向上の主効果となっておJ 、 0.2電歇−
程度以上ではその効果が飽和する傾向にある。
In addition, the crystal grain size is significantly affected by the addition of N1, and this is the main effect of improving mechanical properties, resulting in J, 0.2 electrification.
Above this level, the effect tends to be saturated.

Znの添加による影響として試料41〜3では機械的特
性、導電率、結晶粒度等悪影響は全く認められず、 Z
n添加は脱酸剤としてのみの効果に限定されている。
In samples 41 to 3, no adverse effects such as mechanical properties, electrical conductivity, and crystal grain size were observed due to the addition of Zn.
The addition of n is limited to its effect as a deoxidizing agent.

なお、半導体リードフレーム用材として、はんだの耐候
性は重要な特性であるが、この評価方法として、各試料
について、純8n及び9/、P b 8 nはんだ浴に
浸漬後、150℃大気中で500時間の耐候試験を行っ
た。耐候後、それぞれの試料について180@密着曲げ
のテストヲ行い、はんだの剥離有無を調べたが全ての試
料とも良好であシ。
The weather resistance of solder is an important property as a material for semiconductor lead frames, and as a method for evaluating this, each sample was immersed in pure 8n, 9/, and P b 8 n solder baths, and then exposed to air at 150°C. A weather resistance test was conducted for 500 hours. After weathering, each sample was subjected to a 180@adhesive bending test to check for solder peeling, but all samples were found to be good.

Ni Znの影曽は認められなかった。No trace of NiZn was observed.

また試料AI、2.3は実際にリードフレームとして加
工後、ダイの部分に部分Afメッキを施し。
In addition, sample AI, 2.3 was actually processed as a lead frame, and then partial Af plating was applied to the die part.

これヲ450℃で5分間加熱して、めっきの膨れ状況を
調査した結果、試料AIK比し、A2,3は良好な結果
を示した。
This was heated at 450° C. for 5 minutes and the blistering condition of the plating was investigated. As a result, A2 and 3 showed better results than sample AIK.

〔発明の効果〕〔Effect of the invention〕

以上の結果により1本発明合金は比較的安価な成分で従
来のりん青銅に匹敵する強度を有し、また比較的高い導
電性とそのばらつきを最小限に抑え、半導体リードフレ
ーム用として、はんだの耐候性、めっきの膨れ等への諸
信頼性を十分満足させたものである。
Based on the above results, the alloy of the present invention has a strength comparable to that of conventional phosphor bronze with relatively inexpensive ingredients, has relatively high conductivity and minimizes its variation, and is suitable for use in solder for semiconductor lead frames. It fully satisfies various reliability requirements such as weather resistance and plating blistering.

本発明合金は以上、半導体リードフレーム用材として記
してきたが、前述のように高強度と高専11性を有する
ことにより、他の電気機器用材料としても十分有用であ
ると云える。
The alloy of the present invention has been described above as a material for semiconductor lead frames, but as described above, it can be said to be sufficiently useful as a material for other electrical equipment because of its high strength and high tenacity.

また1本発明合金を一般のばね用銅合金として使用する
場合や2曲げ加工性を更に改善、又は平坦度改善等の目
的で加工歪除去を行う方法として150℃〜450℃で
の低温焼鈍あるいはテンションアニールを行うことは、
これまでの他の材料と同様有効な手段である。
In addition, 1) when the alloy of the present invention is used as a general copper alloy for springs, 2) low-temperature annealing at 150°C to 450°C or Performing tension annealing is
It is an effective means as well as other materials used up until now.

Claims (1)

【特許請求の範囲】 重量%で錫1,7〜2.5チ、燐0.01〜0.15%
。 ニッケル0.1〜0.6%及び亜鉛yo、os〜1チ含
有し、残部が銅および不可避の不純物から成る銅基合金
[Claims] 1.7-2.5% tin and 0.01-0.15% phosphorus by weight.
. A copper-based alloy containing 0.1 to 0.6% nickel and yo, os to 1 zi of zinc, with the remainder consisting of copper and unavoidable impurities.
JP58146882A 1983-08-11 1983-08-11 Copper alloy Pending JPS6039142A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58146882A JPS6039142A (en) 1983-08-11 1983-08-11 Copper alloy
KR1019850000767A KR860006562A (en) 1983-08-11 1985-02-07 Copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146882A JPS6039142A (en) 1983-08-11 1983-08-11 Copper alloy

Publications (1)

Publication Number Publication Date
JPS6039142A true JPS6039142A (en) 1985-02-28

Family

ID=15417702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146882A Pending JPS6039142A (en) 1983-08-11 1983-08-11 Copper alloy

Country Status (2)

Country Link
JP (1) JPS6039142A (en)
KR (1) KR860006562A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245753A (en) * 1984-05-22 1985-12-05 Nippon Mining Co Ltd High strength copper alloy having high electric conductivity
JPS61127840A (en) * 1984-11-27 1986-06-16 Nippon Mining Co Ltd Copper alloy having high strength and electric conductivity
JPS61264144A (en) * 1985-05-20 1986-11-22 Nippon Mining Co Ltd High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPH0243335A (en) * 1988-05-11 1990-02-13 Mitsui Mining & Smelting Co Ltd Copper alloy for heat exchanger
JPH04154932A (en) * 1990-10-15 1992-05-27 Sumitomo Light Metal Ind Ltd Aluminum alloy fin material for heat exchanger excellent in self-corrosion resistance and sacrificial anode effect
JPH06207232A (en) * 1986-04-10 1994-07-26 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical equipment and its production
JPH0741887A (en) * 1992-09-24 1995-02-10 Poongsan Corp Copper alloy for electric and electronic part and its preparation
KR20030082704A (en) * 2002-04-18 2003-10-23 희성금속 주식회사 Electronic contact production method of agcu system compound metal
US20110223056A1 (en) * 2007-08-07 2011-09-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet
CN105039759A (en) * 2015-07-20 2015-11-11 安徽工程大学 Method for preparing high-yield ratio and high-elasticity tin-phosphor bronze alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793555A (en) * 1980-12-02 1982-06-10 Tamagawa Kikai Kinzoku Kk Lead material for semiconductor
JPS57169047A (en) * 1981-04-09 1982-10-18 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor device
JPS5816044A (en) * 1981-07-23 1983-01-29 Mitsubishi Electric Corp Copper alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793555A (en) * 1980-12-02 1982-06-10 Tamagawa Kikai Kinzoku Kk Lead material for semiconductor
JPS57169047A (en) * 1981-04-09 1982-10-18 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor device
JPS5816044A (en) * 1981-07-23 1983-01-29 Mitsubishi Electric Corp Copper alloy

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372691B2 (en) * 1984-05-22 1991-11-19 Nippon Mining Co
JPS60245753A (en) * 1984-05-22 1985-12-05 Nippon Mining Co Ltd High strength copper alloy having high electric conductivity
JPS61127840A (en) * 1984-11-27 1986-06-16 Nippon Mining Co Ltd Copper alloy having high strength and electric conductivity
JPH0424417B2 (en) * 1984-11-27 1992-04-27 Nippon Mining Co
JPS61264144A (en) * 1985-05-20 1986-11-22 Nippon Mining Co Ltd High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPH06207232A (en) * 1986-04-10 1994-07-26 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical equipment and its production
JPH0243335A (en) * 1988-05-11 1990-02-13 Mitsui Mining & Smelting Co Ltd Copper alloy for heat exchanger
JPH04154932A (en) * 1990-10-15 1992-05-27 Sumitomo Light Metal Ind Ltd Aluminum alloy fin material for heat exchanger excellent in self-corrosion resistance and sacrificial anode effect
JPH07116542B2 (en) * 1990-10-15 1995-12-13 住友軽金属工業株式会社 Aluminum alloy fin material for heat exchangers with excellent self-corrosion resistance and sacrificial anode effect
JPH0741887A (en) * 1992-09-24 1995-02-10 Poongsan Corp Copper alloy for electric and electronic part and its preparation
KR20030082704A (en) * 2002-04-18 2003-10-23 희성금속 주식회사 Electronic contact production method of agcu system compound metal
US20110223056A1 (en) * 2007-08-07 2011-09-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet
CN105039759A (en) * 2015-07-20 2015-11-11 安徽工程大学 Method for preparing high-yield ratio and high-elasticity tin-phosphor bronze alloy

Also Published As

Publication number Publication date
KR860006562A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
JPS60245753A (en) High strength copper alloy having high electric conductivity
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPH0229737B2 (en)
JPS6039142A (en) Copper alloy
EP0190386B1 (en) Copper-based alloy and lead frame made of it
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS6158536B2 (en)
JPH07331363A (en) High strength and high conductivity copper alloy
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS6267144A (en) Copper alloy for lead frame
JPS6338547A (en) High strength conductive copper alloy
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS62133033A (en) Cu alloy lead material for semiconductor device
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPH02129326A (en) High strength copper alloy
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPH06184676A (en) High strength and high electric conductivity copper alloy
JPH03271340A (en) High strength and high conductivity copper base alloy
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JPS6218617B2 (en)
JPH01268834A (en) Copper alloy for lead material of semiconductor device
JPS6213823B2 (en)