JPH0551174B2 - - Google Patents

Info

Publication number
JPH0551174B2
JPH0551174B2 JP60131594A JP13159485A JPH0551174B2 JP H0551174 B2 JPH0551174 B2 JP H0551174B2 JP 60131594 A JP60131594 A JP 60131594A JP 13159485 A JP13159485 A JP 13159485A JP H0551174 B2 JPH0551174 B2 JP H0551174B2
Authority
JP
Japan
Prior art keywords
etching
ion
angle
etching rate
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60131594A
Other languages
Japanese (ja)
Other versions
JPS61289635A (en
Inventor
Takatomo Enoki
Kimyoshi Yamazaki
Kuniki Oowada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13159485A priority Critical patent/JPS61289635A/en
Publication of JPS61289635A publication Critical patent/JPS61289635A/en
Publication of JPH0551174B2 publication Critical patent/JPH0551174B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 イオン・ビーム・ミリングによるエツチ・バツ
クで、表面の平坦化を行なう方法であつて、イオ
ン・ビームの入射角度を段差部における基板に平
行な方向のエツチングを速度が平坦部の深さ方向
エツチング速度に比べて大きくなる角度に設定す
る。それにより、少ない工程で容易に平坦化がで
きる。
[Detailed Description of the Invention] [Summary] This is a method for flattening a surface by etching back using ion beam milling, in which the incident angle of the ion beam is changed so that etching is performed in a direction parallel to the substrate at the stepped portion. The etching speed is set at an angle that is higher than the etching speed in the depth direction of the flat portion. Thereby, planarization can be easily achieved with fewer steps.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体素子の製造工程における表面
平坦化技術としてのイオン・ビーム・ミリングに
よるエツチ・バツク法に関するものである。
The present invention relates to an etchback method using ion beam milling as a surface planarization technique in the manufacturing process of semiconductor devices.

〔従来の技術〕[Conventional technology]

現在、半導体素子の高密度化、高速化のための
多層配線において、段差部における断線を防ぐた
め層間絶縁膜或は、配線金属の平坦化が必須の技
術とされている。平坦化の方法として従来行なわ
れているエツチ・バツク法、スパツタ・エツチ法
について説明する。
Currently, in multilayer wiring for increasing the density and speed of semiconductor devices, planarization of interlayer insulating films or wiring metals is considered to be an essential technique in order to prevent disconnections at stepped portions. The etch-back method and the sputter etch method, which are conventionally used as flattening methods, will be explained.

(1) エツチ・バツク法による平坦化例:第4図a
のように、絶縁膜11上に金属配線パタン12
による段差がある場合、例えば、絶縁膜として
SiO213をスパツタ堆積又はプラズマCVD法
により堆積させ、さらに、レジスト等14を塗
布し、レジストの流動性を利用してレジスト表
面を平坦化する(第4図b)。その後、例えば
CF4/O2プラズマにより、レジスト14とSiO2
13のエツチング速度が等しい条件でエツチン
グを行なう(第4図c)。以上の工程により、
凹領域を絶縁膜で埋めて、表面を平坦化するこ
とができる。しかし、この方法では、深い段差
を平坦化する場合、レジストによる表面の平坦
化が困難であること及びレジストと平坦化すべ
き材料のエツチング速度を等しくしなければな
らないという厳しい制限が課せられる等の問題
が生じる。
(1) Example of flattening using the etch-back method: Figure 4a
A metal wiring pattern 12 is formed on the insulating film 11 as shown in FIG.
For example, if there is a difference in level due to
SiO 2 13 is deposited by sputter deposition or plasma CVD, and then a resist 14 is applied, and the resist surface is flattened using the fluidity of the resist (FIG. 4b). Then, for example
Resist 14 and SiO 2 are separated by CF 4 /O 2 plasma.
Etching is carried out under the condition that the etching speed of 13 is equal (FIG. 4c). Through the above process,
The surface can be flattened by filling the recessed region with an insulating film. However, when flattening a deep step, this method has problems such as the difficulty of flattening the surface with resist and the strict restriction that the etching speed of the resist and the material to be flattened must be equal. occurs.

(2) スパツタ・エツチングによる平坦化例:第5
図aのように絶縁膜21上に金属配線パタン2
2による段差がある場合、例えば絶縁膜として
SiO223をスパツタ堆積又はプラズマCVDT
法により堆積させる(第5図b)。その後表面
をArプラズマによりスパツタ・エツチングす
る。スパツタ効率の角度依存性から段差部の角
が選択的にエツチングされ、段差が穏やかにな
る(第5図c)。この方法では段差部の角を選
択的にエツチングするだけに止まり、十分な平
坦化とはならない。
(2) Example of flattening by sputter etching: 5th
As shown in figure a, a metal wiring pattern 2 is formed on the insulating film 21.
If there is a step due to 2, for example, as an insulating film
Sputter deposition or plasma CVDT of SiO 2 23
(FIG. 5b). After that, the surface is sputter etched using Ar plasma. Because of the angular dependence of sputtering efficiency, the corners of the stepped portion are selectively etched, making the step gentle (FIG. 5c). This method only selectively etches the corners of the stepped portion and does not result in sufficient flattening.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、従来法では、深い段差の平坦化
が困難であつたり、エツチングの条件が厳しい、
或は、段差部の角を選択的にエツチングするにと
どまり、十分な平坦化ができない等、尚不十分で
あつた。
As mentioned above, with the conventional method, it is difficult to flatten deep steps, and the etching conditions are harsh.
Alternatively, the etching is still insufficient, such as selectively etching the corners of the stepped portions, and sufficient flattening cannot be achieved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決するため、表面に
段差を有する基板の該表面に、該段差と同程度乃
至それ以上の膜厚を有する、イオン・ビーム・ミ
リングに対して、平坦な表面の深さ方向エツチン
グ速度が表面の法線とイオン入射方向のなす角度
の増加とともに単調減少する性質を有する物質と
してAuの薄膜を堆積する工程と、前記段差斜面
における前記基板に平行な方向へのエツチング速
度が平坦部の深さ方向エツチング速度に比べ大き
くなるような角度に、基板法線に対するイオン入
射角度を設定した前記イオン・ビーム・ミリング
により、前記薄膜をエツチ・バツクする工程とを
含むことを特徴とする。
In order to solve the conventional problems, the present invention has been proposed to perform ion beam milling on the surface of a substrate having a step on the surface, which has a film thickness comparable to or greater than the step. a step of depositing a thin film of Au as a material whose etching rate in the depth direction monotonically decreases as the angle between the surface normal and the ion incident direction increases; and etching in a direction parallel to the substrate on the stepped slope. etching back the thin film by the ion beam milling, with the ion beam milling setting the ion incidence angle with respect to the normal to the substrate at an angle such that the etching speed is higher than the etching speed in the depth direction of the flat portion; Features.

〔作用〕[Effect]

上記によれば、エツチング速度のイオン・ビー
ム入射角度依存性を利用し、表面の凸部を選択的
にエツチングし、表面を平坦化することができ
る。
According to the above, by utilizing the dependence of the etching rate on the ion beam incident angle, the convex portions of the surface can be selectively etched and the surface can be flattened.

イオン入射角度を第3図aのように、基板法線
に対する角度θで定義すると、一般にイオン・ビ
ーム・ミリングのエツチング速度のビーム入射角
度依存性は、例えばAuのように垂直入射(θ=
0)で最大となるもの(第3図b−31)と、例
えばSiのようにθ=40°〜60°で最大となるもの
(第3図b−32)とに大別される。いずれの場
合でもイオン入射角度θが60°以上ではエツチン
グ速度は入射角度の増大とともに減少し90°でゼ
ロとなる。したがつて、第2図に示すように段差
をもつ表面をイオン入射角度θでエツチ・バツク
する場合、段差斜面への入射角度ΘはΘ<θであ
り、エツチング速度のイオン・ビーム入射角度依
存性と段差形状により段差斜面のエツチング速度
R(Θ)が平坦部でのエツチング速度R(θ)に比
べ大きくなるθが存在する。この入射角度でのエ
ツチ・バツクにより凸部の薄膜を選択的にエツチ
ングすることができる(以下斜めイオン・ビー
ム・ミリングと呼ぶ)。
If the ion incidence angle is defined as the angle θ with respect to the substrate normal, as shown in Figure 3a, then the dependence of the etching rate in ion beam milling on the beam incidence angle is generally determined by the normal incidence (θ=
0) (Fig. 3 b-31) and those such as Si, which reach a maximum at θ = 40° to 60° (Fig. 3 b-32). In any case, when the ion incidence angle θ is 60° or more, the etching rate decreases as the incidence angle increases and becomes zero at 90°. Therefore, when etching back a surface with steps at an ion incidence angle θ as shown in Figure 2, the incidence angle Θ on the step slope is Θ<θ, and the etching rate depends on the ion beam incidence angle. Depending on the nature and shape of the step, there is a value θ at which the etching rate R(Θ) on the stepped slope is greater than the etching rate R(θ) on the flat portion. Etching back at this angle of incidence makes it possible to selectively etch the thin film on the convex portion (hereinafter referred to as oblique ion beam milling).

〔実施例〕〔Example〕

本発明の実施例として、幅1μm、厚さ0.3μmの
SiO2膜パタンから成る表面に段差を有する基板
の表面の凹領域のみに、段差と同程度乃至それ以
上の膜厚を有する、イオン・ビーム・ミリングに
対して、第2図および第3図により説明したよう
に、平坦な表面の深さ方向エツチング速度が表面
の法線とイオン入射方向のなす角度の増加ととも
に単調減少する性質を有する物質としてAuを残
し、表面を平坦化する場合を第1図に示す。上記
SiO2膜パタン51から成る凹凸表面全面にAu5
2を例えばスパツタ堆積法により0.4μm堆積する
(第1図a)。その後例えば約70°のイオン入射角
度をもつイオン・ビーム・ミリング(イオン・ビ
ーム53)によりエツチ・バツクを行なう。この
時、段差斜面のエツチング速度は平坦部のエツチ
ング速度に比べ約5倍であり、凸部のAuを選択
的にエツチングすることができる(第1図b)。
上述エツチ・バツクをSiO2膜が露出するまで行
なうことにより、SiO2パタンの凹領域のみにAu
を残し、表面は平坦化される(第1図c)。
As an example of the present invention, a width of 1 μm and a thickness of 0.3 μm is shown.
For ion beam milling, which has a film thickness similar to or greater than the step only in the concave area of the surface of a substrate consisting of a SiO 2 film pattern with a step on the surface, Figs. 2 and 3 show that As explained above, the first case is that the etching rate in the depth direction of a flat surface monotonically decreases as the angle between the surface normal and the ion incident direction increases, leaving Au as a material and flattening the surface. As shown in the figure. the above
Au5 is applied to the entire surface of the uneven surface consisting of the SiO 2 film pattern 51.
2 is deposited to a thickness of 0.4 μm by sputter deposition, for example (FIG. 1a). Thereafter, etchback is performed by ion beam milling (ion beam 53) with an ion incidence angle of about 70°, for example. At this time, the etching rate on the stepped slope is about five times as high as the etching rate on the flat area, making it possible to selectively etch the Au on the convex area (FIG. 1b).
By performing the above etchback until the SiO 2 film is exposed, Au is removed only in the concave areas of the SiO 2 pattern.
, and the surface is flattened (Fig. 1c).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、斜めイオン・ビーム・ミ
リングによるエツチ・バツクにより、少ない工程
で、容易に平坦化することができる。この平坦化
エツチ・バツク法は、多層配線に必要な平坦化、
及び凹パタンを利用した自己整合的パタン形成
等、幅広い応用分野をもつという利点がある。
As explained above, by etchback using oblique ion beam milling, planarization can be easily achieved with fewer steps. This planarization etchback method is a method for flattening and
It has the advantage of having a wide range of applications, such as self-aligned pattern formation using concave patterns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜cは本発明の実施例の要部工程断面
図、第2図は本発明の原理を説明するための図、
第3図a,bはそれぞれイオン入射角度の定義を
説明する図及びイオン入射角度とエツチング速度
の関係を示す図、第4図a〜c及び第5図a〜c
はそれぞれ第1の従来例及び第2の従来例の工程
図である。 11……絶縁膜、12……金属配線、13……
層間絶縁膜、21……絶縁膜、22……金属配
線、23……層間絶縁膜、51……SiO2(パタ
ン)、52……Au、53……イオン・ビーム。
1A to 1C are cross-sectional views of main parts of the embodiment of the present invention, and FIG. 2 is a diagram for explaining the principle of the present invention.
Figures 3a and 3b are diagrams explaining the definition of the ion incidence angle and diagrams showing the relationship between the ion incidence angle and the etching rate, Figures 4 a to c, and Figures 5 a to c, respectively.
are process diagrams of the first conventional example and the second conventional example, respectively. 11... Insulating film, 12... Metal wiring, 13...
Interlayer insulating film, 21... Insulating film, 22... Metal wiring, 23... Interlayer insulating film, 51... SiO 2 (pattern), 52... Au, 53... Ion beam.

Claims (1)

【特許請求の範囲】 1 表面に段差を有する基板の該表面に、該段差
と同程度乃至それ以上の膜厚を有する、イオン・
ビーム・ミリングに対して、平坦な表面の深さ方
向エツチング速度が表面の法線とイオン入射方向
のなす角度の増加とともに単調減少する性質を有
する物質としてAuの薄膜を堆積する工程と、 前記段差斜面における前記基板に平行な方向へ
のエツチング速度が平坦部の深さ方向エツチング
速度に比べ大きくなるような角度に、基板法線に
対するイオン入射角度を設定した前記イオン・ビ
ーム・ミリングにより、前記薄膜をエツチ・バツ
クする工程とを含むことを特徴とする表面平坦化
方法。
[Claims] 1. An ion film having a film thickness equal to or greater than the step on the surface of a substrate having a step on the surface.
For beam milling, depositing a thin film of Au as a material whose etching rate in the depth direction of a flat surface monotonically decreases as the angle between the surface normal and the ion incidence direction increases; The thin film is etched by the ion beam milling, in which the ion incidence angle with respect to the normal to the substrate is set at an angle such that the etching rate in the direction parallel to the substrate on the slope is greater than the etching rate in the depth direction on the flat part. A method for flattening a surface, comprising the step of etching back.
JP13159485A 1985-06-17 1985-06-17 Surface flatterning Granted JPS61289635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13159485A JPS61289635A (en) 1985-06-17 1985-06-17 Surface flatterning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13159485A JPS61289635A (en) 1985-06-17 1985-06-17 Surface flatterning

Publications (2)

Publication Number Publication Date
JPS61289635A JPS61289635A (en) 1986-12-19
JPH0551174B2 true JPH0551174B2 (en) 1993-07-30

Family

ID=15061704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13159485A Granted JPS61289635A (en) 1985-06-17 1985-06-17 Surface flatterning

Country Status (1)

Country Link
JP (1) JPS61289635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150064567A1 (en) * 2013-08-29 2015-03-05 Stmicroelectronics (Tours) Sas Silicon microstructuring method and microbattery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966885A (en) * 1989-08-25 1990-10-30 At&T Bell Laboratories Method of producing a device comprising a metal oxide superconductor layer
US5744400A (en) * 1996-05-06 1998-04-28 Accord Semiconductor Equipment Group Apparatus and method for dry milling of non-planar features on a semiconductor surface
JP4008420B2 (en) 2004-02-23 2007-11-14 Tdk株式会社 Method for manufacturing magnetic recording medium
US8597528B1 (en) 2011-03-30 2013-12-03 Western Digital (Fremont), Llc Method and system for defining a read sensor using an ion mill planarization
US8578594B2 (en) 2011-06-06 2013-11-12 Western Digital (Fremont), Llc Process for fabricating a magnetic pole and shields
US9053735B1 (en) 2014-06-20 2015-06-09 Western Digital (Fremont), Llc Method for fabricating a magnetic writer using a full-film metal planarization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432985A (en) * 1977-08-19 1979-03-10 Mitsubishi Electric Corp Flattening method for substrate surface with protrusion
JPS55143035A (en) * 1979-04-24 1980-11-08 Nec Corp Manufacture of pattern
JPS5882536A (en) * 1981-11-10 1983-05-18 Fujitsu Ltd Preparation of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432985A (en) * 1977-08-19 1979-03-10 Mitsubishi Electric Corp Flattening method for substrate surface with protrusion
JPS55143035A (en) * 1979-04-24 1980-11-08 Nec Corp Manufacture of pattern
JPS5882536A (en) * 1981-11-10 1983-05-18 Fujitsu Ltd Preparation of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150064567A1 (en) * 2013-08-29 2015-03-05 Stmicroelectronics (Tours) Sas Silicon microstructuring method and microbattery
US9780366B2 (en) * 2013-08-29 2017-10-03 Stmicroelectronics (Tours) Sas Silicon microstructuring method and microbattery

Also Published As

Publication number Publication date
JPS61289635A (en) 1986-12-19

Similar Documents

Publication Publication Date Title
JPH0563940B2 (en)
JP2727984B2 (en) Method for manufacturing semiconductor device
JPH0551174B2 (en)
JP2000195867A (en) Formation of fine metallic pattern by damascene technique
JP2716156B2 (en) Method for manufacturing semiconductor device
JPH0653334A (en) Manufacturing for semiconductor device
JP2570735B2 (en) Multi-layer wiring formation method
JP3301466B2 (en) Method for manufacturing semiconductor device
JPS63161645A (en) Manufacture of semiconductor device
JP2985204B2 (en) Method for manufacturing semiconductor device
JP2671369B2 (en) Method for manufacturing semiconductor device
JP2663833B2 (en) Semiconductor device and manufacturing method thereof
JPS6028248A (en) Manufacture of semiconductor device
JP2872298B2 (en) Method for manufacturing semiconductor device
JPH0590203A (en) Manufacture of semiconductor device
JPS60115234A (en) Preparation of semiconductor device
JPH0722152B2 (en) Dry etching method
JP2994644B2 (en) Electrode formation method
JPH0249017B2 (en)
JPH0220141B2 (en)
JPS6167934A (en) Method for isolation by separation and burying in groove
JPH02137329A (en) Al thin film for multilayer interconnections
JPH0212827A (en) Manufacture of semiconductor device
JPS6052043A (en) Manufacture of wiring structure
JPS6130053A (en) Covering method of step

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term