JPS6028248A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6028248A
JPS6028248A JP13590783A JP13590783A JPS6028248A JP S6028248 A JPS6028248 A JP S6028248A JP 13590783 A JP13590783 A JP 13590783A JP 13590783 A JP13590783 A JP 13590783A JP S6028248 A JPS6028248 A JP S6028248A
Authority
JP
Japan
Prior art keywords
wiring
layer
conductor
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13590783A
Other languages
Japanese (ja)
Inventor
Riyouichi Hazuki
巴月 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13590783A priority Critical patent/JPS6028248A/en
Publication of JPS6028248A publication Critical patent/JPS6028248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the disconnection of a second layer wiring formed on an Al wiring conductor by forming the conductor to a predetermined shape and forming the fringe of the conductor to a tapered shape through a DC bias sputtering method in which the semiconductor substrate side is brought to negative voltage when the Al wiring conductor is shaped on the substrate through an insulating layer. CONSTITUTION:A SiO2 layer 2 is applied on a Si substrate 1, an Al wiring conductor is laminated on the layer 2, and the conductor is changed into prescribed wiring layers 3 through reactive ion etching using a mixed gas of CCl4 and Cl2. Since the stepped sections of the wiring layers 3 are steep under the state, the following process is executed. That is, high-purity quartz glass is used as a target for sputtering, DC negative voltage applied to the substrate 1 is brought to -600--700V and RF sputtering is executed, and SiO2 films 4 are each formed to the surfaces of the wiring layers 3 and the surfaces of the exposed substrates 1 white the edge sections of the wiring layers 3 are tapered. The films 4 are renewed into a SiO2 film 4' coating the whole surface, and a second layer Al wiring layer 5 is attached on the film 4'.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、半導体装置の製造方法に係わり、特に配線パ
ターンの周縁をなだらかにする方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of smoothing the periphery of a wiring pattern.

〔従来技術とその問題点〕[Prior art and its problems]

配線金属として例えばアルミニウムの配線パターンを形
成するには、マスクパターンを形成後、アルミニウムを
選択的にエツチングして行なう。
To form a wiring pattern using, for example, aluminum as the wiring metal, a mask pattern is formed and then the aluminum is selectively etched.

エツチング法としては、等方性エツチング法および異方
性エツチング法があるが、いずれの場合もエツチング後
の断面形状はその縁部において急峻な立上シ形状ケ呈す
る。このため、従来の配線パターン上に形成した絶縁膜
は、その段差部で側面の膜厚が薄くなり、また、膜応力
のために、絶縁性の低下を招くことになる。さらに、前
記絶縁膜上に2層目の配線層を形成した場合は、絶縁膜
の段左部が急峻なために、配線の断線の原因になり、素
子製造の歩留と、信頼性を低下させる等の欠点がある。
Etching methods include isotropic etching and anisotropic etching, but in either case, the cross-sectional shape after etching takes on a steeply rising square shape at the edges. For this reason, the insulating film formed on the conventional wiring pattern has a thin film thickness on the side surface at the stepped portion, and also causes a decrease in insulation properties due to film stress. Furthermore, when a second wiring layer is formed on the insulating film, the steep left side of the insulating film may cause disconnection of the wiring, reducing the yield and reliability of device manufacturing. There are drawbacks such as

上記欠点を排除する方法として、マスクパターンとして
断面形状をなだらかにしたレジストを用いて、レジスト
もエツチングしながら異方性エツチング法により下地の
膜、例えばアルミニウム膜をエツチングする方法が知ら
れているが、この方法では法ではレジストの断面形状の
制御性が悪いため、エツチング後のアルミニウム断面形
状も再現性がなく、また段差部での傾斜がゆるやかすぎ
るため、微細パターンの形成には適していない。
As a method to eliminate the above drawback, a method is known in which a resist with a smooth cross-sectional shape is used as a mask pattern, and the underlying film, for example, an aluminum film, is etched by an anisotropic etching method while also etching the resist. In this method, the controllability of the cross-sectional shape of the resist is poor, so the cross-sectional shape of the aluminum after etching is not reproducible, and the slope at the step part is too gentle, so it is not suitable for forming fine patterns.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、配線パターン上の絶縁膜の絶縁性を低
下させず、かつ2N目の配線の断線を防止するために配
線パターンの周縁をなだらかにして、素子信頼性の向上
をはかり得る半導体装置の製造方法を提供することにあ
る。
An object of the present invention is to provide a semiconductor that can improve device reliability by smoothing the periphery of a wiring pattern in order to prevent the insulation of the insulating film on the wiring pattern from decreasing and to prevent disconnection of the 2Nth wiring. An object of the present invention is to provide a method for manufacturing a device.

〔発明の概奴〕[Inventor]

上記目的を連成するだめの本発明の特徴は、基板側に直
流の負電圧を印加させるバイアススパッタ法を用いて、
配線パターン上に絶縁膜を形成する初期において配線パ
ターンの周縁部のみにテーパーをつけ、なだらかにした
ことにある。即ち、配線パターン上に絶縁膜を形成する
とき、基板側の直流負電圧を通常の膜形成時より大きく
することにより、配線パターンの周縁部のみが露出する
A feature of the present invention that combines the above objects is that a bias sputtering method is used to apply a negative DC voltage to the substrate side.
The reason is that only the peripheral edge of the wiring pattern is tapered and smoothed at the initial stage of forming an insulating film on the wiring pattern. That is, when forming an insulating film on a wiring pattern, only the peripheral edge of the wiring pattern is exposed by making the negative DC voltage on the substrate side higher than when forming a normal film.

そしてこの部分が前記直流負電圧により加速されたスパ
ッタガス例えばアルゴンのイオンでスパッタリングされ
るが、スパッタリング効率はイオンの入射角が約45度
の時最大となるので、この露出した配線パターンの周縁
部にテーパーがつくことになる。
This area is sputtered with a sputtering gas such as argon ions accelerated by the negative DC voltage, but the sputtering efficiency is maximum when the incident angle of the ions is about 45 degrees, so the exposed peripheral edge of the wiring pattern There will be a taper.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、配線パターンの周縁が緩やかな断面を
持つようにでき、また加工精度もよいことから、配線パ
ターン上の絶縁膜の絶縁性を低下てせず、かつ2層目の
配線の断線を防止することができ、素子信頼性の向上を
はかり得る。また加工精度が高いことから素子の集積度
を低下させることもないので、為密度集積回路の多層配
線形成において本発明は極めて有効である。
According to the present invention, the peripheral edge of the wiring pattern can have a gentle cross section, and the processing accuracy is also good, so the insulation properties of the insulating film on the wiring pattern are not deteriorated, and the second layer wiring can be Disconnection can be prevented and element reliability can be improved. In addition, since the processing accuracy is high, the degree of integration of the elements is not reduced, so the present invention is extremely effective in forming multilayer wiring for high-density integrated circuits.

〔発明の実施例〕[Embodiments of the invention]

第1図乃至第4図はそれぞれ本発明の一実施例を示す工
程断面図である。まず、第1図に示す如くシリコン基板
1上に例えば熱酸化法によシ酸化シリコン膜2を形成し
、この酸化シリコン膜2上に第1の配線層として例えば
膜厚1μmのアルミニウム配線層3を形成する。アルミ
ニウム配線N3は、アルミニウム膜をスパッタ法等によ
り形成した後、マスクとして例えばホトレジストを塗布
し、バターニングを行ない、そして例えば、CCl4と
C12との混合ガスを用いた反応性イオンエツチング法
によりアルミニウム膜を選択エツチングして形成する。
1 to 4 are process cross-sectional views showing one embodiment of the present invention. First, as shown in FIG. 1, a silicon oxide film 2 is formed on a silicon substrate 1 by, for example, a thermal oxidation method, and an aluminum wiring layer 3 with a thickness of 1 μm, for example, is formed on this silicon oxide film 2 as a first wiring layer. form. The aluminum wiring N3 is formed by forming an aluminum film by sputtering or the like, applying, for example, a photoresist as a mask, performing buttering, and etching the aluminum film by, for example, a reactive ion etching method using a mixed gas of CCl4 and C12. Form by selectively etching.

この状態で、配線層30段差は急峻なものである。なお
、第1図における配線層のライン巾、スペース巾は約2
μmである。
In this state, the level difference in the wiring layer 30 is steep. Note that the line width and space width of the wiring layer in Figure 1 are approximately 2
It is μm.

次に、例えばスパッタ用ターゲットとして高純度石英ガ
ラス(Si02)を用い、またスパッタリングカスとし
てアルゴン(Ar)を用いたRFバイアススパッタリン
グによりアルミニウム配線層3上に酸化シリコン膜4を
形成する際、例えば、Ar圧力を10mTorr!ター
ゲットおよび基板側に印加される直流負′亀圧をそれぞ
れ一600V、−170V として、30分スパッタリ
ングを行なった状態は第2図に示したように、酸化シリ
コン膜4は平担部のみに約tsooX遍iしs ;フQ
圭多云配線脇iの縁部は約45iのテーパーをもつよう
にエツチングされる。即ち、基板側の直流負電圧が太き
いため、配線層の縁部では酸化シリコン膜の堆積速度よ
りも、スパッタリング速度の方がその入射角依存性のた
めに大きくなるので、配線層の縁部は露出することにな
り、その結果として、配線層の縁部はイオンでスパッタ
エツチングされるが、その際の入射角依存性のために約
45度のテーパーをもつようになる。
Next, when forming the silicon oxide film 4 on the aluminum wiring layer 3 by RF bias sputtering using, for example, high-purity quartz glass (Si02) as a sputtering target and argon (Ar) as a sputtering residue, for example, Ar pressure is 10mTorr! When sputtering was performed for 30 minutes with DC negative tortoise pressures applied to the target and substrate sides at -600 V and -170 V, respectively, as shown in Figure 2, the silicon oxide film 4 was formed only on the flat part. tsoo
The edge of the Keitaun wiring side i is etched to have a taper of about 45i. In other words, since the negative DC voltage on the substrate side is large, the sputtering rate is higher than the deposition rate of the silicon oxide film at the edge of the wiring layer due to its dependence on the incident angle. As a result, the edge of the wiring layer is sputter-etched with ions, but due to the dependence on the incident angle, the edge of the wiring layer has a taper of about 45 degrees.

次に、前記基板側に印加される直流負電圧を低くしたR
Fスパッタ法あるいは、SiH4とN20ガスを用いた
プラズマC■法やSiH4と02ガスを用いた減圧C,
’VD法によシ絶縁膜として例えば瞼化シリコン膜4′
を約1μm被着した状態を第3図に示す。
Next, R
F sputtering method, plasma C method using SiH4 and N20 gas, reduced pressure C method using SiH4 and O2 gas,
'For example, a silicone film 4' is used as an insulating film using the VD method.
FIG. 3 shows the state in which about 1 μm of the film has been deposited.

さらにその上に、第2の配線層として膜厚1μmのアル
ミニウム配線層5を形成した状態を第4図に示す。かく
して形成された酸化シリコン膜4′及びアルミニウム配
線層5は第4図からも判るように傾斜部でも、平担部と
略同じ厚さに被着される。
FIG. 4 shows a state in which an aluminum wiring layer 5 having a thickness of 1 μm is further formed as a second wiring layer thereon. As can be seen from FIG. 4, the thus formed silicon oxide film 4' and aluminum wiring layer 5 are deposited to approximately the same thickness on the sloped portions as on the flat portions.

これにより、絶縁層の絶縁性は低下せず、かつ第2層目
の配線の断線が生じ難くなり、素子信頼性が向上するこ
とが判明した。
It has been found that this does not reduce the insulation properties of the insulating layer, makes it difficult for the second layer wiring to be disconnected, and improves device reliability.

〔発明の仙の実施例〕[Embodiment of the Invention Fairy]

本発明は上述した実施例に限定されるものではない。例
えば第2図に示した工程では酸化シリコン膜4が平担部
で堆積したが、はとんど堆積されない条件で行なっても
本発明は有効である。
The invention is not limited to the embodiments described above. For example, in the step shown in FIG. 2, the silicon oxide film 4 is deposited on a flat portion, but the present invention is effective even if the silicon oxide film 4 is deposited under conditions where it is hardly deposited.

また、配線層として、アルミニウム膜の場合について述
べたが、 MO,W、pt、Au等の金属やそれらのシ
リサイド膜さらに多結晶シリコン膜などでもよい。
Moreover, although the case of an aluminum film has been described as a wiring layer, metals such as MO, W, PT, and Au, silicide films thereof, polycrystalline silicon films, etc. may also be used.

また、絶縁膜としては、酸化シリコン膜の他、窒化シリ
コンj端や、燐、1lit累、硼素等の不純物を含んだ
シリケートガラス膜などでもよい。
In addition to the silicon oxide film, the insulating film may be a silicon nitride J-edge, a silicate glass film containing impurities such as phosphorus, 1 liter, boron, or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の一実施例を示す工程断面図
である。 図に於いて 1・・・シリコン基板、 2.4.4’・・・酸化クリコン膜(絶縁層)3.5・
・・アルミニウム膜(配線層)。
1 to 4 are process sectional views showing one embodiment of the present invention. In the figure, 1...Silicon substrate, 2.4.4'...Clicon oxide film (insulating layer) 3.5.
...Aluminum film (wiring layer).

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に形成された配線導体上に絶縁膜を
形成する過程において、前記基板側に直流の負電圧を印
加させるバイアススパッタ法により、前記配線導体の周
縁にテーパーをつりる工程を含むことを特徴とする半導
体装置の製造方法。
(1) In the process of forming an insulating film on a wiring conductor formed on a semiconductor substrate, a step of tapering the periphery of the wiring conductor by bias sputtering in which a negative DC voltage is applied to the substrate side. A method of manufacturing a semiconductor device, comprising:
(2)配線導体として、アルミニウムを主成分とした膜
を用いたことを特徴とする特許 囲第1項記載の半導体装置の製造方法。
(2) A method for manufacturing a semiconductor device according to item 1 of the patent encirclement, characterized in that a film containing aluminum as a main component is used as the wiring conductor.
JP13590783A 1983-07-27 1983-07-27 Manufacture of semiconductor device Pending JPS6028248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13590783A JPS6028248A (en) 1983-07-27 1983-07-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13590783A JPS6028248A (en) 1983-07-27 1983-07-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6028248A true JPS6028248A (en) 1985-02-13

Family

ID=15162613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13590783A Pending JPS6028248A (en) 1983-07-27 1983-07-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6028248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669367A (en) * 1985-03-26 1987-06-02 Toyota Jidosha Kabushiki Kaisha Light metal alloy piston
JPS6443147A (en) * 1987-08-11 1989-02-15 Rheon Automatic Machinery Co Method for molding and storing breads

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669367A (en) * 1985-03-26 1987-06-02 Toyota Jidosha Kabushiki Kaisha Light metal alloy piston
JPS6443147A (en) * 1987-08-11 1989-02-15 Rheon Automatic Machinery Co Method for molding and storing breads

Similar Documents

Publication Publication Date Title
US5160407A (en) Low pressure anisotropic etch process for tantalum silicide or titanium silicide layer formed over polysilicon layer deposited on silicon oxide layer on semiconductor wafer
US5369053A (en) Method for patterning aluminum metallizations
JPH0563940B2 (en)
JPH01112736A (en) Manufacture of semiconductor device employing thick film spin-on glass
JP2821623B2 (en) Method for manufacturing semiconductor device
JPS6028248A (en) Manufacture of semiconductor device
JPH0551174B2 (en)
JP2650313B2 (en) Dry etching method
JP2716156B2 (en) Method for manufacturing semiconductor device
JP2606315B2 (en) Method for manufacturing semiconductor device
JPS63177537A (en) Manufacture of semiconductor element
JP2702010B2 (en) Method for manufacturing semiconductor device
JPS6254427A (en) Manufacture of semiconductor device
JP3421861B2 (en) Method for manufacturing semiconductor device
JP2991388B2 (en) Method for manufacturing semiconductor device
JPS60115234A (en) Preparation of semiconductor device
JPH04307958A (en) Manufacture of semiconductor integrated circuit device
JPH05283378A (en) Manufacture of semiconductor device
JPS5928358A (en) Manufacture of semiconductor device
JPS5966125A (en) Manufacture of semiconductor device
JPS59215746A (en) Manufacture of semiconductor device
JPS58220428A (en) Manufacture of semiconductor device
JPS58169938A (en) Manufacture of semiconductor device
JPS621230A (en) Forming method for pattern
JPS63272050A (en) Manufacture of semiconductor device